1
|
Li X, Jin Z, Bai Y, Svensson B. Progress in cyclodextrins as important molecules regulating catalytic processes of glycoside hydrolases. Biotechnol Adv 2024; 72:108326. [PMID: 38382582 DOI: 10.1016/j.biotechadv.2024.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, β-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. The LIKE SEX FOUR 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation. THE PLANT CELL 2023; 36:194-212. [PMID: 37804098 PMCID: PMC10734626 DOI: 10.1093/plcell/koad259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit β-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.
Collapse
Affiliation(s)
- Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglong Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Lai Z, Shen M, Shen Y, Ye YX, Zhu F, Xu J, Ouyang G. Hydrogen bond networks in gas-phase complex anions. RSC Adv 2022; 12:29137-29142. [PMID: 36320744 PMCID: PMC9558071 DOI: 10.1039/d2ra05029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Hydrogen bond networks (HBNs) have piqued the interest of the scientific community due to their crucial roles in nature. However, HBNs that are isolated from complicated backgrounds for unraveling their characteristics are still scarce. Herein, we propose that HBNs exist in complex anions formed between α-cyclodextrin (α-CD) and four benzoic acids (RBAs) in the gas phase. The complex anions are facilely extracted from solutions via the electrospray ionization technique, and subsequently activated through collision for the investigation of their transition dynamics. It is revealed that the generation of deprotonated α-CD and neutral RBAs is the unexpected dominant dissociation pathway for all the four complex anions, and the complex anions formed from more acidic RBAs exhibit higher stabilities. These dissociation results are successfully explained by the cooperative stretching dynamics of the proposed HBNs that are formed involving the intramolecular HBN of α-CD and the intermolecular hydrogen bonds (HBs) between α-CD and RBAs. Furthermore, the rarely observed low barrier HBs (LBHBs) are suggested to be present in the HBNs. It is believed that the present complex anions can serve as a facilely accessible and informative model for studying HBNs in the future. Hydrogen bond networks and low barrier hydrogen bonds are demonstrated in the complex anions formed between α-cyclodextrin and benzoic acids.![]()
Collapse
Affiliation(s)
- Zhisheng Lai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhou510006China,College of Chemistry, Center of Advanced Analysis and Gene Sequencing, Zhengzhou UniversityZhengzhou450001China,Guangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of SciencesGuangzhou510070China
| |
Collapse
|
4
|
Díaz SA, Choo P, Oh E, Susumu K, Klein WP, Walper SA, Hastman DA, Odom TW, Medintz IL. Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| | - David A. Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, United States
| |
Collapse
|
5
|
Moriarty NW, Liebschner D, Tronrud DE, Adams PD. Arginine off-kilter: guanidinium is not as planar as restraints denote. Acta Crystallogr D Struct Biol 2020; 76:1159-1166. [PMID: 33263321 PMCID: PMC7709202 DOI: 10.1107/s2059798320013534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
Crystallographic refinement of macromolecular structures relies on stereochemical restraints to mitigate the typically poor data-to-parameter ratio. For proteins, each amino acid has a unique set of geometry restraints which represent stereochemical information such as bond lengths, valence angles, torsion angles, dihedrals and planes. It has been shown that the geometry in refined structures can differ significantly from that present in libraries; for example, it was recently reported that the guanidinium moiety in arginine is not symmetric. In this work, the asymmetry of the Nϵ-Cζ-Nη1 and Nϵ-Cζ-Nη2 valence angles in the guanidinium moiety is confirmed. In addition, it was found that the Cδ atom can deviate significantly (more than 20°) from the guanidinium plane. This requires the relaxation of the planar restraint for the Cδ atom, as it otherwise causes the other atoms in the group to compensate by distorting the guanidinium core plane. A new set of restraints for the arginine side chain have therefore been formulated, and are available in the software package Phenix, that take into account the asymmetry of the group and the planar deviation of the Cδ atom. This is an example of the need to regularly revisit the geometric restraint libraries used in macromolecular refinement so that they reflect the best knowledge of the structural chemistry of their components available at the time.
Collapse
Affiliation(s)
- Nigel W Moriarty
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dorothee Liebschner
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dale E Tronrud
- Department of Biochemistry and Biophysics and the Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Paul D Adams
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Scollo E, Neville DC, Oruna-Concha MJ, Trotin M, Cramer R. UHPLC–MS/MS analysis of cocoa bean proteomes from four different genotypes. Food Chem 2020; 303:125244. [DOI: 10.1016/j.foodchem.2019.125244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
|
7
|
Klein WP, Thomsen RP, Turner KB, Walper SA, Vranish J, Kjems J, Ancona MG, Medintz IL. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS NANO 2019; 13:13677-13689. [PMID: 31751123 DOI: 10.1021/acsnano.9b05746] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.
Collapse
Affiliation(s)
- William P Klein
- National Research Council , Washington , D.C. 20001 , United States
| | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Scott A Walper
- National Research Council , Washington , D.C. 20001 , United States
| | - James Vranish
- Ave Maria University , Ave Maria , Florida 34142 , United States
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Igor L Medintz
- National Research Council , Washington , D.C. 20001 , United States
| |
Collapse
|
8
|
Hofer G, Wieser S, Bogdos MK, Gattinger P, Nakamura R, Ebisawa M, Mäkelä M, Papadopoulos N, Valenta R, Keller W. Three-dimensional structure of the wheat β-amylase Tri a 17, a clinically relevant food allergen. Allergy 2019; 74:1009-1013. [PMID: 30515829 PMCID: PMC6563530 DOI: 10.1111/all.13696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| | - Sandra Wieser
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Michael K. Bogdos
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| | - Pia Gattinger
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ryosuke Nakamura
- Division of Medicinal Safety Science National Institute of Health Sciences Kanagawa Japan
| | - Motohiro Ebisawa
- Clinical Research Center for Allergology and Rheumatology National Hospital Organization Sagamihara National Hospital Kanagawa Japan
| | - Mika Mäkelä
- Department of Allergology, Skin and Allergy Hospital Helsinki University Central Hospital Helsinki Finland
| | | | - Rudolf Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| |
Collapse
|
9
|
Rugen MD, Vernet MMJL, Hantouti L, Soenens A, Andriotis VME, Rejzek M, Brett P, van den Berg RJBHN, Aerts JMFG, Overkleeft HS, Field RA. A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Sci Rep 2018; 8:16421. [PMID: 30401902 PMCID: PMC6219604 DOI: 10.1038/s41598-018-34749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/19/2018] [Indexed: 01/11/2023] Open
Abstract
Iminosugars are carbohydrate mimics that are useful as molecular probes to dissect metabolism in plants. To analyse the effects of iminosugar derivatives on germination and seedling growth, we screened a library of 390 N-substituted iminosugar analogues against Arabidopsis and the small cereal Eragrostis tef (Tef). The most potent compound identified in both systems, N-5-(adamantane-1-yl-ethoxy)pentyl- L-ido-deoxynojirimycin (L-ido-AEP-DNJ), inhibited root growth in agar plate assays by 92% and 96% in Arabidopsis and Tef respectively, at 10 µM concentration. Phenocopying the effect of L-ido-AEP-DNJ with the commercial inhibitor (PDMP) implicated glucosylceramide synthase as the target responsible for root growth inhibition. L-ido-AEP-DNJ was twenty-fold more potent than PDMP. Liquid chromatography-mass spectrometry (LC-MS) analysis of ceramide:glucosylceramide ratios in inhibitor-treated Arabidopsis seedlings showed a decrease in the relative quantity of the latter, confirming that glucosylceramide synthesis is perturbed in inhibitor-treated plants. Bioinformatic analysis of glucosylceramide synthase indicates gene conservation across higher plants. Previous T-DNA insertional inactivation of glucosylceramide synthase in Arabidopsis caused seedling lethality, indicating a role in growth and development. The compounds identified herein represent chemical alternatives that can overcome issues caused by genetic intervention. These inhibitors offer the potential to dissect the roles of glucosylceramides in polyploid crop species.
Collapse
Affiliation(s)
- Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathieu M J L Vernet
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laila Hantouti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amalia Soenens
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J B H N van den Berg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
10
|
Monroe JD, Storm AR. Review: The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:163-170. [PMID: 30348315 DOI: 10.1016/j.plantsci.2018.08.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/27/2018] [Accepted: 08/24/2018] [Indexed: 05/04/2023]
Abstract
Multi-gene families present a rich research area to study how related proteins evolve to acquire new structures and functions. The β-amylase (BAM) gene family is named for catalytic members' ability to hydrolyze starch into maltose units. However, the family also contains proteins that are catalytically inactive, have additional domains, or are not localized with a starch substrate. Here we review the current knowledge of each of the nine Arabidopsis BAMs, including information on their localization, structural features, expression patterns, regulation and potential functions. We also discuss unique characteristics of studying multi-gene families, such as the consideration of different kinetic parameters when performing assays on leaf extracts, and suggest approaches that may be fruitful in learning more about their unique functions.
Collapse
Affiliation(s)
- Jonathan D Monroe
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States.
| | - Amanda R Storm
- Department of Biology, Western Carolina University, Cullowhee, NC 28723, United States.
| |
Collapse
|
11
|
Saka N, Iwamoto H, Malle D, Takahashi N, Mizutani K, Mikami B. Elucidation of the mechanism of interaction between Klebsiella pneumoniae pullulanase and cyclodextrin. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1115-1123. [DOI: 10.1107/s2059798318014523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
Crystal structures of Klebsiella pneumoniae pullulanase (KPP) in complex with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were refined at around 1.98–2.59 Å resolution from data collected at SPring-8. In the structures of the complexes obtained with 1 mM α-CD or γ-CD, one molecule of CD was found at carbohydrate-binding module 41 only (CBM41). In the structures of the complexes obtained with 1 mM β-CD or with 10 mM α-CD or γ-CD, two molecules of CD were found at CBM41 and in the active-site cleft, where the hydrophobic residue of Phe746 occupies the inside cavity of the CD rings. In contrast to α-CD and γ-CD, one β-CD molecule was found at the active site only in the presence of 0.1 mM β-CD. These results were coincident with the solution experiments, which showed that β-CD inhibits this enzyme more than a thousand times more potently than α-CD and γ-CD. The strong inhibition of β-CD is caused by the optimized interaction between β-CD and the side chain of Phe746. The increased K
i values of the F746A mutant for β-CD supported the importance of Phe746 in the strong interaction of pullulanase with β-CD.
Collapse
|
12
|
Monroe JD, Pope LE, Breault JS, Berndsen CE, Storm AR. Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of β-AMYLASE2 From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1176. [PMID: 30154813 PMCID: PMC6102588 DOI: 10.3389/fpls.2018.01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The β-amylase family in Arabidopsis thaliana has nine members, four of which are both plastid-localized and, based on active-site sequence conservation, potentially capable of hydrolyzing starch to maltose. We recently reported that one of these enzymes, BAM2, is catalytically active in the presence of physiological levels of KCl, exhibits sigmoidal kinetics with a Hill coefficient of over 3, is tetrameric, has a putative secondary binding site (SBS) for starch, and is highly co-expressed with other starch metabolizing enzymes. Here we generated a tetrameric homology model of Arabidopsis BAM2 that is a dimer of dimers in which the putative SBSs of two subunits form a deep groove between the subunits. To validate this model and identify key residues, we generated a series of mutations and characterized the purified proteins. (1) Three point mutations in the putative subunit interfaces disrupted tetramerization; two that interfered with the formation of the starch-binding groove were largely inactive, whereas a third mutation prevented pairs of dimers from forming and was active. (2) The model revealed that a 30-residue N-terminal acidic region, not found in other BAMs, appears to form part of the putative starch-binding groove. A mutant lacking this acidic region was active and did not require KCl for activity. (3) A conserved tryptophan residue in the SBS is necessary for activation and may form π-bonds with sugars in starch. (4) Sequence alignments revealed a conserved serine residue next to one of the catalytic glutamic acid residues, that is a conserved glycine in all other active BAMs. The serine side chain points away from the active site and toward the putative starch-binding groove. Mutating the serine in BAM2 to a glycine resulted in an enzyme with a VMax similar to that of the wild type enzyme but with a 7.5-fold lower KM for soluble starch. Interestingly, the mutant no longer exhibited sigmoidal kinetics, suggesting that allosteric communication between the putative SBS and the active site was disrupted. These results confirm the unusual structure and function of this widespread enzyme, and suggest that our understanding of starch degradation in plants is incomplete.
Collapse
Affiliation(s)
- Jonathan D. Monroe
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Lauren E. Pope
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Jillian S. Breault
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, United States
| | - Amanda R. Storm
- Department of Biology, Western Carolina University, Cullowhee, NC, United States
| |
Collapse
|
13
|
Chen Y, Zuo Z, Dai X, Xiao P, Fang X, Wang X, Wang W, Ding CF. Gas-phase complexation of α-/β-cyclodextrin with amino acids studied by ion mobility-mass spectrometry and molecular dynamics simulations. Talanta 2018; 186:1-7. [DOI: 10.1016/j.talanta.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/11/2023]
|
14
|
Abd El Aty AA, Saleh SA, Eid BM, Ibrahim NA, Mostafa FA. Thermodynamics characterization and potential textile applications of Trichoderma longibrachiatum KT693225 xylanase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Vajravijayan S, Pletnev S, Mani N, Pletneva N, Nandhagopal N, Gunasekaran K. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int J Biol Macromol 2018; 113:329-337. [PMID: 29481953 DOI: 10.1016/j.ijbiomac.2018.02.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
The conversion of starch to maltose is catalysed in plants by β-amylase. The enzymatic mechanism has been well-characterized for the soybean and barley enzymes, which utilise a glutamic acid-glutamate pair. In the present study, we present a surprise observation of maltotetraose at the active site, the presence of which elucidates the clear role of Thr344 as a conformational "switch" between substrate binding and product release during hydrolysis. This observation is confirmed by the selection of maltotetraose by the crystallized enzyme although that carbohydrate was present in only trace amounts. The conformation of the residues in the substrate-binding site changed upon substrate binding, leading to the movement of threonine, glutamic acid, and the loop conformation, elucidating a missing link in the existing mechanism. By aligning our substrate-free and maltotetraose-bound structures with other existing structures, the sequence of events from substrate binding to hydrolysis can be visualized. Apart from this, the evolutionary relationship among β-amylases of bacterial and amyloplastic origin could be established. The presence of a sugar-binding domain in the bacterial enzyme and its absence in the plant counterpart could be attributed to a carbohydrate-rich environment. Interestingly, cladogram analysis indicates the presence of N-terminal additions in some plant β-amylases. Based on sequence similarity, we postulate that the role of such additions is important for the regulation of enzymatic activity, particularly under stress conditions.
Collapse
Affiliation(s)
- S Vajravijayan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - S Pletnev
- Macromolecular Crystallography Laboratory, National Cancer Institute, and Basic Science Program, Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - N Mani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - N Pletneva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - N Nandhagopal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| | - K Gunasekaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
16
|
Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: A review. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/boca-2017-0004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractNumerous types of nanoparticles and nanocomposites have successfully been employed for the immobilization and stabilization of amylolytic enzymes; α-amylases, β-amylases, glucoamylases and pullulanases. Nano-support immobilized amylolytic enzymes retained very high activity and yield of immobilization. The immobilization of these enzymes, particularly α-amylases and pullulanases, to the nanosupports is helpful in minimizing the problem of steric hindrances during binding of substrate to the active site of the enzyme. The majority of nano-support immobilized amylolytic enzymes exhibited very high resistance to inactivation induced by different kinds of physical and chemical denaturants and these immobilized enzyme preparations maintained very high activity on their repeated and continuous uses. Amylolytic enzymes immobilized on nano-supports have successfully been applied in food, fuel, textile, paper and pulp, detergent, environmental, medical, and analytical fields.
Collapse
|
17
|
Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes. PLoS One 2016; 11:e0160112. [PMID: 27504624 PMCID: PMC4978508 DOI: 10.1371/journal.pone.0160112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Collapse
Affiliation(s)
- Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Adiphol Dilokpimol
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anna Lewińska
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
18
|
Zamoner LOB, Aragão-Leoneti V, Mantoani SP, Rugen MD, Nepogodiev SA, Field RA, Carvalho I. CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties. Carbohydr Res 2016; 429:29-37. [PMID: 27160849 DOI: 10.1016/j.carres.2016.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 11/20/2022]
Abstract
Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase. The iminosugar pseudo-disaccharides showed no inhibitory activity against almond β-glucosidase, while the parent N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol likewise proved to be inactive against yeast α-glucosidase. Inhibitory activity could be reinstated in the former series by appropriate substitution on nitrogen. The greater activity of the piperidine could be rationalized based on docking studies. Further, potent inhibition of β-amylase was observed with compounds from both the piperidine and azepane series.
Collapse
Affiliation(s)
- Luís Otávio B Zamoner
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Valquíria Aragão-Leoneti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Susimaire P Mantoani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil
| | - Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto 14040-930, Brazil.
| |
Collapse
|
19
|
Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochem Soc Trans 2016; 44:159-65. [PMID: 26862201 PMCID: PMC4747157 DOI: 10.1042/bst20150222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se.
Collapse
|
20
|
Abstract
A range of leaf symptoms, including blotchy mottle, yellowing, and small, upright leaves with a variety of chlorotic patterns resembling those induced by zinc deficiencies, are associated with huanglongbing (HLB, yellow shoot disease), a worldwide destructive citrus disease. HLB is presumably caused by the phloem-limited fastidious prokaryotic α-proteobacterium ‘Candidatus Liberibacter spp.’ Previous studies focused on the proteome and transcriptome analyses of citrus 5 to 35 weeks after ‘Ca. L. spp.’ inoculation. In this study, gene expression profiles were analyzed from mandarin Citrus reticulate Blanco cv. jiaogan leaves after a 2 year infection with ‘Ca. L. asiaticus’. The Affymetrix microarray analysis explored 2,017 differentially expressed genes. Of the 1,364 genes had known functions, 938 (46.5%) were up-regulated. Genes related to photosynthesis, carbohydrate metabolic, and structure were mostly down-regulated, with rates of 92.7%, 61.0%, and 80.2%, respectively. Genes associated with oxidation-reduction and transport were mostly up-regulated with the rates of 75.0% and 64.6%, respectively. Our data analyses implied that the infection of ‘Ca. L. asiaticus’ could alter hormone crosstalk, inducing the jasmine acid pathway and depressing the ethylene and salicylic acid pathways in the citrus host. This study provides an enhanced insight into the host response of citrus to ‘Ca. L. asiaticus’ infection at a two-years infection stage.
Collapse
|
21
|
O'Neill EC, Rashid AM, Stevenson CEM, Hetru AC, Gunning AP, Rejzek M, Nepogodiev SA, Bornemann S, Lawson DM, Field RA. Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials. Chem Sci 2014. [DOI: 10.1039/c3sc51829a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BIOMED RESEARCH INTERNATIONAL 2013; 2013:329121. [PMID: 24106701 PMCID: PMC3784079 DOI: 10.1155/2013/329121] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields.
Collapse
|
23
|
Daba T, Kojima K, Inouye K. Kinetic and thermodynamic analysis of the inhibitory effects of maltose, glucose, and related carbohydrates on wheat β-amylase. Enzyme Microb Technol 2013; 52:251-7. [DOI: 10.1016/j.enzmictec.2013.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
24
|
An expedient enzymatic route to isomeric 2-, 3- and 6-monodeoxy-monofluoro-maltose derivatives. Carbohydr Res 2012; 358:12-8. [PMID: 22795862 DOI: 10.1016/j.carres.2012.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 11/22/2022]
Abstract
2-Deoxy-2-fluoro-d-glucose, 3-deoxy-3-fluoro-D-glucose and 6-deoxy-6-fluoro-D-glucose were converted into the corresponding maltose derivatives using Arabidopsis thaliana DPE2-mediated trans-glycosylation reaction with glycogen acting as a glucosyl donor. (19)F NMR spectroscopy proved to be a valuable tool for monitoring the progress of these reactions and to assess the nature of resulting oligomeric products.
Collapse
|
25
|
Scientific Opinion on the substantiation of health claims related to alpha cyclodextrin and reduction of post prandial glycaemic responses (ID 2926, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Formation of amyloid fibrils from β-amylase. FEBS Lett 2012; 586:680-5. [PMID: 22449963 DOI: 10.1016/j.febslet.2012.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/24/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022]
Abstract
Fibril formation has been considered a significant feature of amyloid proteins. However, it has been proposed that fibril formation is a common property of many proteins under appropriate conditions. We studied the fibril formation of β-amylase, a non-amyloid protein rich in α-helical structure, because the secondary structure of β-amylase is similar to that of prions. With the conditions for the fibril formation of prions, β-amylase proteins were converted into amyloid fibrils. The features of β-amylase proteins and fibrils are compared to prion proteins and fibrils. Furthermore, the cause of neurotoxicity in amyloid diseases is discussed.
Collapse
|
27
|
Li W, Tan G, Zhao L, Chen X, Zhang X, Zhu Z, Chai Y. Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: chiral recognition mechanism and mathematical model for predicting chiral separation. Anal Chim Acta 2012; 718:138-47. [PMID: 22305909 DOI: 10.1016/j.aca.2012.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022]
Abstract
Chiral separation of iodiconazole, a new antifungal drug, and 12 new structurally related triadimenol analogues had been developed by capillary electrophoresis (CE) using hydroxypropyl-γ-cyclodextrin (HP-γ-CD) as the chiral selector. The effect of structural features of analytes on Δt and R(s) was studied under the optimum separation conditions. Using molecular docking technique and binding energy calculations, the inclusion process between HP-γ-CD and enantiomers was investigated and chiral recognition mechanisms were discussed. The results suggest that hydrogen bonding between fluorine at position 4 of the phenyl group beside the chiral carbon and the hydroxyl group on the HP-γ-CD rim and face to face π-π interactions between two phenyl rings highly contributed to the enantiorecognition process between HP-γ-CD and iodiconazole. The N-methyl group beside chiral carbon also played an important role in enantiomeric separation. Additionally, the big difference in binding energy (ΔΔE) highly contributed to good separation in the presence of HP-γ-CD chiral selector, which may be a helpful initial guide for chiral selector selection and predicting the result of enantioseparation. Furthermore, the new mathematical equation established based on the results of molecular mechanics calculations exhibited good capability in predicting chiral separation of these triadimenol analogues using HP-γ-CD mediated CE.
Collapse
Affiliation(s)
- Wuhong Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|