1
|
Wang R, Peng R, Song L, Li J. Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs. Talanta 2025; 286:127437. [PMID: 39732100 DOI: 10.1016/j.talanta.2024.127437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb2+-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA. In the presence of the target miRNA, the activated DNAzyme cleaves the substrate strand, releasing the G-quadruplex. This G-quadruplex binds to hemin to form a G-quadruplex/hemin complex with horseradish peroxidase (HRP)-like properties, which catalyzes the oxidation of ABTS2- by H2O2. This oxidation reaction produces a colorimetric signal output, enabling the detection of the target miRNA. Under the optimal reaction conditions explored in this study, the constructed sensing ensembles tailored for each of the specific target miRNAs successfully identified and quantified the four target miRNAs-miR-122, miR-21, miR-335, and miR-155-in both buffer solutions and cell extracts. This colorimetric sensing strategy offers significant advantages in terms of simplicity, cost, and versatility and holds great potential for wide application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Ruili Wang
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Ruiying Peng
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Liran Song
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, Ghadami E. MicroRNA biosensors for detection of glioblastoma. Clin Chim Acta 2024; 556:117829. [PMID: 38355000 DOI: 10.1016/j.cca.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohadese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ratova DMV, Mikheev IV, Chermashentsev GR, Maslakov KI, Kottsov SY, Stolbov DN, Maksimov SV, Sozarukova MM, Proskurnina EV, Proskurnin MA. Green and Sustainable Ultrasound-Assisted Anodic Electrochemical Preparation of Graphene Oxide Dispersions and Their Antioxidant Properties. Molecules 2023; 28:molecules28073238. [PMID: 37050001 PMCID: PMC10096744 DOI: 10.3390/molecules28073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A fast method for preparing aqueous graphene oxide (GO) dispersions by electrochemical oxidation of a graphite anode without preliminary intercalation with oxidizing agents is proposed. Ultrasonic probing was used in the modulation mode of ultrasonic waves (work/rest) for more efficient graphite oxidation-exfoliation. It is shown that the 4/2 s mode of ultrasonic modulation is the most effective due to the probe material's low corrosion while maintaining the optimum synthesis temperature not exceeding 30-35 °C and achieving the best characteristics of the resulting product. Three cases of anodic oxidation of graphite to obtain graphene oxide were considered: (1) a combined cathode-anode compartment, (2) a split cathode-anode salt-bridged compartment, and (3) separated anode compartment with a 3.5 kDa dialysis membrane. It was determined that the approach to synthesis with a divided cathode-anode compartment makes it possible to obtain GO sheets with fewer defects compared to chemical methods or methods with a combined cathode-anode compartment and makes it possible to control the oxidation degree of the material (C:O ratio) by varying the current density. The prepared samples showed good stability for more than six months. The spectral and morphological characteristics were studied. Using chemiluminometry in the luminol/Co(II)/H2O2 system, the antioxidant properties concerning three key reactive oxygen species (H2O2, superoxide anion radical, and hydroxyl radical) were demonstrated. It was also shown that the prepared GO dispersions do not induce lipid and phospholipid peroxidation.
Collapse
Affiliation(s)
- Daria-Maria V Ratova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Ivan V Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Grigoryi R Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Dmitrii N Stolbov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Maksimov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Madina M Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Elena V Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
4
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
5
|
Synthesis and Applications of Graphene Oxide. MATERIALS 2022; 15:ma15030920. [PMID: 35160865 PMCID: PMC8839209 DOI: 10.3390/ma15030920] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.
Collapse
|
6
|
Graphene as Photothermal Therapeutic Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:177-200. [DOI: 10.1007/978-981-16-4923-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Gao Y, Zhang S, Wu C, Li Q, Shen Z, Lu Y, Wu ZS. Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. ACS NANO 2021; 15:19211-19224. [PMID: 34854292 DOI: 10.1021/acsnano.1c04260] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abnormal expression of miRNAs is often detected in various human cancers. DNAzyme machines combined with gold nanoparticles (AuNPs) hold promise for detecting specific miRNAs in living cells but show short circulation time due to the fragility of catalytic core. Using miRNA-21 as the model target, by introducing a circular bulging DNA shield into the middle of the catalytic core, we report herein a self-protected DNAzyme (E) walker capable of fully stepping on the substrate (S)-modified AuNP for imaging intracellular miRNAs. The DNAzyme walker exhibits 5-fold enhanced serum resistance and more than 8-fold enhanced catalytic activity, contributing to the capability to image miRNAs much higher than commercial transfection reagent and well-known FISH technique. Diseased cells can accurately be distinguished from healthy cells. Due to its universality, DNAzyme walker can be extended for imaging other miRNAs only by changing target binding domain, indicating a promising tool for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Chengwei Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
8
|
DNase I-assisted 2'-O-methyl molecular beacon for amplified detection of tumor exosomal microRNA-21. Talanta 2021; 235:122727. [PMID: 34517595 DOI: 10.1016/j.talanta.2021.122727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022]
Abstract
An end-modified 2'-O-methyl molecular beacon (eMB) with unique nuclease resistance was designed and prepared. The eMB can resist the enzymatic digestion by DNase I, which would otherwise occur upon the hybridization of the eMB with a complementary sequence. As a result, the coupling use of eMBs and DNase I allows highly sensitive detection of miRNA with a limit of detection (LOD) of 2.5 pM. The analytical strategy was further used for detection of tumor exosomal microRNA-21, and down to 0.86 μg mL-1 A375 exosomes were detected. Overall, the present method can effectively quantify tumor-derived exosomes for cancer diagnosis.
Collapse
|
9
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
10
|
Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021; 57:9820-9833. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.
Collapse
Affiliation(s)
- Yeajee Yim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Min Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
11
|
Menaa F, Fatemeh Y, Vashist SK, Iqbal H, Sharts ON, Menaa B. Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomed Eng Comput Biol 2021; 12:1179597220983821. [PMID: 33716517 PMCID: PMC7917420 DOI: 10.1177/1179597220983821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Yazdian Fatemeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sandeep K Vashist
- Hahn-Schickard-Gesellschaft für Angewandte Forschung e.V. (HSG-IMIT), Freiburg, Germany.,College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Olga N Sharts
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Bouzid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| |
Collapse
|
12
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
13
|
Zheng Y, Chen J, Li Y, Xu Y, Chen L, Chen W, Liu A, Lin X, Weng S. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155. Anal Bioanal Chem 2021; 413:1605-1614. [PMID: 33515273 DOI: 10.1007/s00216-020-03121-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Effective and simultaneous monitoring of the abnormal expression of certain microRNAs (miRNAs), especially for miRNA-21 and miRNA-155, can indicate drug resistance in lung cancer. In this work, T7 exonuclease (T7 Exo)-assisted target recycling amplification coupled with the extensive fluorescence quenching of graphene oxide (GO) was designed for the simultaneous detection of miRNA-21 and miRNA-155 using FAM- and ROX-labeled single-strand DNA probes. Through this method, the variable emission intensities of FAM and ROX caused by the introduction of miRNA-21 and miRNA-155, respectively, were obtained with high sensitivity. The method exhibited excellent analytical performance for simultaneous detection of miRNA-21 and miRNA-155 without cross-interference. The linear range was from 0.005 nM to 5 nM over three orders of magnitude, with detection limits as low as 3.2 pM and 4.5 pM for miRNA-21 and miRNA-155, respectively. Furthermore, the recovery (92.49-103.67%) and relative standard deviation (RSD < 4.8%) of the standard addition test of miRNA-21 and miRNA-155 in human plasma suggested the potential for drug resistance warning in clinical practice via this simple strategy. A homogeneous T7 Exo-assisted signal amplification combined with GO quenching platform was developed for accurate, sensitive and simultaneous analysis of miRNA-21 and miRNA-155 for drug resistance warning in lung cancer. This simple method exhibited a wide linear range and low LODs for miR-21 and miR-155.
Collapse
Affiliation(s)
- Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jinyuan Chen
- The Central lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - You Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Pharmacy, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, 350008, Fujian, China
| | - Yichun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Li Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
14
|
Cordaro A, Neri G, Sciortino MT, Scala A, Piperno A. Graphene-Based Strategies in Liquid Biopsy and in Viral Diseases Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1014. [PMID: 32466536 PMCID: PMC7353367 DOI: 10.3390/nano10061014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Graphene-based materials are intriguing nanomaterials with applications ranging from nanotechnology-related devices to drug delivery systems and biosensing. Multifunctional graphene platforms were proposed for the detection of several typical biomarkers (i.e., circulating tumor cells, exosomes, circulating nucleic acids, etc.) in liquid biopsy, and numerous methods, including optical, electrochemical, surface-enhanced Raman scattering (SERS), etc., have been developed for their detection. Due to the massive advancements in biology, material chemistry, and analytical technology, it is necessary to review the progress in this field from both medical and chemical sides. Liquid biopsy is considered a revolutionary technique that is opening unexpected perspectives in the early diagnosis and, in therapy monitoring, severe diseases, including cancer, metabolic syndrome, autoimmune, and neurodegenerative disorders. Although nanotechnology based on graphene has been poorly applied for the rapid diagnosis of viral diseases, the extraordinary properties of graphene (i.e., high electronic conductivity, large specific area, and surface functionalization) can be also exploited for the diagnosis of emerging viral diseases, such as the coronavirus disease 2019 (COVID-19). This review aimed to provide a comprehensive and in-depth summarization of the contribution of graphene-based nanomaterials in liquid biopsy, discussing the remaining challenges and the future trend; moreover, the paper gave the first look at the potentiality of graphene in COVID-19 diagnosis.
Collapse
Affiliation(s)
- Annalaura Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (G.N.); (M.T.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (G.N.); (M.T.S.); (A.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (G.N.); (M.T.S.); (A.S.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (G.N.); (M.T.S.); (A.S.)
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.I.S.), Unità Operativa dell’Università di Messina, 98166 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (G.N.); (M.T.S.); (A.S.)
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.I.S.), Unità Operativa dell’Università di Messina, 98166 Messina, Italy
| |
Collapse
|
15
|
Peng S, Liu M, Bie B, Zhang Y, Tang H, Sun Y, Zhou X. Multiplexed microRNA Detection Using Metal–Organic Framework for Signal Output. ACS APPLIED BIO MATERIALS 2020; 3:2604-2609. [DOI: 10.1021/acsabm.9b01189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuang Peng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binglin Bie
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yajun Zhang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqing Sun
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Gao H, Li J, Jia Y, Yu XA, Qi J, Tian J, Yu BY. A hairpin DNA-fueled nanoflare for simultaneous illumination of two microRNAs in drug-induced nephrotoxic cells with target catalytic recycling amplification. Analyst 2019; 144:7178-7184. [PMID: 31647062 DOI: 10.1039/c9an01902b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of specific extracellular microRNAs (miRNAs) is beneficial for the prediction of drug-induced kidney injury. Here, a novel hairpin DNA-fueled nanoflare was developed for the simultaneous detection of drug-induced nephrotoxicity-related miRNA-21 and miRNA-200c with target catalytic recycling amplification. The nanoflare utilized gold nanoparticles (AuNPs) as the highly efficient quencher to ensure a low background signal. With the help of the fueled hairpin DNA, the miRNA targets could serve as the catalysts for the assembly of DNA duplexes. Therefore, the nanoflare could respond to the miRNAs to yield signal outputs of 1 : n (target : signal) rather than an equivalent reaction ratio of 1 : 1, achieving the signal amplified detection of low-abundant miRNAs. The targets can be concurrently detected with the detection limit of 18.1 and 21.1 pM for miRNA-21 and miRNA-200c, respectively, which are approximately 2 orders of magnitude lower than that of the non-catalytic probes. In addition, this nanoflare offered a high selectivity for determination between perfectly matched targets and single-base mismatched targets. It should be noted that the nanoflare was successfully employed to predict the drug-induced nephrotoxicity by the detection of miRNAs in culture media excreted from the drug-treated renal cells using a fluorescent microplate reader. Our hairpin DNA-fueled nanoflare could also accurately detect the divergence of miRNA-21 and miRNA-200c between drug-treated nephrotoxic cells and tumor cells, demonstrating a promising potential for exploring the pathogenesis of drugs and auxiliary diagnosis of drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Li RT, Liang Z, Li MC, Tan Y, Xie BP, Duan WJ, Ning CT, Chen JX, Sun B. Speedy, Specific, Synchronous Sensing Platforms with Ruthenium Complexes for Multiplexed MicroRNA Detection. Inorg Chem 2019; 58:15126-15137. [DOI: 10.1021/acs.inorgchem.9b01939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Meng-Chu Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Yong Tan
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Bao-Ping Xie
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Wen-Jun Duan
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Chun-Tao Ning
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| |
Collapse
|
18
|
Wei Y, Wang L, Zhang Y, Dong Y. An Enzyme- and Label-Free Fluorescence Aptasensor for Detection of Thrombin Based on Graphene Oxide and G-Quadruplex. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4424. [PMID: 31614837 PMCID: PMC6832557 DOI: 10.3390/s19204424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
An enzyme- and label-free aptamer-based assay is described for the determination of thrombin. A DNA strand (S) consisting of two parts was designed, where the first (Sa) is the thrombin-binding aptamer and the second (Se) is a G-quadruplex. In the absence of thrombin, Sa is readily adsorbed by graphene oxide (GO), which has a preference for ss-DNA rather than for ds-DNA. Upon the addition of the N-methyl-mesoporphyrin IX (NMM), its fluorescence (with excitation/emission at 399/610 nm) is quenched by GO. In contrast, in the presence of thrombin, the aptamer will bind thrombin, and thus, be separated from GO. As a result, fluorescence will be enhanced. The increase is linear in the 0.37 µM to 50 µM thrombin concentration range, and the detection limit is 0.37 nM. The method is highly selective over other proteins, cost-effective, and simple. In our perception, it represents a universal detection scheme that may be applied to other targets according to the proper choice of the aptamer sequence and formation of a suitable aptamer-target pair.
Collapse
Affiliation(s)
- Yani Wei
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Luhui Wang
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Yingying Zhang
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| | - Yafei Dong
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| |
Collapse
|
19
|
|
20
|
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2019; 20:515-539. [PMID: 29045685 DOI: 10.1093/bib/bbx130] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/13/2017] [Indexed: 12/22/2022] Open
Abstract
Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Di Xie
- School of Mathematics, Liaoning University
| | - Qi Zhao
- School of Mathematics, Liaoning University
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science
| |
Collapse
|
21
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
22
|
Quan W, Xudong W, Min X, Lou X, Fan X. One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Yin F, Liu L, Sun X, Hou L, Lu Y, Xue Q, Lin T, Li X, Li CZ. A facile deoxyuridine/biotin-modified molecular beacon for simultaneous detection of proteins and nucleic acids via a label-free and background-eliminated fluorescence assay. Analyst 2019; 144:5504-5510. [PMID: 31389925 DOI: 10.1039/c9an01016e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simultaneous detection of different types of cancer biomarkers (nucleic acids and proteins) could facilitate early diagnosis of cancer and clinical treatment. Herein, a simultaneous detection platform of proteins and nucleic acids has been developed using a single substrate probe combining a label-free and background-eliminated fluorescence assay. Telomerase and telomerase RNA (TR) were chosen as the models. The molecular beacon (dU-BIO-HP) that contains deoxyuridine/biotin in its side arm, a TR recognition sequence in the loop and a telomerase substrate primer at the stem end was ingeniously designed. In the presence of telomerase, the stem of dU-BIO-HP is elongated by the addition of telomere repeats complementary to the assistant DNA. Furthermore, the formed dsDNA performed as engaging primers to initiate a SDA reaction, generating abundant G-quadruplex monomers. Similarly, on TR, the hybridization between TR and dU-BIO-HP can open its stem, triggering another SDA reaction, producing abundant short ssDNAs. With the G-quadruplex binding with ZnPPIX and ssDNA binding with SG for specific fluorescence responses, the label-free multiple detection can be achieved. In our strategy, the deoxyuridine of dU-BIO-HP acts as a barrier to block the DNA extension due to its strong inhibitory effects on DNA polymerase activity and to make sure that the two SDA reactions occurred independently. The biotin of dU-BIO-HP enables the reduction of the background from the binding between SG, ZnPPIX and dU-BIO-HP through streptavidin-biotin interaction. This method showed an excellent sensitivity with telomerase and TR detection limit of 2.18 HeLa cells per mL and 0.16 × 10-12 M, respectively. Furthermore, the telomerase and TR in different cell lines have been evaluated as powerful tools for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Liqi Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Xia Sun
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Laiyong Hou
- Rencheng People's Hospital of Jining City, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Tong Lin
- Department of Biomedical Engineering, Florida International University, 10555 West Flalger Street, Miami, Florida 33174, USA.
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Chen-Zhong Li
- Department of Biomedical Engineering, Florida International University, 10555 West Flalger Street, Miami, Florida 33174, USA.
| |
Collapse
|
24
|
Lou YF, Peng YB, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Mikrochim Acta 2019; 186:494. [PMID: 31267250 DOI: 10.1007/s00604-019-3596-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.
Collapse
Affiliation(s)
- Yi-Fei Lou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yong-Bo Peng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.,Molecular Science and Biomedicine Laboratory (MBL), College of Life Sciences, Hunan University, Changsha, 410082, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Estates Building, 10 Sassoon Road, Hong Kong, 00852, People's Republic of China
| | - Xiaowei Luo
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Zhiming Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Ruifeng Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Dewen Sun
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yuyu Tan
- Department of Biomedical Engineering School of Electrical Engineering, University of South China, Hengyang, 421002, China
| | - Jiahao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
| |
Collapse
|
25
|
Wang LJ, Luo ML, Yang XY, Li XF, Wu Y, Zhang CY. Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells. Am J Cancer Res 2019; 9:4450-4460. [PMID: 31285772 PMCID: PMC6599653 DOI: 10.7150/thno.35393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
DNA alkylation and oxidation are two most common forms of cytotoxic damage with the characteristics of mutagenic and carcinogenic. Human alkyladenine DNA glycosylase (hAAG) is the only glycosylase known to repair a wide variety of alkylative and oxidative DNA lesions. However, few approaches are capable of real-time monitoring hAAG activity. Methods: Herein, we develop a facile fluorescent strategy for homogeneous and sensitive sensing of hAAG activity based on the controllable autocatalytic cleavage-mediated fluorescence recovery. The presence of hAAG enables the cleavage of hairpin probe 1 (HP1) at the damaged 2′-deoxyinosine site by AP endonuclease 1 (APE1), forming a DNA duplex. The trigger 1 built in the resultant DNA duplex may hybridize with hairpin probe 2 (HP2) to induce the T7 exonuclease (T7 exo)-catalyzed recycling cleavage of HP2 (Cycle I) to release trigger 2. The trigger 2 can further hybridize with the signal probe (a fluorophore (FAM) and a quencher (BHQ1) modified at its 5′ and 3′ ends) to induce the subsequent recycling cleavage of signal probes (Cycle II) to liberate FAM molecules. Through two-recycling autocatalytic cleavage processes, large amounts of fluorophore molecules (i.e., FAM) are liberated from the FAM-BHQ1 fluorescence resonance energy transfer (FRET) pair, leading to the amplified fluorescence recovery. Results: Taking advantage of the high accuracy of in vivo DNA repair mechanism, the high specificity of T7 exo-catalyzed mononucleotides hydrolysis, and the high efficiency of autocatalytic recycling amplification, this strategy exhibits high sensitivity with a detection limit of 4.9 × 10-6 U/μL and a large dynamic range of 4 orders of magnitude from 1 × 10-5 to 0.1 U/μL, and it can further accurately evaluate the enzyme kinetic parameters, screen the potential inhibitors, and even quantify the hAAG activity from 1 cancer cell. Conclusion: The proposed strategy can provide a facile and universal platform for the monitoring of DNA damage-related repair enzymes, holding great potential for DNA repair-related biochemical research, clinical diagnosis, drug discovery, and cancer therapy.
Collapse
|
26
|
Caputo TM, Battista E, Netti PA, Causa F. Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17147-17156. [PMID: 31021070 DOI: 10.1021/acsami.8b22635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a supramolecular structure with femtomolar biorecognition properties is proposed for use in analytical devices. It is obtained by an innovative interface between synthetic hydrogel polymers and molecular beacon (mb) probes. Supramolecularly structured microgels are synthetized with a core-shell architecture with specific dyes polymerized in a desired compartment. Mb probes are opportunely conjugated at the microgel interface so that their recognition mechanism is preserved and their spatial distribution is optimized to avoid crowding effects. The miR-21, a microRNA involved in various biological processes and usually used as a biomarker in early cancer diagnosis, has been selected as the target. The results demonstrate that by tuning the spatial distribution of molecular probes immobilized on the microgel and/or the amount of microgels, the assay shows scalable sensitivity reaching a limit of detection down to about 10 fM, without amplification steps and with detection time as short as 1 h. The assay results specific toward single mutated targets, and it is stable in the presence of high-interfering oligonucleotides concentrations. The miRNA target is also detected in human serum with performances similar to those observed in PBS buffer because of microgel antifouling properties without the need of any surface treatment. All tests were performed in a low sample volume (20 μL). As a result, mb-microgel represents an innovative biosensor to precisely quantify microRNAs in a direct (mix&read), scalable, and selective way. Such an approach paves the way for creating innovative biosensing interfaces with other probes, such as hairpins, aptamers, and PNA.
Collapse
Affiliation(s)
- Tania M Caputo
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| |
Collapse
|
27
|
Sensitive detection of DNA from Chlamydia trachomatis by using flap endonuclease-assisted amplification and graphene oxide-based fluorescence signaling. Mikrochim Acta 2019; 186:330. [DOI: 10.1007/s00604-019-3453-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
|
28
|
Xu W, Zhao A, Zuo F, Hussain HMJ. A graphene oxide-based hairpin probe coupling duplex-specific nuclease signal amplification for detection and imaging of mRNA in living cells. Talanta 2019; 195:732-738. [PMID: 30625609 DOI: 10.1016/j.talanta.2018.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
Abstract
In situ imaging of mRNA in living cells can help to monitor the real time mRNA expression and also useful for diagnosis and prognosis of the diseases. In this study, a new strategy was designed for simple, sensitive, and selective platform to detect the mRNA levels by combining a hairpin probe-graphene oxide (HP1/GO) and duplex-specific nuclease signal amplification (DSNSA). Initially, the DNA probe was adsorbed on the surface of GO to protect it from enzymatic digestion. Then, the target mRNA (T1) was hybridized with a partial hairpin probe which formed a duplex. Finally, under the action of DSN nuclease, the ssDNA in the DNA/RNA hybrid was selectively cleaved and produced small fragments. Then, T1 triggered the next reaction cycle, constituting a new circular exponential amplification. Here, we conclude that this assay is highly sensitive for the detection of target mRNA with the lower detection limit of 1 fM under optimal conditions. Furthermore, this strategy was successfully used for imaging of mRNA in living cells.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Aiwu Zhao
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Fangtao Zuo
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | | |
Collapse
|
29
|
Tian R, Ning W, Chen M, Zhang C, Li Q, Bai J. High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure. Talanta 2019; 194:273-281. [DOI: 10.1016/j.talanta.2018.09.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
|
30
|
Chu Y, Deng AP, Wang W, Zhu JJ. Concatenated Catalytic Hairpin Assembly/Hyperbranched Hybridization Chain Reaction Based Enzyme-Free Signal Amplification for the Sensitive Photoelectrochemical Detection of Human Telomerase RNA. Anal Chem 2019; 91:3619-3627. [DOI: 10.1021/acs.analchem.8b05610] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanxin Chu
- The Key Lab of
Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| | - An-Ping Deng
- The Key Lab of
Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory
of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| |
Collapse
|
31
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
32
|
Cao H, Zhou X, Zeng Y. Microfluidic Exponential Rolling Circle Amplification for Sensitive microRNA Detection Directly from Biological Samples. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 279:447-457. [PMID: 30533973 PMCID: PMC6284813 DOI: 10.1016/j.snb.2018.09.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There is an urgent need of sensitive bioanalytical platforms for sensitive and precise quantification of low-abundance microRNA targets in complex biological samples, including liquid biopsies of tumors. Many of current miRNA biosensing methods require laborious sample pretreatment procedures, including extraction of total RNA, which largely limits their biomedical and clinical applications. Herein we developed an integrated Microfluidic Exponential Rolling Circle Amplification (MERCA) platform for sensitive and specific detection of microRNAs directly in minimally processed samples. The MERCA system integrates and streamlines solid-phase miRNA isolation, miRNA-adapter ligation, and a dualphase exponential rolling circle amplification (eRCA) assay in one analytical workflow. By marrying the advantages of microfluidics in leveraging bioassay performance with the high sensitivity of eRCA, our method affords a remarkably low limit of detection at <10 zeptomole levels, with the ability to discriminate single-nucleotide difference. Using the MERCA chip, we demonstrated quantitative detection of miRNAs in total RNA, raw cell lysate, and cellderived exosomes. Comparing with the parallel TaqMan RT-qPCR measurements verified the adaptability of the MERCA system for detection of miRNA biomarkers in complex biological materials. In particular, high sensitivity of our method enables direct detection of low-level exosomal miRNAs in as few as 2 × 106 exosomes. Such analytical capability immediately addresses the unmet challenge in sample consumption, a key setback in clinical development of exosome-based liquid biopsies. Therefore, the MERCA would provide a useful platform to facilitate miRNA analysis in broad biological and clinical applications.
Collapse
Affiliation(s)
- Hongmei Cao
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Xin Zhou
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
- University of Kansas Cancer Center, Kansas City, KS 66160
- Corresponding authors: , Fax: 785-864-5396
| |
Collapse
|
33
|
Gong X, Yu C, Zhang Y, Sun Y, Ye L, Li J. Carbon nanoparticle-protected RNA aptasensor for amplified fluorescent determination of theophylline in serum based on nuclease-aided signal amplification. RSC Adv 2019; 9:33898-33902. [PMID: 35528922 PMCID: PMC9073590 DOI: 10.1039/c9ra06798a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
A carbon nanoparticle (CNP) and Cryonase-aided method that realizes the amplified fluorescent detection of theophylline was proposed.
Collapse
Affiliation(s)
- Xiaoyu Gong
- Longgang District People's Hospital of Shenzhen
- Shenzhen
- P. R. China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
| | - Chi Yu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yichang Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yuan Sun
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Lin Ye
- Department of General Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| |
Collapse
|
34
|
Peng W, Zhao Q, Chen M, Piao J, Gao W, Gong X, Chang J. An innovative "unlocked mechanism" by a double key avenue for one-pot detection of microRNA-21 and microRNA-141. Am J Cancer Res 2019; 9:279-289. [PMID: 30662567 PMCID: PMC6332803 DOI: 10.7150/thno.28474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The accurate and quantitative detection of microRNAs (miRNAs) as next-generation, reliable biomarkers will provide vital information for cancer research and treatment. However, their unique, intrinsic features pose quite a challenge for miRNA profiling, especially for multiplexed detection. Thus, there is a strong and an ever-growing need to develop an accurate, simple, sensitive and specific miRNA sensing method. Methods: In this study, a simple and novel sensor is presented that uses a flow cytometry (FCM) method based on the double key "unlocked mechanism" and a fluorescence enrichment signal amplification strategy. The "unlocked mechanism" was cleverly designed via using hairpin DNA probes (HDs) labeled by fluorescent particles (FS) as the lock to block part of them, which can specifically hybridize with the probe on polystyrene microparticles (PS). The target miRNA and duplex-specific nuclease (DSN) forming the double key can specifically open the HDs and cleave a single-stranded DNA (ssDNA) into DNA/RNA dimers circularly in order to unlock the special part of the HDs to be specially enriched further on the PS. Results: The designed sensor with a hairpin structure and DSN special performance was found to have a high specificity. The circularly unlocking fluorescent probes and fluorescent signal enrichment can be beneficial for achieving a high sensitivity with a detection limit of 3.39 fM for miRNA-21. Meanwhile, the performance of multiplexing was estimated by simultaneous detection of miR-21 and miR-141, and the method also allowed for miR-21 detection in breast cancer blood samples. Conclusion: The designed sensor based on an "unlocked mechanism" and a signal enrichment strategy resulted in a one-pot, highly specific and sensitive detection of multiplex miRNAs. The whole detection without the need for a complex purification process is based on a FCM and is expected to have a great value in cancer diagnosis and biomedical research.
Collapse
|
35
|
Nguyen VT, Le BH, Seo YJ. T7 exo-mediated FRET-breaking combined with DSN–RNAse–TdT for the detection of microRNA with ultrahigh signal-amplification. Analyst 2019; 144:3216-3220. [DOI: 10.1039/c9an00303g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DSN–RNAse–TdT–T7 exo probing system allows the detection of miRNA 21 with very high sensitivity (LOD = 2.57 fM) and selectivity—the result of (i) avoiding the false-positive signal from miRNA reacting with TdT polymerase and (ii) signal amplification occurring through a FRET-breaking mechanism involving T7 exo.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Binh Huy Le
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
- Department of Chemistry
- Chonbuk National University
| |
Collapse
|
36
|
Yang Z, Qin L, Yang D, Chen W, Qian Y, Jin J. Signal amplification method for miR-205 assay through combining graphene oxide with duplex-specific nuclease. RSC Adv 2019; 9:27341-27346. [PMID: 35529221 PMCID: PMC9070658 DOI: 10.1039/c9ra04663a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
Since microRNA-205 (miR-205) is a predictive biomarker for anti-radiation of nasopharyngeal carcinoma (NPC), quantitative detection of miR-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide sensor and duplex specific nuclease (DSN) for fluorescence signal amplification, a highly sensitive detection method for miR-205 was designed. A target-recycling mechanism is employed, where a single miR-205 target triggers the cleavage of many DNA signal probes. The method shows the ability to analyze miR-205 in solution, and it can detect miR-205 at concentrations as low as 132 pmol L−1 with a linear range of 5–40 nmol L−1. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single base, double base and three base mismatches, as well as other miRNAs. Considering simplicity and excellent sensitivity/specificity, it is promising for applications in radioresistance studies as well as the early clinical diagnosis of NPC. A signal amplified method for detecting a biomarker of radiation-resistant nasopharyngeal carcinoma using graphene oxide and duplex-specific nuclease was constructed.![]()
Collapse
Affiliation(s)
- Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Lan Qin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Dutao Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Weixia Chen
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Yue Qian
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Jin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
37
|
Wang Z, Zhang J, Chen F, Cai K. Fluorescent miRNA analysis enhanced by mesopore effects of polydopamine nanoquenchers. Analyst 2018; 142:2796-2804. [PMID: 28682373 DOI: 10.1039/c7an00528h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The combination of fluorophore-labelled single-strand DNA probes and nanomaterial quenchers has shown great potential in miRNA detection. The development of advanced detection systems by understanding and controlling the fluorescence quenching/recovery via nanoquenchers' microstructures and local morphologies is an attractive area warranting further investigations. Inspired by nanopore sequencing, we present a novel miRNA sensing strategy using fluorophore-labeled DNA as probes and a type of large-pore-sized mesoporous polydopamine nanoparticles (MPDA-L, 70 nm in diameter) as fluorescence quenchers. It is revealed that the quenching efficiency of MPDA-L towards the fluorophore labelled on the probe, reached more than 99% at a relatively low particle concentration. Moreover, the mesopores effectively protected the probe DNA from cleavage by DNase I which was used for signal amplification. Sensitive detection of miRNA with a low detection limit of 32-40 pM, as well as a linear detection range of up to 5 nM, was realized by the mesopore effects via a greatly improved differential affinity of ssDNA and the probe-miRNA heteroduplex toward the surface of nanoquenchers. Interestingly, enhanced DLVO (Derjaguin-Landau-Verwey-Overbeek) repulsion generated inside the pore surface by the negative surface-curvature effect correlates with the improved duplex detachment and fluorescence recovery. The developed strategy can be successfully applied to quantify down-regulated let-7a and up-regulated miRNA-21 in different types of cancer cells by using total RNA samples from cell lysate. These findings are expected to inspire strategies and pave a way for utilizing porous nanomaterials for constructing miRNA detection systems.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Feng Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
38
|
Wei K, Zhao J, Qin Y, Li S, Huang Y, Zhao S. A novel multiplex signal amplification strategy based on microchip electrophoresis platform for the improved separation and detection of microRNAs. Talanta 2018; 189:437-441. [DOI: 10.1016/j.talanta.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/18/2023]
|
39
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
40
|
Zheng W, Yao L, Teng J, Yan C, Qin P, Liu G, Chen W. Lateral Flow Test for Visual Detection of Multiple MicroRNAs. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 264:320-326. [PMID: 30270990 PMCID: PMC6159930 DOI: 10.1016/j.snb.2018.02.159] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors describe a rapid and low-cost approach for multiplex microRNA(miRNA) assay on lateral flow nucleic acid biosensor (LFNAB). The principle of assay is based on sandwich-type nucleic acid hybridization reactions to produce gold nanoparticle (GNP)-attached complexes (ssDNA-microRNA-ssDNA/GNPs), which are captured and visualized on the test zone of LFNAB. By designing three different test zones on LFNAB, simultaneous detection of microRNA-21, microRNA-155 and microRNA-210 was achieved with an adding-measuring model by using GNP as visual tag. The method was challenged by testing the microRNAs in spiked serum samples with satisfied results. In our perception, the test is a particularly valuable tool for clinical application and biomedical diagnosis, particularly in limited resource settings.
Collapse
Affiliation(s)
- Wanli Zheng
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
| | - Li Yao
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
| | - Jun Teng
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
| | - Chao Yan
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
| | - Panzhu Qin
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
| | - Guodong Liu
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, ND 58105, USA
- Corresponding author: W. Chen, , Researcher ID: F-4557-2010, http://www.researcherid.com/rid/F-4557-2010; G. Liu,
| | - Wei Chen
- School of Food Science & Engineering, Hefei University of Technology, 230009, Anhui, PR China
- Corresponding author: W. Chen, , Researcher ID: F-4557-2010, http://www.researcherid.com/rid/F-4557-2010; G. Liu,
| |
Collapse
|
41
|
Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for Cancer Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705660. [PMID: 29504159 DOI: 10.1002/adma.201705660] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Indexed: 05/21/2023]
Abstract
Medical science has recently advanced to the point where diagnosis and therapeutics can be carried out with high precision, even at the molecular level. A new field of "precision medicine" has consequently emerged with specific clinical implications and challenges that can be well-addressed by newly developed nanomaterials. Here, a nanoscience approach to precision medicine is provided, with a focus on cancer therapy, based on a new concept of "molecularly-defined cancers." "Next-generation sequencing" is introduced to identify the oncogene that is responsible for a class of cancers. This new approach is fundamentally different from all conventional cancer therapies that rely on diagnosis of the anatomic origins where the tumors are found. To treat cancers at molecular level, a recently developed "microRNA replacement therapy" is applied, utilizing nanocarriers, in order to regulate the driver oncogene, which is the core of cancer precision therapeutics. Furthermore, the outcome of the nanomediated oncogenic regulation has to be accurately assessed by the genetically characterized, patient-derived xenograft models. Cancer therapy in this fashion is a quintessential example of precision medicine, presenting many challenges to the materials communities with new issues in structural design, surface functionalization, gene/drug storage and delivery, cell targeting, and medical imaging.
Collapse
Affiliation(s)
- Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Donglu Shi
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
- The Materials Science and Engineering Program, College of Engineering and Applied Science, 2901 Woodside Drive, Cincinnati, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
42
|
Yang L, Liu B, Wang M, Li J, Pan W, Gao X, Li N, Tang B. A Highly Sensitive Strategy for Fluorescence Imaging of MicroRNA in Living Cells and in Vivo Based on Graphene Oxide-Enhanced Signal Molecules Quenching of Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6982-6990. [PMID: 29405060 DOI: 10.1021/acsami.7b19284] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In situ imaging of microRNA (miRNA) in living cells and in vivo is beneficial for promoting the studies on miRNA-related physiological and pathological processes. However, the current strategies usually have a low signal-to-background ratio, which greatly affects the sensitivity and imaging performance. To solve this problem, we developed a highly sensitive strategy for fluorescence imaging of miRNA in living cells and in vivo based on graphene oxide (GO)-enhanced signal molecule quenching of a molecular beacon (MB). 2Cy5-MB was designed by coupling two Cy5 molecules onto the opposite ends of MB. The fluorescence intensities of two Cy5 molecules were reduced because of the self-quenching effect. After adsorbing on the GO surface, the fluorescence quenching of the molecules was enhanced by fluorescence resonance energy transfer. This double-quenching effect significantly reduced the fluorescence background. In the presence of one miRNA molecule, the fluorescence signals of two Cy5 molecules were simultaneously recovered. Therefore, a significantly enhanced signal-to-background ratio was obtained, which greatly improved the detection sensitivity. In the presence of miRNA, the fluorescence intensity of 2Cy5-MB-GO recovered about 156 times and the detection limit was 30 pM. Compared with 1Cy5-MB-GO, the elevated fluorescence intensity was enhanced 8 times and the detection limit was reduced by an order of magnitude. Furthermore, fluorescence imaging experiments demonstrated that 2Cy5-MB-GO could visually detect microRNA-21 in various cancer cells and tumor tissues. This simple and effective strategy provides a new sensing platform for highly sensitive detection and simultaneous imaging analysis of multiple low-level biomarkers in living cells and in vivo.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Meimei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Jia Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
43
|
Xu S, Nie Y, Jiang L, Wang J, Xu G, Wang W, Luo X. Polydopamine Nanosphere/Gold Nanocluster (Au NC)-Based Nanoplatform for Dual Color Simultaneous Detection of Multiple Tumor-Related MicroRNAs with DNase-I-Assisted Target Recycling Amplification. Anal Chem 2018; 90:4039-4045. [DOI: 10.1021/acs.analchem.7b05253] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shenghao Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongyin Nie
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Liping Jiang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jun Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
44
|
A study on amphiphilic fluorinated block copolymer in graphite exfoliation using supercritical CO 2 for stable graphene dispersion. J Colloid Interface Sci 2018; 510:162-171. [PMID: 28942166 DOI: 10.1016/j.jcis.2017.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/24/2022]
Abstract
In this study, poly(2,2,2-trifluoroethyl methacrylate)-block-poly(4-vinylpyridine) (PTFEMA-b-PVP) was synthesized by stepwise reversible addition-fragmentation chain transfer (RAFT) polymerization for the preparation of graphene by the exfoliation of graphite nanoplatelets (GPs) in supercritical CO2 (SCCO2). Two different block copolymers (low and high molecular weights) were prepared with the same block ratio and used at different concentrations in the SCCO2 process. The amount of PTFEMA-b-PVP adsorbed on the GPs and the electrical conductivity of the SCCO2-treated GP samples were evaluated using thermogravimetric analysis (TGA) and four-point probe method, respectively. All GP samples treated with SCCO2 were then dispersed in methanol and the dispersion stability was investigated using online turbidity measurements. The concentration and morphology of few-layer graphene stabilized with PTFEMA-b-PVP in the supernatant solution were investigated by gravimetry, scanning electron microscopy, and Raman spectroscopy. Destabilization study of the graphene dispersions revealed that the longer block copolymer exhibited better affinity for graphene, resulting in a higher yield of stable graphene with minimal defects.
Collapse
|
45
|
Abstract
Recent advances in miRNA detection methods and new applications.
Collapse
Affiliation(s)
- Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
| | - Lijuan Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
| | - Yaqing Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
| | - Zhengping Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
| |
Collapse
|
46
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
47
|
Sun B, Liang Z, Xie BP, Li RT, Li LZ, Jiang ZH, Bai LP, Chen JX. Fluorescence sensing platform based on ruthenium(II) complexes as high 3S (sensitivity, specificity, speed) and "on-off-on" sensors for the miR-185 detection. Talanta 2017; 179:658-667. [PMID: 29310291 DOI: 10.1016/j.talanta.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inspired by the enormous importance attributed to the biological function of miRNA, we pour our attention into the design and synthesis of four ruthenium(II) complexes and evaluate their applications as miR-185 detection agents by spectroscopic measurements. It was found that all complexes can form sensing platform for the detection of the complementary target miR-185 through the introduction of carboxyfluorescein (FAM) labeled single stranded DNA (P-DNA), giving the detection limits of 0.42nM for Ru 1, 0.28nM for Ru 2, 0.32nM for Ru 3, 0.85nM for Ru 4, all with instantaneous detection time in 1min. The results of the binding constant, fluorescence anisotropy (FA) and polyacrylamide gel electrophoresis experiments (PAGE) revealed that the ruthenium(II) complexes prefer to bind P-DNA other than hybrid duplexes DNA@RNA upon recognition, resulting in the detection of miR-185. These results provide useful suggestions in the new type of metal-based miRNA detection agents.
Collapse
Affiliation(s)
- Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bao-Ping Xie
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lin-Ze Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
48
|
Chen YX, Huang KJ, Niu KX. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 2017; 99:612-624. [PMID: 28837925 DOI: 10.1016/j.bios.2017.08.036] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis. Hence, it's necessary to fabricate accurate and sensitive biosensing platform for miRNAs detection. Up to now, researchers have developed many signal-amplification strategies for miRNAs detection, including hybridization chain reaction, nuclease amplification, rolling circle amplification, catalyzed hairpin assembly amplification and nanomaterials based amplification. These methods are typical, feasible and frequently used. In this review, we retrospect recent advances in signal amplification strategies for detecting miRNAs and point out the pros and cons of them. Furthermore, further prospects and promising developments of the signal-amplification strategies for detecting miRNAs are proposed.
Collapse
Affiliation(s)
- Ying-Xu Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Xin Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China; Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
49
|
Xu J, Wu ZS, Shen W, Le J, Zheng T, Li H, Jia L. Programmable nanoassembly consisting of two hairpin-DNAs for p53 gene determination. Biosens Bioelectron 2017; 94:626-631. [DOI: 10.1016/j.bios.2017.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
50
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|