1
|
Jafari M, Abolmaali SS, Borandeh S, Najafi H, Zareshahrabadi Z, Koohi-Hosseinabadi O, Azarpira N, Zomorodian K, Tamaddon AM. Dendritic hybrid materials comprising polyhedral oligomeric silsesquioxane (POSS) and hyperbranched polyglycerol for effective antifungal drug delivery and therapy in systemic candidiasis. NANOSCALE 2023; 15:16163-16177. [PMID: 37772640 DOI: 10.1039/d3nr04321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Systemic Candida infections are routinely treated with amphotericin B (AMB), a highly effective antimycotic drug. However, due to severe toxicities linked to the parenteral administration of conventional micellar formulations (Fungizone®), its clinical utility is limited. Hyperbranched polyglycerols (HPGs) are multi-branched three-dimensional hydrophilic macromolecules that can be used to lessen the toxicity of AMB while also increasing its aqueous solubility. In the current research, to improve the safety and therapeutic efficacy of AMB, we developed new polyhedral oligomeric silsesquioxane - hyperbranched polyglycerol dendrimers with cholesterol termini (POSS-HPG@Chol) using azide-alkyne click reaction. Compared with Fungizone®, the as-synthesized POSS-HPG@Chol/AMB had lower minimum inhibitory and fungicidal concentrations against almost all studied Candida spp., as well as much less hemolysis and cytotoxicity. POSS-HPG@Chol/AMB revealed total protection of Balb/C mice from severe Candida infections in an experimental model of systemic candidiasis and can effectively reduce or eliminate AMB liver and kidney tissue injuries. Thanks to their safety, biocompatibility, and unique therapeutic properties, the developed POSS-polyglycerol dendrimers could be viable nanostructures for the delivery of poorly soluble drugs like AMB.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran.
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, PO Box 7193711351, Shiraz, Iran.
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran.
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, PO Box 713484-5794, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran.
| |
Collapse
|
2
|
Effect of MWNT Functionalization with Tunable-Length Block Copolymers on Dispersity of MWNTs and Mechanical Properties of Epoxy/MWNT Composites. Polymers (Basel) 2022; 14:polym14153137. [PMID: 35956651 PMCID: PMC9371037 DOI: 10.3390/polym14153137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The dispersion level of carbon nanotubes (CNTs) and interface design are two of the most crucial roles in developing the superior mechanical performance of polymer/CNT nanocomposites. In this work, a series of azide-terminated poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA) copolymers with different PHMA chain lengths and similar PGMA chain lengths were grafted on the surface of multiwall carbon nanotubes (MWNTs). PHMA length changes significantly impact the grafting density and solubility in organic solvents of as-prepared block copolymer functionalized MWNTs(bc@fMWNTs). Then, the bc@fMWNTs were introduced to epoxy, and the resulted epoxy/bc@fMWNT composites show better mechanical properties than neat epoxy and epoxy/p-MWNT composites. The results suggest that longer PHMA chains cause the two competitive and opposing effects on the dispersion state and soft interface. On the one hand, the longer PHMA chains on the surface of MWNTs would afford higher deformation for the matrix and enhanced mobility for MWNTs because of the soft and flexible nature of PHMA, enhancing the energy dissipation during strain. On the other hand, as the length of PHMA extends, the dispersion level of bc@fMWNTs in epoxy declines, which is harmful to the composite’s mechanical properties. Hence, epoxy/bc@fMWNTs composites with relatively short PHMA chains show the best tensile and fracture properties.
Collapse
|
3
|
Alaboalirat M, Vu C, Matson JB. Radical–radical coupling effects in the direct-growth grafting-through synthesis of bottlebrush polymers using RAFT and ROMP. Polym Chem 2022. [DOI: 10.1039/d2py00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The direct-growth technique was used to synthesize macromonomers from four classes of vinyl monomers, and the influence of monomer type and conversion on coupling reactions was followed in grafting-through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Clark Vu
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - John B. Matson
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
pH and temperature-responsive POSS-based poly(2-(dimethylamino)ethyl methacrylate) for highly efficient Cr(VI) adsorption. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04737-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Su YX, Xu L, Xu XH, Hou XH, Liu N, Wu ZQ. Controlled Synthesis of Densely Grafted Bottlebrushes That Bear Helical Polyisocyanide Side Chains on Polyisocyanide Backbones and Exhibit Greatly Increased Viscosity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yi-Xu Su
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
6
|
Ullah A, Ullah S, Mahmood N, Shah SM, Hussain Z, Hussain H. Effect of polyhedral oligomeric silsesquioxane nanocage on the crystallization behavior of PEG
5k
‐
b
‐P(MA‐POSS) diblock copolymers achieved via atom transfer radical polymerization. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asad Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Shakir Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Nasir Mahmood
- Institut für Chemie, FG Mikro‐ und Nanostrukturbasierte PolymerverbundwerkstoffeMartin Luther University Halle‐Wittenberg Halle/Saale Germany
| | - Syed M. Shah
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME)National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Hazrat Hussain
- Department of ChemistryQuaid‐i‐Azam University Islamabad Islamabad Pakistan
| |
Collapse
|
7
|
Chen F, Lin F, Zhang Q, Cai R, Wu Y, Ma X. Polyhedral Oligomeric Silsesquioxane Hybrid Polymers: Well‐Defined Architectural Design and Potential Functional Applications. Macromol Rapid Commun 2019; 40:e1900101. [DOI: 10.1002/marc.201900101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fang Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518097 P. R. China
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Feng Lin
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Qi Zhang
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Rong Cai
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Yadong Wu
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Xiaoyan Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518097 P. R. China
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| |
Collapse
|
8
|
Murima D, Pasch H. Comprehensive branching analysis of star-shaped polystyrenes using a liquid chromatography–based approach. Anal Bioanal Chem 2019; 411:5063-5078. [DOI: 10.1007/s00216-019-01846-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
|
9
|
Gao B, Zhang Q, Wang X, Wang M, Ren XK, Guo J, Xia S, Zhang W, Feng Y. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater Sci 2019; 7:3307-3319. [DOI: 10.1039/c9bm00451c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly efficient ERK2 silencing in VSMCs via a “self-accelerating endosomal escape” siRNA transport nanosystem.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qiaoping Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Meiyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
10
|
Rakers L, Grill D, Matos AL, Wulff S, Wang D, Börgel J, Körsgen M, Arlinghaus HF, Galla HJ, Gerke V, Glorius F. Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chem Biol 2018; 25:952-961.e12. [DOI: 10.1016/j.chembiol.2018.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 04/13/2018] [Indexed: 10/16/2022]
|
11
|
Liu N, Yu J, Meng Y, Liu Y. Hyperbranched Polysiloxanes Based on Polyhedral Oligomeric Silsesquioxane Cages with Ultra-High Molecular Weight and Structural Tuneability. Polymers (Basel) 2018; 10:polym10050496. [PMID: 30966530 PMCID: PMC6415398 DOI: 10.3390/polym10050496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
Hyperbranched siloxane-based polymers with ultra-high molecular weight were synthesized by the Piers–Rubinsztajn reaction between octakis(dimethylsiloxy) octasilsesquioxane with different dialkoxysilanes, using tris(pentafluorophenyl) borane as the catalyst. The origin of the high molecular weight is explained by the high reactivity of the catalyst and strain energy of isolated small molecule in which all eight silane groups close into rings on the sides of a single cubic cage. The structural tuneability was further demonstrated by use of methyl(3-chloropropyl)diethoxysilane, which generates a polymer with similar ultra-high molecular weight. Introduction of phosphonate groups through the chloropropyl sites later leads to functionalized polymers which can encapsulate various transition metal nanoparticles.
Collapse
Affiliation(s)
- Ning Liu
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Jianyi Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| | - Yaoyong Meng
- MOE Key Laboratory of Laser Life Science & Laboratory of Photonic Chinese Medicine, College of Biophotonics, South China Normal University, Guangdong 510631, China.
| | - Yuzhou Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
12
|
Liu J, Chen C, Feng Y, Liao Y, Ye Y, Xie X, Mai YW. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1204-1216. [PMID: 29235354 DOI: 10.1021/acsami.7b14767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation across the nanofiller/matrix interface. This work provides a new route for the rational design and development of polymer nanocomposites with exceptional mechanical performance.
Collapse
Affiliation(s)
- Jingwei Liu
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Chao Chen
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University , Wuhan 430062, China
| | - Yuezhan Feng
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Yonggui Liao
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Yunsheng Ye
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaolin Xie
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Yiu-Wing Mai
- State Key Laboratory of Material Processing and Die&Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
- Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
13
|
Jin J, Tang M, Zhang Z, Zhou K, Gao Y, Zheng ZG, Zhang W. Synthesis of POSS-functionalized liquid crystalline block copolymers via RAFT polymerization for stabilizing blue phase helical soft superstructures. Polym Chem 2018. [DOI: 10.1039/c8py00136g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A study of the phase transition behaviors of blue phase liquid crystals containing different amounts of POSS-functionalized LC BCPs.
Collapse
Affiliation(s)
- Jianqiu Jin
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Mingjie Tang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhenghe Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Kang Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhi-Gang Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Physics
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
14
|
Li Y, Dong XH, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang WB, Cheng SZ. Polyhedral oligomeric silsesquioxane meets “click” chemistry: Rational design and facile preparation of functional hybrid materials. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Uner A, Doganci E, Tasdelen MA, Yilmaz F, Gürek AG. Synthesis, characterization and surface properties of star-shaped polymeric surfactants with polyhedral oligomeric silsesquioxane core. POLYM INT 2017. [DOI: 10.1002/pi.5420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Uner
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| | - Erdinc Doganci
- Department of Chemistry and Chemical Processing Technology; Kocaeli University; Kocaeli Turkey
| | | | | | - Ayşe Gül Gürek
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| |
Collapse
|
16
|
Zhang P, Zhang Z, Jiang X, Rui L, Gao Y, Zhang W. Unimolecular micelles from POSS-based star-shaped block copolymers for photodynamic therapy. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Xing Y, Peng J, Xu K, Gao S, Gui X, Liang S, Sun L, Chen M. A soluble star-shaped silsesquioxane-cored polymer—towards novel stabilization of pH-dependent high internal phase emulsions. Phys Chem Chem Phys 2017; 19:23024-23033. [DOI: 10.1039/c7cp03325g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T10) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water.
Collapse
Affiliation(s)
- Yuxiu Xing
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Jun Peng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Kai Xu
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Shuxi Gao
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Xuefeng Gui
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Shengyuan Liang
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Longfeng Sun
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Mingcai Chen
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Xue Y, Zhang P, Müller AHE, Zhang W. Hollow Polymeric Capsules from POSS-Based Block Copolymer for Photodynamic Therapy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02414] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenghe Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yudong Xue
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Pengcheng Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Axel H. E. Müller
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Weian Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
19
|
Imoto H, Wada S, Naka K. Efficient Isolation of Completely Decorated Polyhedral Oligomeric Silsesquioxanes by Utilizing Imine Bond Formation. CHEM LETT 2016. [DOI: 10.1246/cl.160679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Synthesis and characterization of silsesquioxane-cored star-shaped hybrid polymer via “grafting from” RAFT polymerization. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Yuan G, Wang X, Wu D, Hammouda B. Structural analysis of dendrimers based on polyhedral oligomeric silsesquioxane and their assemblies in solution by small-angle neutron scattering: Fits to a modified two correlation lengths model. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Wang K, Peng H, Thurecht KJ, Whittaker AK. Fluorinated POSS‐Star Polymers for
19
F MRI. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging The University of Queensland St. Lucia Queensland 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
23
|
Gilmore KA, Lampley MW, Boyer C, Harth E. Matrices for combined delivery of proteins and synthetic molecules. Adv Drug Deliv Rev 2016; 98:77-85. [PMID: 26656604 DOI: 10.1016/j.addr.2015.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
With the increasing advancement of synergistic, multimodal approaches to influence the treatment of infectious and non-infectious diseases, we witness the development of enabling techniques merging necessary complexity with leaner designs and effectiveness. Systems- and polypharmacology ask for multi-potent drug combinations with many targets to engage with the biological system. These demand drug delivery designs for one single drug, dual drug release systems and multiple release matrices in which the macromolecular structure allows for higher solubilization, protection and sequential or combined release profiles. As a result, nano- and micromaterials have been evolved from mono- to dual drug carriers but are also an essential part to establish multimodality in polymeric matrices. Surface dynamics of particles creating interfaces between polymer chains and hydrogels inspired the development not only of biomedical adhesives but also of injectable hydrogels in which the nanoscale material is both, adhesive and delivery tool. These complex delivery systems are segmented into two delivery subunits, a polymer matrix and nanocarrier, to allow for an even higher tolerance of the incorporated drugs without adding further synthetic demands to the nanocarrier alone. The opportunities in these quite novel approaches for the delivery of small and biological therapeutics are remarkable and selected examples for applications in cancer and bone treatments are discussed.
Collapse
Affiliation(s)
- Kelly A Gilmore
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA
| | - Michael W Lampley
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA
| | - Cyrille Boyer
- Australian Centre for Nanomedicine (ACN), School of Chemical Sciences and Engineering, University of NSW, Australia.
| | - Eva Harth
- Department of Chemistry, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
24
|
Zhang Z, Zhang P, Wang Y, Zhang W. Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques. Polym Chem 2016. [DOI: 10.1039/c6py00675b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled living radical polymerizations, such as ATRP and RAFT polymerization, could be utilized for the preparation of well-defined organic–inorganic hybrid polymers based on POSS, PDMS, silica nanoparticles, graphene, CNTs and fullerene.
Collapse
Affiliation(s)
- Zhenghe Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pengcheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
25
|
Li L, Lu B, Fan Q, Wu J, Wei L, Hou J, Guo X, Liu Z. Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P(DMAEMA-co-PEGMA))16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin. RSC Adv 2016. [DOI: 10.1039/c6ra09803g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of pH-responsive self-assembly of the star-shaped POSS-(PCL-P(DMAEMA-co-PEGMA))16 copolymer for the efficient intracellular release of anti-cancer drugs triggered by the acidic microenvironment inside the tumor tissue.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Beibei Lu
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Qikui Fan
- Center for Materials Chemistry Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an
- P. R. China
| | - Jianning Wu
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Lulu Wei
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Jun Hou
- Department of Immunology
- Shihezi University School of Medicine/Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases
- Shihezi University School of Medicine
- Xinjiang 832003
- China
| | - Xuhong Guo
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| | - Zhiyong Liu
- College of Chemistry and Chemical Engineering
- Shihezi University/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan
- Shihezi University
- Shihezi 832003
- China
| |
Collapse
|
26
|
Cao L, Shi X, Cui Y, Yang W, Chen G, Yuan L, Chen H. Protein–polymer conjugates prepared via host–guest interactions: effects of the conjugation site, polymer type and molecular weight on protein activity. Polym Chem 2016. [DOI: 10.1039/c6py00882h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein–polymer conjugates are prepared via host–guest interactions and the effects of various parameters on protein activity are investigated.
Collapse
Affiliation(s)
- Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiujuan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuecheng Cui
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Weikang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
27
|
Li L, Lu B, Wu J, Fan Q, Guo X, Liu Z. Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS–(PCL–P(MEO2MA-co-PEGMA))16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature. NEW J CHEM 2016. [DOI: 10.1039/c6nj00279j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Star-shaped copolymers have been synthesized and the LCSTs of thermo-responsive micelles were well controlled by adjusting the content of PEGMA.
Collapse
Affiliation(s)
- Lei Li
- School of Chemistry & Chemical Engineering
- Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi 832003
- P. R. China
| | - Beibei Lu
- School of Chemistry & Chemical Engineering
- Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi 832003
- P. R. China
| | - Jianning Wu
- School of Chemistry & Chemical Engineering
- Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi 832003
- P. R. China
| | - Qikui Fan
- Center for Materials Chemistry Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an
- Shaanxi 710054
- P. R. China
| | - Xuhong Guo
- School of Chemistry & Chemical Engineering
- Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi 832003
- P. R. China
- State Key Laboratory of Chemical Engineering
| | - Zhiyong Liu
- School of Chemistry & Chemical Engineering
- Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan
- Shihezi 832003
- P. R. China
| |
Collapse
|
28
|
Sierke JK, Ellis AV. High purity synthesis of a polyhedral oligomeric silsesquioxane modified with an antibacterial. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Synthesis of poly(dimethylaminoethyl methacrylate) with high cloud point by RAFT polymerization under γ-irradiation. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Zhang Z, Hong L, Li J, Liu F, Cai H, Gao Y, Zhang W. One-pot synthesis of well-defined amphiphilic alternating copolymer brushes based on POSS and their self-assembly in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c4ra15492d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amphiphilic alternating copolymer brushes P(MIPOSS-alt-VBPEG) with a sequence of alternating MIPOSS and polyethylene glycol (PEG) side chains were synthesized via RAFT polymerization, and they could form spherical aggregates.
Collapse
Affiliation(s)
- Zhenghe Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lizhi Hong
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jinxia Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Haibo Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yun Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
31
|
Shao Y, Aizhao P, Ling H. POSS end-capped diblock copolymers: Synthesis, micelle self-assembly and properties. J Colloid Interface Sci 2014; 425:5-11. [DOI: 10.1016/j.jcis.2014.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
32
|
Stability of POSS crosslinks and aggregates in tetrafluoroethylene-propylene elastomers/OVPOSS composites exposed to hydrochloric acid solution. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2013.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Zhang Z, Hong L, Gao Y, Zhang W. One-pot synthesis of POSS-containing alternating copolymers by RAFT polymerization and their microphase-separated nanostructures. Polym Chem 2014. [DOI: 10.1039/c4py00302k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.03.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Chuanbo C, cancan C, Xiaoyu M, Qiong Z. Structure and property of tetrafluoroethylene-propylene elastomer-OVPOSS composites. J Appl Polym Sci 2013. [DOI: 10.1002/app.39223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cong Chuanbo
- Beijing Key Laboratory of Failure; Corrosion and Protection of Oil/gas Facilities; Department of Material Science and Engineering, China University of Petroleum (Beijing); Beijing 102249 China
| | - Cui cancan
- Beijing Key Laboratory of Failure; Corrosion and Protection of Oil/gas Facilities; Department of Material Science and Engineering, China University of Petroleum (Beijing); Beijing 102249 China
| | - Meng Xiaoyu
- Beijing Key Laboratory of Failure; Corrosion and Protection of Oil/gas Facilities; Department of Material Science and Engineering, China University of Petroleum (Beijing); Beijing 102249 China
| | - Zhou Qiong
- Beijing Key Laboratory of Failure; Corrosion and Protection of Oil/gas Facilities; Department of Material Science and Engineering, China University of Petroleum (Beijing); Beijing 102249 China
| |
Collapse
|
36
|
|
37
|
Zhang WB, He J, Yue K, Liu C, Ni P, Quirk RP, Cheng SZD. Rapid and Efficient Anionic Synthesis of Well-Defined Eight-Arm Star Polymers Using OctavinylPOSS and Poly(styryl)lithium. Macromolecules 2012. [DOI: 10.1021/ma301597f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Bin Zhang
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
| | - Jinlin He
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
- Jiangsu Key Laboratory
of Advanced
Functional Polymer Design and Application, College of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kan Yue
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
| | - Chang Liu
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
| | - Peihong Ni
- Jiangsu Key Laboratory
of Advanced
Functional Polymer Design and Application, College of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Roderic P. Quirk
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
| | - Stephen Z. D. Cheng
- Department of Polymer Science,
College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United
States
| |
Collapse
|
38
|
Zhang C, Miao M, Cao X, An Z. One-pot RAFT synthesis of core cross-linked star polymers of polyPEGMA in water by sequential homogeneous and heterogeneous polymerizations. Polym Chem 2012. [DOI: 10.1039/c2py20442h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Cai H, Xu K, Liu X, Fu Z, Chen M. A facile synthesis of octa(carboxyphenyl)silsesquioxane. Dalton Trans 2012; 41:6919-21. [DOI: 10.1039/c2dt30378g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Shi X, Zhou W, Qiu Q, An Z. Amphiphilic heteroarm star polymer synthesized by RAFT dispersion polymerization in water/ethanol solution. Chem Commun (Camb) 2012; 48:7389-91. [DOI: 10.1039/c2cc33812b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|