1
|
Awad NK. Organs on chips: fundamentals, bioengineering and applications. J Artif Organs 2025; 28:110-130. [PMID: 39134691 DOI: 10.1007/s10047-024-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/12/2024] [Indexed: 05/16/2025]
Abstract
Human body constitutes unique biological system containing specific fluid mechanics and biomechanics. Traditional cell culture techniques of 2D and 3D do not recapitulate these specific natures of the human system. In addition, they lack the spatiotemporal conditions of representing the cells. Moreover, they do not enable the study of cell-cell interactions in multiple cell culture platforms. Therefore, establishing biological system of dynamic cell culture was of great interest. Organs on chips systems were fabricated proving their concept to mimic specific organs functions. Therefore, it paves the way for validating new drugs and establishes mechanisms of emerging diseases. It has played a key role in validating suitable vaccines for Coronavirus disease (COVID-19). Herein, the concept of organs on chips, fabrication methodology and their applications are discussed.
Collapse
Affiliation(s)
- Nasser K Awad
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, 12422, Cairo, Egypt.
| |
Collapse
|
2
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
3
|
Zheng G, Gu F, Cui Y, Lu L, Hu X, Wang L, Wang Y. A microfluidic droplet array demonstrating high-throughput screening in individual lipid-producing microalgae. Anal Chim Acta 2022; 1227:340322. [DOI: 10.1016/j.aca.2022.340322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
4
|
Frey N, Sönmez UM, Minden J, LeDuc P. Microfluidics for understanding model organisms. Nat Commun 2022; 13:3195. [PMID: 35680898 PMCID: PMC9184607 DOI: 10.1038/s41467-022-30814-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
New microfluidic systems for whole organism analysis and experimentation are catalyzing biological breakthroughs across many fields, from human health to fundamental biology principles. This perspective discusses recent microfluidic tools to study intact model organisms to demonstrate the tremendous potential for these integrated approaches now and into the future. We describe these microsystems' technical features and highlight the unique advantages for precise manipulation in areas including immobilization, automated alignment, sorting, sensory, mechanical and chemical stimulation, and genetic and thermal perturbation. Our aim is to familiarize technologically focused researchers with microfluidics applications in biology research, while providing biologists an entrée to advanced microengineering techniques for model organisms.
Collapse
Affiliation(s)
- Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Utku M Sönmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Philip LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Computation Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Aubry G, Milisavljevic M, Lu H. Automated and Dynamic Control of Chemical Content in Droplets for Scalable Screens of Small Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200319. [PMID: 35229457 PMCID: PMC9050880 DOI: 10.1002/smll.202200319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Screening functional phenotypes in small animals is important for genetics and drug discovery. Multiphase microfluidics has great potential for enhancing throughput but has been hampered by inefficient animal encapsulation and limited control over the animal's environment in droplets. Here, a highly efficient single-animal encapsulation unit, a liquid exchanger system for controlling the droplet chemical environment dynamically, and an automation scheme for the programming and robust execution of complex protocols are demonstrated. By careful use of interfacial forces, the liquid exchanger unit allows for adding and removing chemicals from a droplet and, therefore, generating chemical gradients inaccessible in previous multiphase systems. Using Caenorhabditis elegans as an example, it is demonstrated that these advances can serve to analyze dynamic phenotyping, such as behavior and neuronal activity, perform forward genetic screen, and are scalable to manipulate animals of different sizes. This platform paves the way for large-scale screens of complex dynamic phenotypes in small animals.
Collapse
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marija Milisavljevic
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. MICROMACHINES 2021; 12:mi12030345. [PMID: 33807031 PMCID: PMC8004903 DOI: 10.3390/mi12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
High-throughput microflow cytometry has become a focal point of research in recent years. In particular, droplet microflow cytometry (DMFC) enables the analysis of cells reacting to different stimuli in chemical isolation due to each droplet acting as an isolated microreactor. Furthermore, at high flow rates, the droplets allow massive parallelization, further increasing the throughput of droplets. However, this novel methodology poses unique challenges related to commonly used fluorometry and fluorescent microscopy techniques. We review the optical sensor technology and light sources applicable to DMFC, as well as analyze the challenges and advantages of each option, primarily focusing on electronics. An analysis of low-cost and/or sufficiently compact systems that can be incorporated into portable devices is also presented.
Collapse
Affiliation(s)
- Kaiser Pärnamets
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
- Correspondence:
| | - Tamas Pardy
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Yannick Le Moullec
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Fariha Afrin
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| |
Collapse
|
7
|
Zhang X, Sun J, Yuan X, Lu X, Sun X. Advances in C. elegans behavior research with microfluidic devices and its future prospects in the evaluation of exogenous pollutants. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Abstract
In the last decade, microfluidic methods have proven to be powerful tools for Caenorhabditis elegans research, offering advanced manipulation of worms and precise control of experimental conditions. The advantages of microfluidic chips include their capability of immobilization, automated sorting, and longitudinal measurement, and more. In this review, we focus on control components that are widely used in the design of microfluidic devices, and discuss their functions and working principles that enable advanced manipulation on a chip. Understanding these components will ease the onboarding of researchers inexperienced with microfluidics and help them bring the power of microfluidics to new applications.
Collapse
Affiliation(s)
- Erel Levine
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju, South Korea
| |
Collapse
|
9
|
Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. MICROMACHINES 2020; 11:mi11080756. [PMID: 32759767 PMCID: PMC7465510 DOI: 10.3390/mi11080756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
In this paper, we report a novel microfluidic method to conduct a Caenorhabditis elegans electrotaxis movement assay and neuronal imaging on up to 16 worms in parallel. C. elegans is a model organism for neurodegenerative disease and movement disorders such as Parkinson’s disease (PD), and for screening chemicals that alleviate protein aggregation, neuronal death, and movement impairment in PD. Electrotaxis of C. elegans in microfluidic channels has led to the development of neurobehavioral screening platforms, but enhancing the throughput of the electrotactic behavioral assay has remained a challenge. Our device consisted of a hierarchy of tree-like channels for worm loading into 16 parallel electrotaxis screening channels with equivalent electric fields. Tapered channels at the ends of electrotaxis channels were used for worm immobilization and fluorescent imaging of neurons. Parallel electrotaxis of worms was first validated against established single-worm electrotaxis phenotypes. Then, mutant screening was demonstrated using the NL5901 strain, carrying human α-synuclein in the muscle cells, by showing the associated electrotaxis defects in the average speed, body bend frequency (BBF), and electrotaxis time index (ETI). Moreover, chemical screening of a PD worm model was shown by exposing the BZ555 strain, expressing green fluorescence protein (GFP) in the dopaminergic neurons (DNs), to 6-hydroxydopamine neurotoxin. The neurotoxin-treated worms exhibited a reduction in electrotaxis swimming speed, BBF, ETI, and DNs fluorescence intensity. We envision our technique to be used widely in C. elegans-based movement disorder assays to accelerate behavioral and cellular phenotypic investigations.
Collapse
|
10
|
Zhao Y, Demirci U, Chen Y, Chen P. Multiscale brain research on a microfluidic chip. LAB ON A CHIP 2020; 20:1531-1543. [PMID: 32150176 DOI: 10.1039/c9lc01010f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major challenge in current brain research is generating an integrative understanding of the brain's functions and disorders from its multiscale neuronal architectures and connectivity. Thus, innovative neurotechnology tools are urgently required for deciphering the multiscale functional and structural organizations of the brain at hierarchical scales from the molecular to the organismal level by multiple brain research initiatives launched by the European Union, United States, Australia, Canada, China, Korea, and Japan. To meet this demand, microfluidic chips (μFCs) have rapidly evolved as a trans-scale neurotechnological toolset to enable multiscale studies of the brain due to their unique advantages in flexible microstructure design, multifunctional integration, accurate microenvironment control, and capacity for automatic sample processing. Here, we review the recent progress in applying innovative μFC-based neuro-technologies to promote multiscale brain research and uniquely focus on representative applications of μFCs to address challenges in brain research at each hierarchical level. We discuss the current trend of combinational applications of μFCs with other neuro- and biotechnologies, including optogenetics, brain organoids, and 3D bioprinting, for better multiscale brain research. In addition, we offer our insights into the existing outstanding questions at each hierarchical level of brain research that could potentially be addressed by advancing microfluidic techniques. This review will serve as a timely guide for bioengineers and neuroscientists to develop and apply μFC-based neuro-technologies for promoting basic and translational brain research.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, 115 Donghu Road, Wuhan 430071, China.
| | | | | | | |
Collapse
|
11
|
Chen Z, Deng J, Zhang X, Luo Y, Lu Y, Wu Z, Lin B. A novel micro-injection droplet microfluidic system for studying locomotive behavior responses to Cu 2+ induced neurotoxin in individual C.elegans. Anal Chim Acta 2020; 1106:61-70. [PMID: 32145856 DOI: 10.1016/j.aca.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Analysis of C.elegans by droplet microfluidics has been widely used in study of locomotive behavior responses to neurotoxicity due to the capacity of high-throughput manipulating single cells. However, it has been difficult to manipulate droplets flexibly and actively on account of the limitation of the dimension of individual C. elegans droplets. In this study, a novel MiDMS (Micro-injection Droplet Microfluidic System) was proposed, which consisted of three parts: single C. elegans droplet generator, droplets drug micro-injection channels and drug-incubation observation array. Individual C.elegans droplets were produced initially by regulating the flow rates between oil and water phase as well as the concentration of C.elegans in suspension. Then, the drug solution was precisely injected into each C.elegans droplet, which by electricity induced surface tension of droplet changing. In addition, the effect of neurotoxic Cu2+ on locomotive behavior of C. elegans was evaluated at single cell resolution. The results showed that the neurotoxicity induced behavioral disorder of the C. elegans was more obvious with the increase of Cu2+ concentration or treatment time, and these dose-effect and time-effect relationship in MiDMS were similar as in petri dish. This study will provide a powerful platform for the study of the response of C. elegans to quantitative drug at single cell resolution.
Collapse
Affiliation(s)
- Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yong Luo
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China; State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Bingcheng Lin
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. BIOMICROFLUIDICS 2020; 14:014112. [PMID: 32038741 PMCID: PMC7002170 DOI: 10.1063/1.5143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 05/03/2023]
Abstract
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, with parallel T-junctions and multiplexed microvalves within one chip enabling programmable injection of aqueous sample plugs, and nanoliter volumes transferred to a second microtrap array chip in which the plugs are actively discretized into picoliter droplets within a static array of membrane displacement actuators. The system employs two different multiplexer designs that reduce the number of input signals required for both sample injection and discretization. This versatile droplet-based technology offers flexible sample workflows and functionalities for the formation and manipulation of heterogeneous picoliter droplets, with particular utility for applications in biochemical synthesis and cell-based assays requiring flexible and programmable operation of parallel and multistep droplet processes. The platform is used here for the selective encapsulation of differentially labeled cells within a discrete droplet array.
Collapse
Affiliation(s)
| | - Supriya Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Don L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
13
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Wang L, Li Z, Xu C, Qin J. Bioinspired Engineering of Organ-on-Chip Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:401-440. [PMID: 31713207 DOI: 10.1007/978-981-13-9791-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhongyu Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Cong Xu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Shams Khorrami A, Rezai P. Oscillating dispersed-phase co-flow microfluidic droplet generation: jet length reduction effect. SOFT MATTER 2018; 14:9870-9876. [PMID: 30474087 DOI: 10.1039/c8sm02098a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microdroplet generation methods are assessed by two important criteria of droplet throughput and size dispersity. The widely-used co-flow droplet generation technique is bottlenecked with droplet polydispersity at high throughputs due to transition to an unstable jetting regime at high dispersed-phase (d-phase) flow rates. In this paper, we introduce a novel technique to oscillate the d-phase nozzle inside the continuous phase (c-phase) channel to suppress the jetting effect. The effect of the nozzle oscillation frequency (0-15 Hz) on the jet length was studied at different d-phase (Qd = 1.8, 2.4 and 3.0 ml min-1) and c-phase (Qc = 6, 12 and 18 ml min-1) flow rates and d-phase viscosities (1, 2.5, and 6 mPa s). The jet length was directly proportional to the d-phase flow rate and inversely proportional to the oscillation frequency. Oscillation-induced jet length reduction was more significant at high jet velocities, but a less steep jet length reduction was always observed at oscillation frequencies higher than 10 Hz. A maximum jet length reduction of 70.8% was obtained at the highest d-phase and lowest c-phase flow rates. Increasing the viscosity of the d-phase resulted in diminishing the effect of oscillation on jet length reduction. Moreover, we observed that nozzle oscillation could disintegrate the long jet into droplets of various sizes that were mostly smaller than the stationary-mode droplets. We hypothesize that oscillating the dispersion nozzle at lower flow rates, without the jetting effect, can simultaneously generate multi-size monodisperse droplets. This active technique can also be implemented into aqueous two-phase systems (ATPSs) in which droplet generation is a difficult task.
Collapse
Affiliation(s)
- Amin Shams Khorrami
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
| | | |
Collapse
|
16
|
Shams Khorrami A, Rezai P. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect. BIOMICROFLUIDICS 2018; 12:034113. [PMID: 29983838 PMCID: PMC6005787 DOI: 10.1063/1.5034473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Controllable generation of microdroplets at desired sizes and throughputs is important in many applications. Many biological assays require size-optimized droplets for effective encapsulation of analytes and reagents. To perform size optimization, different-size droplets must be generated from identical sources of samples to prevent potential cross-sample variations or other sources of error. In this paper, we introduce a novel alteration of the co-flow droplet generation technique to achieve multi-size generation of monodispersed droplets. Using a custom-made mechanism, we oscillate the disperse-phase (d-phase) flow nozzle perpendicular to the continuous phase (c-phase) flow in a co-flow channel. Oscillation of the d-phase nozzle introduces an additional lateral drag force to the growing droplets while exposing them to various levels of axial drag owing to the parabolic velocity distribution of the c-phase flow. Superimposing both effects results in simultaneous and repeatable generation of monodispersed droplets with different sizes. The effect of nozzle oscillation frequency (f = 0-15 Hz) on droplet generation at different d-phase (Qd = 0.05, 0.10, and 0.50 ml/min) and c-phase (Qc = 2, 5, and 10 ml/min) flow rates was studied. A wide range of monodispersed droplets (4nl-4 μl) were generated using this method. Droplet sizes were directly proportional to the We number and inversely proportional to the Ca number and oscillation frequency. Our technique is promising for applications such as aqueous two-phase systems, where due to inherently low interfacial tension, the d-phase flow forms a long stable jet which can be broken into droplets using the additional oscillatory drag in our device.
Collapse
Affiliation(s)
- Amin Shams Khorrami
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
17
|
Zhang L, Liu Z, Pang Y, Wang X, Li M, Ren Y. Trapping a moving droplet train by bubble guidance in microfluidic networks. RSC Adv 2018; 8:8787-8794. [PMID: 35539830 PMCID: PMC9078607 DOI: 10.1039/c7ra13507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Trapping a train of moving droplets into preset positions within a microfluidic device facilitates the long-term observation of biochemical reactions inside the droplets. In this paper, a new bubble-guided trapping method, which can remarkably improve the limited narrow two-phase flow rate range of uniform trapping, was proposed by taking advantage of the unique physical property that bubbles do not coalescence with two-phase fluids and the hydrodynamic characteristic of large flow resistance of bubbles. The flow behaviors of bubble-free and bubble-guided droplet trains were compared and analyzed under the same two-phase flow rates. The experimental results show that the droplets trapped by bubble-free guided trapping exhibit the four trapping modes of sequentially uniform trapping, non-uniform trapping induced by break-up and collision, and failed trapping due to squeezing through, and the droplets exhibit the desired uniform trapping in a relatively small two-phase flow rate range. Compared with bubble-free guided droplets, bubble-guided droplets also show four trapping modes. However, the two-phase flow rate range in which uniform trapping occurs is increased significantly and the uniformity of the trapped droplet array is improved. This investigation is beneficial to enhance the applicability of microfluidic chips for storing droplets in a passive way.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yanlin Ren
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
18
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
19
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Aubry G, Lu H. Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans. LAB ON A CHIP 2017; 17:4303-4311. [PMID: 29120477 DOI: 10.1039/c7lc00945c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Caenorhabditis elegans is an excellent model organism for studying chemosensation as a significant part of its nervous system and genome are devoted to the detection of chemical cues. Studies of decision-making, learning, mating behaviour, and intraspecies communication require measuring the acute behavioural response to chemical stimulation. Such assays require precise and repeatable chemical delivery and are often arduous when performed manually. Microfluidic platforms have been developed for chemosensation studies in C. elegans. However, these platforms lack temporal resolution in chemical delivery necessary for screening acute behaviour and cannot selectively recover animals, a necessary feature for genetic screens. Here we present a droplet array for screening acute behavioural responses of C. elegans to chemical stimulation. Using droplets enables isolating the worms and controlling the chemical environment. The chamber design of the static array allows continuous monitoring of animal behaviour. By combining a gradient of confinement and flow restriction features, we demonstrate selective and sequential trapping of multiple droplets as well as their release on demand. These functions enable repeated capture of animals, monitoring of their behaviour upon chemical stimulation and subsequent release. To demonstrate the ability to screen multiple conditions, we measured worm thrashing activity in response to different concentrations of tetramisole. To illustrate the ability to capture acute behavioural responses, we monitored the behavioural response of male to pheromone stimulation. Due to the versatility of the chamber operation and its ultra-low volume uses of reagents, we envision this platform to be highly suited to combinatorial screening and drug discovery.
Collapse
Affiliation(s)
- G Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
21
|
Njus Z, Kong T, Kalwa U, Legner C, Weinstein M, Flanigan S, Saldanha J, Pandey S. Flexible and disposable paper- and plastic-based gel micropads for nematode handling, imaging, and chemical testing. APL Bioeng 2017; 1:016102. [PMID: 31069282 PMCID: PMC6481691 DOI: 10.1063/1.5005829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023] Open
Abstract
Today, the area of point-of-care diagnostics is synonymous with paper microfluidics where cheap, disposable, and on-the-spot detection toolkits are being developed for a variety of chemical tests. In this work, we present a novel application of microfluidic paper-based analytical devices (μPADs) to study the behavior of a small model nematode, Caenorhabditis elegans. We describe schemes of μPAD fabrication on paper and plastic substrates where membranes are created in agarose and Pluronic gel. Methods are demonstrated for loading, visualizing, and transferring single and multiple nematodes. Using an anthelmintic drug, levamisole, we show that chemical testing on C. elegans is easily performed because of the open device structure. A custom program is written to automatically recognize individual worms on the μPADs and extract locomotion parameters in real-time. The combination of μPADs and the nematode tracking program provides a relatively low-cost, simple-to-fabricate imaging and screening assay (compared to standard agarose plates or polymeric microfluidic devices) for non-microfluidic, nematode laboratories.
Collapse
Affiliation(s)
- Zach Njus
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Taejoon Kong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Upender Kalwa
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Christopher Legner
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew Weinstein
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Shawn Flanigan
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Jenifer Saldanha
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Santosh Pandey
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
22
|
An automated compound screening for anti-aging effects on the function of C. elegans sensory neurons. Sci Rep 2017; 7:9403. [PMID: 28839194 PMCID: PMC5570957 DOI: 10.1038/s41598-017-09651-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.
Collapse
|
23
|
Zhou W, Wang J, Wang K, Huang B, Niu L, Li F, Cai F, Chen Y, Liu X, Zhang X, Cheng H, Kang L, Meng L, Zheng H. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. LAB ON A CHIP 2017; 17:1725-1731. [PMID: 28447086 DOI: 10.1039/c7lc00163k] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kinser HE, Pincus Z. High-throughput screening in the C. elegans nervous system. Mol Cell Neurosci 2017; 80:192-197. [PMID: 27265309 PMCID: PMC5136351 DOI: 10.1016/j.mcn.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022] Open
Abstract
The nematode Caenorhabditis elegans is widely used as a model organism in the field of neurobiology. The wiring of the C. elegans nervous system has been entirely mapped, and the animal's optical transparency allows for in vivo observation of neuronal activity. The nematode is also small in size, self-fertilizing, and inexpensive to cultivate and maintain, greatly lending to its utility as a whole-animal model for high-throughput screening (HTS) in the nervous system. However, the use of this organism in large-scale screens presents unique technical challenges, including reversible immobilization of the animal, parallel single-animal culture and containment, automation of laser surgery, and high-throughput image acquisition and phenotyping. These obstacles require significant modification of existing techniques and the creation of new C. elegans-based HTS platforms. In this review, we outline these challenges in detail and survey the novel technologies and methods that have been developed to address them.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Zachary Pincus
- Department of Developmental Biology, Department of Genetics, Washington University, St. Louis, United States
| |
Collapse
|
25
|
Wang X, Liu Z, Pang Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra04494a] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various concentration gradient generation methods based on microfluidic systems are summarized in this paper.
Collapse
Affiliation(s)
- Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
26
|
Hu L, Ge A, Wang X, Wang S, Gao Y, Feng X, Du W, Liu BF. An on-demand gas segmented flow generator with high spatiotemporal resolution for in vivo analysis of neuronal response in C. elegans. LAB ON A CHIP 2016; 16:4020-4027. [PMID: 27714011 DOI: 10.1039/c6lc00948d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studies of chemo-sensing in C. elegans to fluctuating gaseous cues are limited due to the lack of a method of precise gas control. In this paper, we describe a microfluidic-based on-demand gas segmented flow generator for performing fluctuating gaseous stimulations to worms. This highly versatile and programmable micro-device integrated with pneumatic valves for flexible and stable gas flow control and worm immobilization enabled us to examine the temporal features of neuronal response to multiple gas pulses with sub-second precision. As a result, we demonstrated the capability of the micro-device to generate repetitive gaseous chemical pulses with varying durations. By characterizing intracellular calcium signals, we showed that URX sensory neurons were sensitive to O2 pulses with duration of more than 0.5 s. Furthermore, URX neuronal adaptation and recovery in response to gaseous chemical pulses were investigated by varying the durations and intervals. The developed microfluidic system is shown to be a useful tool for studying the dynamics of in vivo gas-evoked neuronal responses and revealing the temporal properties of environmental stimulations.
Collapse
Affiliation(s)
- Liang Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. and Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anle Ge
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xixian Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanshan Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yue Gao
- Optic Information Science & Technology, School of Physics, Sun Yat-Sen University, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
27
|
Muthaiyan Shanmugam M, Subhra Santra T. Microfluidic Devices in Advanced Caenorhabditis elegans Research. Molecules 2016; 21:molecules21081006. [PMID: 27490525 PMCID: PMC6273278 DOI: 10.3390/molecules21081006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.
Collapse
Affiliation(s)
- Muniesh Muthaiyan Shanmugam
- Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
28
|
Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proc Biol Sci 2016; 282:20151283. [PMID: 26290076 DOI: 10.1098/rspb.2015.1283] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction.
Collapse
Affiliation(s)
- Sravanti Uppaluri
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Yang F, Gao C, Wang P, Zhang GJ, Chen Z. Fish-on-a-chip: microfluidics for zebrafish research. LAB ON A CHIP 2016; 16:1106-25. [PMID: 26923141 DOI: 10.1039/c6lc00044d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-efficiency zebrafish (embryo) handling platforms are crucially needed to facilitate the deciphering of the increasingly expanding vertebrate-organism model values. However, the manipulation platforms for zebrafish are scarce and rely mainly on the conventional "static" microtiter plates or glass slides with rigid gel, which limits the dynamic, three-dimensional (3D), tissue/organ-oriented information acquisition from the intact larva with normal developmental dynamics. In addition, these routine platforms are not amenable to high-throughput handling of such swimming multicellular biological entities at the single-organism level and incapable of precisely controlling the growth microenvironment by delivering stimuli in a well-defined spatiotemporal fashion. Recently, microfluidics has been developed to address these technical challenges via tailor-engineered microscale structures or structured arrays, which integrate with or interface to functional components (e.g. imaging systems), allowing quantitative readouts of small objects (zebrafish larvae and embryos) under normal physiological conditions. Here, we critically review the recent progress on zebrafish manipulation, imaging and phenotype readouts of external stimuli using these microfluidic tools and discuss the challenges that confront these promising "fish-on-a-chip" technologies. We also provide an outlook on future potential trends in this field by combining with bionanoprobes and biosensors.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Chuan Gao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Labanieh L, Nguyen TN, Zhao W, Kang DK. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysis and Recovery. MICROMACHINES 2015; 6:1469-1482. [PMID: 27134760 PMCID: PMC4849166 DOI: 10.3390/mi6101431] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe the design, fabrication and use of a dual-layered microfluidic device for ultrahigh-throughput droplet trapping, analysis, and recovery using droplet buoyancy. To demonstrate the utility of this device for digital quantification of analytes, we quantify the number of droplets, which contain a β-galactosidase-conjugated bead among more than 100,000 immobilized droplets. In addition, we demonstrate that this device can be used for droplet clustering and real-time analysis by clustering several droplets together into microwells and monitoring diffusion of fluorescein, a product of the enzymatic reaction of β-galactosidase and its fluorogenic substrate FDG, between droplets.
Collapse
Affiliation(s)
| | | | - Weian Zhao
- Correspondence: (W.Z.); (D.-K.K.); Tel.: +1-949-824-8035- (D.-K.K.)
| | - Dong-Ku Kang
- Correspondence: (W.Z.); (D.-K.K.); Tel.: +1-949-824-8035- (D.-K.K.)
| |
Collapse
|
31
|
Yuan J, Zhou J, Raizen DM, Bau HH. High-throughput, motility-based sorter for microswimmers such as C. elegans. LAB ON A CHIP 2015; 15:2790-8. [PMID: 26008643 PMCID: PMC4470807 DOI: 10.1039/c5lc00305a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes.
Collapse
Affiliation(s)
- Jinzhou Yuan
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
32
|
Wang X, Hu R, Ge A, Hu L, Wang S, Feng X, Du W, Liu BF. Highly efficient microfluidic sorting device for synchronizing developmental stages of C. elegans based on deflecting electrotaxis. LAB ON A CHIP 2015; 15:2513-21. [PMID: 25963054 DOI: 10.1039/c5lc00354g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
C. elegans as a powerful model organism has been widely used in fundamental biological studies. Many of these studies frequently need a large number of different stage-synchronized worms due to the stage-specific features of C. elegans among 4 distinct larval stages and the adult stage. In this work, we present an interesting and cost-effective microfluidic approach to realize simultaneous sorting of C. elegans of different developmental stages by deflecting electrotaxis. The microfluidic device was fabricated using PDMS consisting of symmetric sorting channels with specific angles, which was further hybridized to an agarose plate. While applying an electric field, different stages of C. elegans would crawl to the negative pore with different angles due to their deflecting electrotaxis. Thus, the worms were separated and synchronized by stages. lon-2 mutant was further used to study this electrotactic response and the results indicated that the body size plays a key role in determining the deflecting angle in matured adult worms. In addition to discriminating wild-type hermaphrodites, it could also be employed to sort mutants with abnormal development sizes and males. Therefore, our device provided a versatile and highly efficient platform for sorting C. elegans to meet the requirement of large numbers of different stage-synchronized worms. It can also be further used to investigate the neuronal basis of deflecting electrotaxis in worms.
Collapse
Affiliation(s)
- Xixian Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wen H, Yu Y, Zhu G, Jiang L, Qin J. A droplet microchip with substance exchange capability for the developmental study of C. elegans. LAB ON A CHIP 2015; 15:1905-11. [PMID: 25715864 DOI: 10.1039/c4lc01377h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) has been widely used as a multicellular organism in developmental research due to its simplicity, short lifecycle, and its relevance to human genetics and biology. Droplet microfluidics is an attractive platform for the study of C. elegans in integrated mode with flexibility at the single animal resolution. However, it is still challenging to conduct the developmental study of worms within droplets initiating at the L1 larval stage, due to the small size, active movement, and the difficulty in achieving effective substance exchange within the droplets. Here, we present a multifunctional droplet microchip to address these issues and demonstrate the usefulness of this device for investigating post-embryonic development in individual C. elegans initiating at the larval L1 stage. The key components of this device consist of multiple functional units that enable parallel worm loading, droplet formation/trapping, and worm encapsulation in parallel. In particular, it exhibits superior functions in encapsulating and trapping individual larval L1 worms into droplets in a controlled way. Continuous food addition and expulsion of waste by mixing the static worm-in-droplet with moving medium plugs allows for the long-term culture of worms under a variety of conditions. We used this device to investigate the development processes of C. elegans in transgenic strains with deletion and overexpression of the hypoxia-inducible factor (HIF-1), a highly conserved transcript factor in regulating an organism's response to hypoxia. This microdevice may be a useful tool for the high throughput analysis of individual worms starting at the larval stage, and facilitates the study of developmental worms in response to multiple drugs or environmental toxins.
Collapse
Affiliation(s)
- Hui Wen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | | | | | | | | |
Collapse
|
34
|
Aubry G, Zhan M, Lu H. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. LAB ON A CHIP 2015; 15:1424-31. [PMID: 25622546 PMCID: PMC4348330 DOI: 10.1039/c4lc01384k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The nematode Caenorhabditis elegans is an important model organism in research on neuroscience and development because of its stereotyped anatomy, relevance to human biology, and ease of culture and genetic manipulation. The first larval stage (L1) is of particular interest in many biological problems, including post-embryonic developmental processes and developmental decision-making, such as dauer formation. However, L1's small size and high mobility make it difficult to manipulate; particularly in microfluidic chips, which have been used to great advantage in handling larger larvae and adult animals, small features are difficult to fabricate and these structures often get clogged easily, making the devices less robust. We have developed a microfluidic device to overcome these challenges and enable high-resolution imaging and sorting of early larval stage C. elegans via encapsulation in droplets of a thermosensitive hydrogel. To achieve precise handling of early larval stage worms, we demonstrated on-chip production, storage, and sorting of hydrogel droplets. We also demonstrated temporary immobilization of the worms within the droplets, allowing high-resolution imaging with minimal physiological perturbations. Because of the ability to array hydrogel droplets for handling a large number of L1 worms in a robust way, we envision that this platform will be widely applicable to screening in various developmental studies.
Collapse
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
35
|
A microfluidic device for efficient chemical testing using Caenorhabditis elegans. Biomed Microdevices 2015; 17:38. [DOI: 10.1007/s10544-015-9939-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Affiliation(s)
- Jialan Cao
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro and Nanotechnologies/Institute for Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction Technology; Institute for Micro and Nanotechnologies/Institute for Chemistry and Biotechnology; Ilmenau University of Technology; Ilmenau Germany
| |
Collapse
|
37
|
Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS. Microfluidic static droplet array for analyzing microbial communication on a population gradient. LAB ON A CHIP 2015; 15:889-899. [PMID: 25494004 DOI: 10.1039/c4lc01097c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quorum sensing (QS) is a type of cell-cell communication using signal molecules that are released and detected by cells, which respond to changes in their population density. A few studies explain that QS may operate in a density-dependent manner; however, due to experimental challenges, this fundamental hypothesis has never been investigated. Here, we present a microfluidic static droplet array (SDA) that combines a droplet generator with hydrodynamic traps to independently generate a bacterial population gradient into a parallel series of droplets under complete chemical and physical isolation. The SDA independently manipulates both a chemical concentration gradient and a bacterial population density. In addition, the bacterial population gradient in the SDA can be tuned by a simple change in the number of sample plug loading. Finally, the method allows the direct analysis of complicated biological events in an addressable droplet to enable the characterization of bacterial communication in response to the ratio of two microbial populations, including two genetically engineered QS circuits, such as the signal sender for acyl-homoserine lactone (AHL) production and the signal receiver bacteria for green fluorescent protein (GFP) expression induced by AHL. For the first time, we found that the population ratio of the signal sender and receiver indicates a significant and potentially interesting partnership between microbial communities. Therefore, we envision that this simple SDA could be a useful platform in various research fields, including analytical chemistry, combinatorial chemistry, synthetic biology, microbiology, and molecular biology.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | | | | | | | | |
Collapse
|
38
|
Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. BIOMICROFLUIDICS 2015; 9:014123. [PMID: 25759756 PMCID: PMC4336256 DOI: 10.1063/1.4908595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/06/2015] [Indexed: 06/01/2023]
Abstract
Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm(2) elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment.
Collapse
Affiliation(s)
- Zhichang Qiu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Taoyuanmin Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury , Christchurch, New Zealand
| | - Enchao Yu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Xiao Liu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|
39
|
Brewer BM, Shi M, Edd JF, Webb DJ, Li D. A microfluidic cell co-culture platform with a liquid fluorocarbon separator. Biomed Microdevices 2014; 16:311-23. [PMID: 24420386 DOI: 10.1007/s10544-014-9834-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A microfluidic cell co-culture platform that uses a liquid fluorocarbon oil barrier to separate cells into different culture chambers has been developed. Characterization indicates that the oil barrier could be effective for multiple days, and a maximum pressure difference between the oil barrier and aqueous media in the cell culture chamber could be as large as ~3.43 kPa before the oil barrier fails. Biological applications have been demonstrated with the separate transfection of two groups of primary hippocampal neurons with two different fluorescent proteins and subsequent observation of synaptic contacts between the neurons. In addition, the quality of the fluidic seal provided by the oil barrier is shown to be greater than that of an alternative solid-PDMS valve barrier design by testing the ability of each device to block low molecular weight CellTracker dyes used to stain cells in the culture chambers.
Collapse
Affiliation(s)
- Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235-1592, USA
| | | | | | | | | |
Collapse
|
40
|
Lee H, Kim SA, Coakley S, Mugno P, Hammarlund M, Hilliard MA, Lu H. A multi-channel device for high-density target-selective stimulation and long-term monitoring of cells and subcellular features in C. elegans. LAB ON A CHIP 2014; 14:4513-4522. [PMID: 25257026 PMCID: PMC4213302 DOI: 10.1039/c4lc00789a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selective cell ablation can be used to identify neuronal functions in multicellular model organisms such as Caenorhabditis elegans. The optogenetic tool KillerRed facilitates selective ablation by enabling light-activated damage of cell or subcellular components in a temporally and spatially precise manner. However, the use of KillerRed requires stimulating (5 min-1 h), culturing (~24 h) and imaging (often repeatedly) a large number of individual animals. Current manual manipulation methods are limited by their time-consuming, labor-intensive nature, and their usage of anesthetics. To facilitate large-scale selective ablation, culturing, and repetitive imaging, we developed a densely-packed multi-channel device and used it to perform high-throughput neuronal ablation on KillerRed-expressing animals. The ability to load worms in identical locations with high loading efficiency allows us to ablate selected neurons in multiple worms simultaneously. Our device also enables continuous observation of animals for 24 h following KillerRed activation, and allows the animals to be recovered for behavioural assays. We expect this multi-channel device to facilitate a broad range of long-term imaging and selective illumination experiments in neuroscience.
Collapse
Affiliation(s)
- Hyewon Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | - Shin Ae Kim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | - Sean Coakley
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paula Mugno
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University
| | - Massimo A. Hilliard
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
- Interdisciplinary Program of Bioengineering, Georgia Institute of Technology
| |
Collapse
|
41
|
Zhang B, Li Y, He Q, Qin J, Yu Y, Li X, Zhang L, Yao M, Liu J, Chen Z. Microfluidic platform integrated with worm-counting setup for assessing manganese toxicity. BIOMICROFLUIDICS 2014; 8:054110. [PMID: 25538805 PMCID: PMC4222280 DOI: 10.1063/1.4896663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/16/2014] [Indexed: 05/08/2023]
Abstract
We reported a new microfluidic system integrated with worm responders for evaluating the environmental manganese toxicity. The micro device consists of worm loading units, worm observing chambers, and a radial concentration gradient generator (CGG). Eight T-shape worm loading units of the micro device were used to load the exact number of worms into the corresponding eight chambers with the assistance of worm responders and doorsills. The worm responder, as a key component, was employed for performing automated worm-counting assay through electric impedance sensing. This label-free and non-invasive worm-counting technique was applied to the microsystem for the first time. In addition, the disk-shaped CGG can generate a range of stepwise concentrations of the appointed chemical automatically and simultaneously. Due to the scalable architecture of radial CGG, it has the potential to increase the throughput of the assay. Dopaminergic (DAergic) neurotoxicity of manganese on C. elegans was quantitatively assessed via the observation of green fluorescence protein-tagged DAergic neurons of the strain BZ555 on-chip. In addition, oxidative stress triggered by manganese was evaluated by the quantitative fluorescence intensity of the strain CL2166. By scoring the survival ratio and stroke frequency of worms, we characterized the dose- and time-dependent mobility defects of the manganese-exposed worms. Furthermore, we applied the microsystem to investigate the effect of natural antioxidants to protect manganese-induced toxicity.
Collapse
Affiliation(s)
- Beibei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| | - Yinbao Li
- School of Pharmaceutical Sciences, Gannan Medical University , Ganzhou, JiangXi 341000, China
| | - Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| | - Jun Qin
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology , Dalian, Liaoning 116023, China
| | - Yanyan Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| | - Xinchun Li
- School of Pharmaceutical Sciences, Guangxi Medical University , Nanning, Guangxi 530021, China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| | - Junshan Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology , Dalian, Liaoning 116023, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou, Guangdong 510006, China
| |
Collapse
|
42
|
O'Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 2014; 69-70:247-53. [PMID: 24333896 DOI: 10.1016/j.addr.2013.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
Caenorhabditis elegans has been proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Cliff J Luke
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Gary A Silverman
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Stephen C Pak
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA.
| |
Collapse
|
43
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
44
|
Aubry G, Lu H. A perspective on optical developments in microfluidic platforms for Caenorhabditis elegans research. BIOMICROFLUIDICS 2014; 8:011301. [PMID: 24753721 PMCID: PMC3977797 DOI: 10.1063/1.4865167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/29/2014] [Indexed: 05/29/2023]
Abstract
Microfluidics offers unique ways of handling and manipulating microorganisms, which has particularly benefited Caenorhabditis elegans research. Optics plays a major role in these microfluidic platforms, not only as a read-out for the biological systems of interest but also as a vehicle for applying perturbations to biological systems. Here, we describe different areas of research in C. elegans developmental biology and behavior neuroscience enabled by microfluidics combined with the optical components. In particular, we highlight the diversity of optical tools and methods in use and the strategies implemented in microfluidics to make the devices compatible with optical techniques. We also offer some thoughts on future challenges in adapting advancements in optics to microfluidic platforms.
Collapse
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
45
|
Lycke R, Parashar A, Pandey S. Microfluidics-enabled method to identify modes of Caenorhabditis elegans paralysis in four anthelmintics. BIOMICROFLUIDICS 2013; 7:64103. [PMID: 24396537 PMCID: PMC3838407 DOI: 10.1063/1.4829777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 02/05/2023]
Abstract
The discovery of new drugs is often propelled by the increasing resistance of parasites to existing drugs and the availability of better technology platforms. The area of microfluidics has provided devices for faster screening of compounds, controlled sampling/sorting of whole animals, and automated behavioral pattern recognition. In most microfluidic devices, drug effects on small animals (e.g., Caenorhabditis elegans) are quantified by an end-point, dose response curve representing a single parameter (such as worm velocity or stroke frequency). Here, we present a multi-parameter extraction method to characterize modes of paralysis in C. elegans over an extended time period. A microfluidic device with real-time imaging is used to expose C. elegans to four anthelmintic drugs (i.e., pyrantel, levamisole, tribendimidine, and methyridine). We quantified worm behavior with parameters such as curls per second, types of paralyzation, mode frequency, and number/duration of active/immobilization periods. Each drug was chosen at EC75 where 75% of the worm population is responsive to the drug. At equipotent concentrations, we observed differences in the manner with which worms paralyzed in drug environments. Our study highlights the need for assaying drug effects on small animal models with multiple parameters quantified at regular time points over an extended period to adequately capture the resistance and adaptability in chemical environments.
Collapse
Affiliation(s)
- Roy Lycke
- Departments of Biological Sciences & Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Archana Parashar
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Santosh Pandey
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
46
|
Yang J, Chen Z, Ching P, Shi Q, Li X. An integrated microfluidic platform for evaluating in vivo antimicrobial activity of natural compounds using a whole-animal infection model. LAB ON A CHIP 2013; 13:3373-82. [PMID: 23824379 DOI: 10.1039/c3lc50264c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nematode Caenorhabditis elegans is a useful model host for pathogenesis research that can be infected by a large number of human pathogens. Conventionally, nematode-pathogen infection assays are mainly performed on agar medium which are labor-intensive and time-consuming. To overcome these challenges, we develop for the first time an integrated microfluidic device for evaluating in vivo antimicrobial activity of natural compounds, which allows infection and anti-infection assays to be sequentially and automatically carried out in liquid medium. The device consists of a worm dispenser with 32 trap-construction chambers and concentration gradient generators, in which the processes of introduction, dispensation, confinement of worms in the chamber and drug delivery to the chamber can be integrated into a single device. In addition, the operation of the device is simple and does not require any expensive robotic fluid handling systems to dispense samples. To demonstrate the ability of this device, we devise an on-line screening experiment using a Caenorhabditis elegans-Staphylococcus aureus infection model and characterize the survival rate of the infected worms treated with antibiotics. Then, we applied the system to evaluate the antibacterial activity of several components of rhubarb: aloe-emodin, rhein and emodin at various concentrations. The device is able to load uniform worms into each chamber within 10 min and then generate various chemical concentrations automatically and simultaneously. Furthermore, the on-chip method only requires 6 h to establish the infection model and 48 h to perform the subsequent treatments. Based on the excellent advantages and scalable properties of microfluidics, the microfluidic platform holds a great potential in high-throughput screening for antimicrobials.
Collapse
Affiliation(s)
- Jianping Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | |
Collapse
|
47
|
Zhao X, Xu F, Tang L, Du W, Feng X, Liu BF. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo. Biosens Bioelectron 2013; 50:28-34. [PMID: 23831644 DOI: 10.1016/j.bios.2013.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
The propagation of intercellular calcium wave (ICW) is essential for coordinating cellular activities in multicellular organisms. However, the limitations of existing analytical methods hamper the studies of this biological process in live animals. In this paper, we demonstrated for the first time a novel microfluidic system with an open chamber for on-chip microinjection of C. elegans and investigation of ICW propagations in vivo. Worms were long-term immobilized on the side wall of the open chamber by suction. Using an external micro-manipulator, localized chemical stimulation was delivered to single intestinal cells of the immobilized worms by microinjection. The calcium dynamics in the intestinal cells expressing Ca(2+) indicator YC2.12 was simultaneously monitored by fluorescence imaging. As a result, thapsigargin injection induced ICW was observed in the intestinal cells of C. elegans. Further analysis of the ICW propagation was realized in the presence of heparin (an inhibitor for IP3 receptor), which allowed us to investigate the mechanism underlying intercellular calcium signaling. We expect this novel microfluidic platform to be a useful tool for studying cell-cell communication in multicellular organisms in vivo.
Collapse
Affiliation(s)
- Xingfu Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
48
|
Johari S, Nock V, Alkaisi MM, Wang W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. LAB ON A CHIP 2013; 13:1699-707. [PMID: 23511608 DOI: 10.1039/c3lc41403e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The understanding of force interplays between an organism and its environment is imperative in biological processes. Noticeably scarce from the study of C. elegans locomotion is the measurement of the nematode locomotion forces together with other important locomotive metrics. To bridge the current gap, we present the investigation of C. elegans muscular forces and locomotion metrics (speed, amplitude and wavelength) in one single assay. This assay uses polydimethylsiloxane (PDMS) micropillars as force sensing elements and, by variation of the pillar arrangement, introduces microstructure. To show the usefulness of the assay, twelve wild-type C. elegans sample worms were tested to obtain a total of 4665 data points. The experimental results lead to several key findings. These include: (1) maximum force is exerted when the pillar is in contact with the middle part of the worm body, (2) C. elegans locomotion forces are highly dependent on the structure of the surrounding environment, (3) the worms' undulation frequency and locomotion speed increases steadily from the narrow spacing of 'honeycomb' design to the wider spacing of 'lattice' pillar arrangement, and (4) C. elegans maintained their natural sinusoidal movement in the microstructured device, despite the existence of PDMS micropillars. The assay presented here focuses on wild type C. elegans, but the method can be easily applied to its mutants and other organisms. In addition, we also show that, by inverting the measurement device, worm locomotion behaviour can be studied in various substrate environments normally unconducive to flexible pillar fabrication. The quantitative measurements demonstrated in this work further improve the understanding of C. elegans mechanosensation and locomotion.
Collapse
Affiliation(s)
- Shazlina Johari
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
49
|
Belfer SJ, Chuang HS, Freedman BL, Yuan J, Norton M, Bau HH, Raizen DM. Caenorhabditis-in-drop array for monitoring C. elegans quiescent behavior. Sleep 2013; 36:689-698G. [PMID: 23633751 DOI: 10.5665/sleep.2628] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To develop a method, called Caenorhabditis-in-Drop (CiD), encapsulating single worms in aqueous drops, for parallel analysis of behavioral quiescence in C. elegans nematodes. DESIGN We designed, constructed, and tested a device that houses an array of aqueous droplets laden with individual worms. The droplets are separated and covered by immiscible, biocompatible oil. We modeled gas exchange across the aqueous/oil interface and tested the viability of the encapsulated animals. We studied the behavior of wild-type animals; of animals with a loss of function mutation in the cGMP-dependent protein kinase gene egl-4; of animals with a loss of function mutation in the gene kin-2, which encodes a cAMP-dependent protein kinase A regulatory subunit; of animals with a gain-of-function mutation in the gene acy-1, which encodes an adenylate cyclase; and of animals that express high levels of the EGF protein encoded by lin-3. MEASUREMENTS AND RESULTS We used CiD to simultaneously monitor the behavior of 24 worms, a nearly 5-fold improvement over the prior best methodology. In support of our gas exchange models, we found that worms remain viable on the chip for 4 days, past the 12-h period needed for observation, but show reduced longevity to that measured on an agar surface. Measurements of duration of lethargus quiescence and total leth-argus quiescence showed reduced amounts as well as reduced variability relative to prior methods. There was reduced lethargus quiescence in animals that were mutant for kin-2 and for acy-1, supporting a wake-promoting effect of PKA in C. elegans, but no change in lethargus quiescence in egl-4 mutants. There was increased quiescence in animals that expressed kin-2 in the nervous system or over-expressed EGF. CONCLUSIONS CiD is useful for the analysis of behavioral quiescence during lethargus as well as during the adult stage C. elegans. The method is expandable to parallel simultaneous monitoring of hundreds of animals and for other studies of long-term behavior. Using this method, we were successful in measuring, for the first time, quiescence in kin-2(ce179) and in acy-2(ce2) mutants, which are hyperactive. Our observations also highlight the impact of environmental conditions on quiescent behavior and show that longevity is reduced in CiD in comparison to agar surfaces.
Collapse
Affiliation(s)
- Samuel J Belfer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang X, Tang L, Xia Y, Hu L, Feng X, Du W, Liu BF. Stress response ofCaenorhabditis elegansinduced by space crowding in a micro-column array chip. Integr Biol (Camb) 2013; 5:728-37. [DOI: 10.1039/c3ib20289e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xixian Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Lichun Tang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Yuyang Xia
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Liang Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| |
Collapse
|