1
|
Abstract
This study evaluated the efficiency of two biofilter systems, with and without biochar chambers installed, at degrading and removing HCH and its isomers in natural drainage water. The biochar biofilter proved to be 96% efficient at cleaning HCH and its transformation products from drainage water, a significant improvement over classic biofilter that remove, on average, 68% of HCH. Although iron- and sulfur-oxidizing bacteria, such as Gallionella and Sulfuricurvum, were dominant in the biochar bed outflows, they were absent in sediments, which were rich in Simplicispira, Rhodoluna, Rhodoferax, and Flavobacterium. The presence of functional genes involved in the biodegradation of HCH isomers and their byproducts was confirmed in both systems. The high effectiveness of the biochar biofilter displayed in this study should further encourage the use of biochar in water treatment solutions, e.g., for temporary water purification installations during the construction of other long-term wastewater treatment technologies, or even as final solutions at contaminated sites.
Collapse
|
2
|
Sowińska A, Vasquez L, Żaczek S, Manna RN, Tuñón I, Dybala-Defratyka A. Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA. J Phys Chem B 2020; 124:10353-10364. [PMID: 33146535 PMCID: PMC7681783 DOI: 10.1021/acs.jpcb.0c08976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by description of enzymatic catalytic steps carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) potential along with the computation of the potential of mean force (PMF) to estimate the free energy barriers for the studied transformations: dehydrochlorination of γ-, (-)-α-, and (+)-α-HCH by LinA-type I and -type II variants. The applied combination of computational techniques allowed us not only to characterize two LinA types but also to point to the most important differences between them and link their features to catalytic efficiency each of them possesses toward the respective ligand. More importantly it has been demonstrated that type I protein is more mobile, its active site has a larger volume, and the dehydrochlorination products are stabilized more strongly than in the case of type II enzyme, due to differences in the residues present in the active sites. Additionally, interaction energy calculations revealed very interesting patterns not predicted before but having the potential to be utilized in any attempts of improving LinA catalytic efficiency. On the basis of all these observations, LinA-type I protein seems to be more preorganized for the dehydrochlorination reaction it catalyzes than the type II variant.
Collapse
Affiliation(s)
- Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rabindra Nath Manna
- School Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Iñaki Tuñón
- Departamento de Quı́mica Fı́sica, Universitat de Valencia, 46100 Burjassot, Valencia Spain
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Schilling IE, Hess R, Bolotin J, Lal R, Hofstetter TB, Kohler HPE. Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2353-2363. [PMID: 30674184 DOI: 10.1021/acs.est.8b04234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.
Collapse
Affiliation(s)
- Iris E Schilling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Ramon Hess
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Rup Lal
- Department of Zoology , University of Delhi , Delhi 110007 , India
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
4
|
Gong S, Chen Y, Luo Q, Schaefer HF. The conformational preferences of polychlorocyclohexanes. NEW J CHEM 2019. [DOI: 10.1039/c9nj02997d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple but precise model equation to get accurate conformational energies of polychlorocyclohexane conformations.
Collapse
Affiliation(s)
- Shida Gong
- MOE Key Laboratory of Theoretical Chemistry of Environment
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yuan Chen
- MOE Key Laboratory of Theoretical Chemistry of Environment
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Qiong Luo
- MOE Key Laboratory of Theoretical Chemistry of Environment
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- P. R. China
| | | |
Collapse
|
5
|
Xu Y, Niu L, Qiu J, Zhou Y, Lu H, Liu W. Stereoselective accumulations of hexachlorocyclohexanes (HCHs) are correlated with Sphingomonas spp. in agricultural soils across China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:27-33. [PMID: 29729566 DOI: 10.1016/j.envpol.2018.04.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The wide usage of hexachlorocyclohexanes (HCHs) as pesticides has caused soil pollution and adverse health effects through direct contact or bioaccumulation in the food chain. This study quantified major HCH isomers in farmland topsoils across China, and evaluated their correlations with microbial community structure, function, and abiotic variables (e.g., moisture, pH, and temperature). Recalcitrant β-HCH was more abundant than α-, γ-, and δ-HCHs, and α-HCH enantiomeric fractions (EF) were larger than 0.5, indicating preferential degradation of (-)-α-HCH. Sphingomonas was not only a predominant population (especially in samples collected in the south), but also a promising biomarker indicating total- and β-HCH residuals, and EF values of α-HCH. Soil moisture and temperature were among the most influential factors that structured the diversity and function of soil microbial communities. The results suggested that increasing soil moisture (in the range of 5-45%) would benefit the growth of HCH-degrading populations and the enrichment of HCH-degradation related pathways. Revealing the site-specific relationships between topsoil physical, chemical, and microbial properties will benefit the in situ bioremediation of farmlands with relatively low HCH residuals across the world.
Collapse
Affiliation(s)
- Yang Xu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jiguo Qiu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuting Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huijie Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Civil and Environmental Engineering, University of Vermont, 33 Colchester Ave, Burlington, VT 05405, USA.
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Abstract
Approaches to determine chlorine kinetic isotope effects (Cl-KIEs) on enzymatic dehalogenations are discussed and illustrated by representative examples. Three aspects are considered. First methodology for experimental measurement of Cl-KIEs, with stress being on FAB-IRMS technique developed in our laboratory, is described. Subsequently, we concentrate our discussion on the consequences of reaction complexity in the interpretation of experimental values, a problem especially important in cases of polychlorinated reactants. The most fruitful studies of enzymatic dehalogenations by Cl-KIEs require their theoretical evaluation, hence the computational focus of the second part of this chapter.
Collapse
|
7
|
Tang X, Zhang R, Zhang Q, Wang W. Dehydrochlorination mechanism of γ-hexachlorocyclohexane degraded by dehydrochlorinase LinA from Sphingomonas paucimobilis UT26. RSC Adv 2016. [DOI: 10.1039/c5ra21461k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biotransformation pathway from γ-HCH to 1,3,4,6-TCDN catabolized by dehydrochlorinase LinA contains two discontinuous dehydrochlorination reactions and a conformational transition for the product of the first dehydrochlorination reaction.
Collapse
Affiliation(s)
- Xiaowen Tang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Ruiming Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
8
|
Manna RN, Zinovjev K, Tuñón I, Dybala-Defratyka A. Dehydrochlorination of Hexachlorocyclohexanes Catalyzed by the LinA Dehydrohalogenase. A QM/MM Study. J Phys Chem B 2015; 119:15100-9. [DOI: 10.1021/acs.jpcb.5b07538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rabindra Nath Manna
- Institute
of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| | - Kirill Zinovjev
- Departament
de Química Física, Universitat de Valéncia, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament
de Química Física, Universitat de Valéncia, 46100 Burjassot, Spain
| | - Agnieszka Dybala-Defratyka
- Institute
of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
9
|
A computational study of the dechlorination of β-hexachlorocyclohexane (β-HCH) catalyzed by the haloalkane dehalogenase LinB. Arch Biochem Biophys 2014; 562:43-50. [DOI: 10.1016/j.abb.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
|
10
|
Kinetic and sequence-structure-function analysis of LinB enzyme variants with β- and δ-hexachlorocyclohexane. PLoS One 2014; 9:e103632. [PMID: 25076214 PMCID: PMC4116220 DOI: 10.1371/journal.pone.0103632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
Organochlorine insecticide hexachlorocyclohexane (HCH) has recently been classified as a ‘Persistent Organic pollutant’ by the Stockholm Convention. The LinB haloalkane dehalogenase is a key upstream enzyme in the recently evolved Lin pathway for the catabolism of HCH in bacteria. Here we report a sequence-structure-function analysis of ten naturally occurring and thirteen synthetic mutants of LinB. One of the synthetic mutants was found to have ∼80 fold more activity for β- and δ-hexachlorocyclohexane. Based on detailed biophysical calculations, molecular dynamics and ensemble docking calculations, we propose that the latter variant is more active because of alterations to the shape of its active site and increased conformational plasticity.
Collapse
|
11
|
Manna RN, Dybala-Defratyka A. Insights into the elimination mechanisms employed for the degradation of different hexachlorocyclohexane isomers using kinetic isotope effects and docking studies. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rabindra Nath Manna
- Institute of Applied Radiation Chemistry, Faculty of Chemistry; Lodz University of Technology; Zeromskiego 116 Lodz Poland
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry; Lodz University of Technology; Zeromskiego 116 Lodz Poland
| |
Collapse
|
12
|
Functional screening of enzymes and bacteria for the dechlorination of hexachlorocyclohexane by a high-throughput colorimetric assay. Biodegradation 2013; 25:179-87. [DOI: 10.1007/s10532-013-9650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
13
|
Sharma P, Pandey R, Kumari K, Pandey G, Jackson CJ, Russell RJ, Oakeshott JG, Lal R. Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers. PLoS One 2011; 6:e25128. [PMID: 21949868 PMCID: PMC3174995 DOI: 10.1371/journal.pone.0025128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+)- and (-)-α -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A) A110T, A111C, A110T/A111C and LinA1(B90A) were constructed using the FoldX computer algorithm. Turnover rates (min(-1)) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA's, followed by the γ and then δ isomer. CONCLUSIONS/SIGNIFICANCE The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Kirti Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 2011; 4:225-48. [PMID: 25567970 PMCID: PMC3352558 DOI: 10.1111/j.1752-4571.2010.00175.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022] Open
Abstract
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from 'promiscuous' activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments.
Collapse
Affiliation(s)
| | - Colin Scott
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | - Rinku Pandey
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | | | | | - Jian-Wei Liu
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | |
Collapse
|