1
|
Chakraborty N, Momirov J, Radakovic A, Chatterjee S, Kirchhoff AM, Kolb AL, West TJ, Sanchez BB, Martinez-Bartolome S, Saviola A, McClatchy D, Yates JR, Chen JS, Lairson LL, Felding BH, Boger DL. Insights into Free Drug Release from Efficacious N-Acyl O-Aminophenol Duocarmycin Prodrugs. ACS Chem Biol 2025; 20:442-454. [PMID: 39924956 PMCID: PMC11908632 DOI: 10.1021/acschembio.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Acyclic and cyclic N-acyl O-aminophenol prodrugs of duocarmycin analogues were reported as members of a unique class of reductively cleaved prodrugs that map seamlessly onto the duocarmycin family of natural products. Although these prodrugs were explored with the expectations that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles, the remarkable stability of some such prodrugs suggests another mechanism of free drug release is operative. The prototype of such chemically unreactive N-acyl O-aminophenol prodrugs is 1, which proved remarkably efficacious in vivo in vertebrate tumor models; was found to lack the toxicity that is characteristic of traditional chemotherapeutic drugs as well as the free drugs in the class (e.g., myelosuppression); and displayed a preferential site (intracellular), a slow and sustained rate, and a potentially unique mechanism of free drug release. Herein, we detail studies that provide insights into this stereoselective mechanism of free drug release. Combined, the results of the studies are consistent with an exclusive protein-mediated (enantio)selective activation and free drug release from prodrug 1 by N-O bond cleavage preferentially in cancer cell lines versus cultured normal human cell lines effected by a cytosolic cysteine-based enzyme and suggest that the activating protein is one that is selectively expressed, upregulated, or preferentially activated in cancer cell lines, potentially constituting a new oncology targeted precision therapy.
Collapse
Affiliation(s)
- Nilanjana Chakraborty
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jelena Momirov
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Aleksandar Radakovic
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Shreyosree Chatterjee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Aaron M. Kirchhoff
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Anna-Lena Kolb
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas J. West
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B. Sanchez
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martinez-Bartolome
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Anthony Saviola
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S. Chen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke L. Lairson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Brunie H. Felding
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Kurian R, Wang H. Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity. Int J Mol Sci 2025; 26:988. [PMID: 39940757 PMCID: PMC11816641 DOI: 10.3390/ijms26030988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
A prodrug is a molecule that lacks pharmacological activity, but upon enzymatic bioactivation, it can generate a therapeutically active molecule. The primary reason behind the design of a prodrug is to help circumvent challenges associated with the physicochemical properties of a drug molecule, such as solubility, absorption, distribution, and instability. Chemotherapy has been at the forefront of cancer treatment for over 70 years due to its ability to target rapidly proliferating tumor cells. However, a major concern with conventional chemotherapy is the lack of selectivity and its associated side toxicity, which can severely impact patients' quality of life. In oncology, prodrugs have been explored to enhance the bioavailability, improve efficacy, and minimize systemic toxicity of chemotherapeutic agents. Prodrugs activated by enzymes unique to a tumor microenvironment can significantly increase targeted delivery of chemotherapeutic drugs. This review aims to highlight commonly used chemotherapeutic prodrugs, including both alkylating and non-alkylating agents, and discuss their clinical relevance, mechanisms of bioactivation, and toxicity concerns.
Collapse
Affiliation(s)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Jiang H, Yang J, Fu Q, Li A, Qin H, Liu M. Induction of Endoplasmic Reticulum Stress and Aryl Hydrocarbon Receptor Pathway Expression by Blue LED Irradiation in Oral Squamous Cell Carcinoma. JOURNAL OF BIOPHOTONICS 2024; 17:e202400226. [PMID: 39209312 DOI: 10.1002/jbio.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy, as an emerging treatment modality, has been widely used in dentistry. However, reports on blue light therapy for oral cancer are scarce. This study investigated the effects of 457 and 475 nm LED irradiation on SCC-25 cells and explored the potential mechanisms underlying the impact of blue light. Both wavelengths were found to inhibit cell viability, induce oxidative stress, and cause cell cycle arrest without leading to cell death. Notably, the inhibitory effect of 457 nm blue light on cell proliferation was more sustained. Transcriptome sequencing was performed to explore the underlying mechanisms, revealing that blue light induced endoplasmic reticulum stress in SCC-25 cells, with 457 nm light showing a more pronounced effect. Moreover, 457 nm blue light upregulated the expression of the aryl hydrocarbon receptor pathway, indicating potential therapeutic prospects for the combined use of blue light and pharmacological agents.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan DB-Light Technology Co., Ltd, Zhongshan City, Guangdong Province, China
| |
Collapse
|
4
|
Cominetti MMD, Goddard ZR, Hood BR, Beekman AM, O'Connell MA, Searcey M. Borylation via iridium catalysed C-H activation: a new concise route to duocarmycin derivatives. Org Biomol Chem 2024; 22:5603-5607. [PMID: 38904084 PMCID: PMC11234497 DOI: 10.1039/d4ob00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The synthesis of the ethyl ester analogue of the ultrapotent antitumour antibiotic seco-duocarmycin SA has been achieved in eleven linear steps from commercially available starting materials. The DSA alkylation subunit can be made in ten linear steps from the same precursor. The route involves C-H activation at the equivalent of the C7 position on indole leading to a borylated intermediate 9 that is stable enough for peptide coupling reactions but can be easily converted to the free hydroxyl analogue.
Collapse
Affiliation(s)
- Marco M D Cominetti
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Zoë R Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Bethany R Hood
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
5
|
Bengtsson C, Gravenfors Y. Rapid Construction of a Chloromethyl-Substituted Duocarmycin-like Prodrug. Molecules 2023; 28:4818. [PMID: 37375372 DOI: 10.3390/molecules28124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of duocarmycin-like compounds is often associated with lengthy synthetic routes. Presented herein is the development of a short and convenient synthesis of a type of duocarmycin prodrug. The 1,2,3,6-tetrahydropyrrolo[3,2-e]indole-containing core is here constructed from commercially available Boc-5-bromoindole in four steps and 23% overall yield, utilizing a Buchwald-Hartwig amination followed by a sodium hydride-induced regioselective bromination. In addition, protocols for selective mono- and di-halogenations of positions 3 and 4 were also developed, which could be useful for further exploration of this scaffold.
Collapse
Affiliation(s)
- Christoffer Bengtsson
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| | - Ylva Gravenfors
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| |
Collapse
|
6
|
Felber JG, Thorn-Seshold O. 40 Years of Duocarmycins: A Graphical Structure/Function Review of Their Chemical Evolution, from SAR to Prodrugs and ADCs. JACS AU 2022; 2:2636-2644. [PMID: 36590260 PMCID: PMC9795467 DOI: 10.1021/jacsau.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/16/2023]
Abstract
Synthetic analogues of the DNA-alkylating cytotoxins of the duocarmycin class have been extensively investigated in the past 40 years, driven by their high potency, their unusual mechanism of bioactivity, and the beautiful modularity of their structure-activity relationship (SAR). This Perspective analyzes how the molecular designs of synthetic duocarmycins have evolved: from (1) early SAR studies, through to modern applications for directed cancer therapy as (2) prodrugs and (3) antibody-drug conjugates in late-stage clinical development. Analyzing 583 primary research articles and patents from 1978 to 2022, we distill out a searchable A0-format "Minard map" poster of ca. 200 key structure/function-tuning steps tracing chemical developments across these three key areas. This structure-based overview showcases the ingenious approaches to tune and target bioactivity, that continue to drive development of the elegant and powerful duocarmycin platform.
Collapse
|
7
|
Bart AG, Morais G, Vangala VR, Loadman PM, Pors K, Scott EE. Cytochrome P450 Binding and Bioactivation of Tumor-Targeted Duocarmycin Agents. Drug Metab Dispos 2022; 50:49-57. [PMID: 34607808 PMCID: PMC8969195 DOI: 10.1124/dmd.121.000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Duocarmycin natural products are promising anticancer cytotoxins but too potent for systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs designed for bioactivation by tissue-specific cytochrome P450 (P450) enzymes. Lead prodrugs bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in xenograft studies; however, to fully understand the potential of these agents it is desirable to compare dual-targeting compounds with isoform-selective analogs. Such redesign requires insight into the molecular interactions with these P450 enzymes. Herein binding and metabolism of the individual stereoisomers of the indole-based duocarmycin prodrug ICT2700 and a nontoxic benzofuran analog ICT2726 were evaluated with CYP1A1 and CYP2W1, revealing differences exploitable for drug design. Although enantiomers of both compounds bound to and were metabolized by CYP1A1, the stereochemistry of the chloromethyl fragment was critical for CYP2W1 interactions. CYP2W1 differentially binds the S enantiomer of ICT2726, and its metabolite profile could potentially be used as a biomarker to identify CYP2W1 functional activity. In contrast to benzofuran-based ICT2726, CYP2W1 differentially binds the R isomer of the indole-based ICT2700 over the S stereoisomer. Thus the ICT2700 R configuration warrants further investigation as a scaffold to favor CYP2W1-selective bioactivation. Furthermore, structures of both duocarmycin S enantiomers with CYP1A1 reveal orientations correlating with nontoxic metabolites, and further drug design optimization could lead to a decrease of CYP1A1 bioactivation. Overall, distinctive structural features present in the two P450 active sites can be useful for improving P450-and thus tissue-selective-bioactivation. SIGNIFICANCE STATEMENT: Prodrug versions of the natural product duocarmycin can be metabolized by human tissue-specific cytochrome P450 (P450) enzymes 1A1 and 2W1 to form an ultrapotent cytotoxin and/or high affinity 2W1 substrates to potentially probe functional activity in situ. The current work defines the binding and metabolism by both P450 enzymes to support the design of duocarmycins selectively activated by only one human P450 enzyme.
Collapse
Affiliation(s)
- Aaron G Bart
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Goreti Morais
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Venu R Vangala
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Paul M Loadman
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Klaus Pors
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Emily E Scott
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| |
Collapse
|
8
|
Presa D, Khurram SA, Zubir AZA, Smarakan S, Cooper PA, Morais GR, Sadiq M, Sutherland M, Loadman PM, McCaul J, Shnyder SD, Patterson LH, Pors K. Cytochrome P450 isoforms 1A1, 1B1 AND 2W1 as targets for therapeutic intervention in head and neck cancer. Sci Rep 2021; 11:18930. [PMID: 34556703 PMCID: PMC8460628 DOI: 10.1038/s41598-021-98217-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Epidemiological studies have shown that head and neck cancer (HNC) is a complex multistage process that in part involves exposure to a combination of carcinogens and the capacity of certain drug-metabolising enzymes including cytochrome P450 (CYP) to detoxify or activate such carcinogens. In this study, CYP1A1, CYP1B1 and CYP2W1 expression in HNC was correlated with potential as target for duocarmycin prodrug activation and selective therapy. In the HNC cell lines, elevated expression was shown at the gene level for CYP1A1 and CYP1B1 whereas CYP2W1 was hardly detected. However, CYP2W1 was expressed in FaDu and Detroit-562 xenografts and in a cohort of human HNC samples. Functional activity was measured in Fadu and Detroit-562 cells using P450-Glo™ assay. Antiproliferative results of duocarmycin prodrugs ICT2700 and ICT2706 revealed FaDu and Detroit-562 as the most sensitive HNC cell lines. Administration of ICT2700 in vivo using a single dose of ICT2700 (150 mg/kg) showed preferential inhibition of small tumour growth (mean size of 60 mm3) in mice bearing FaDu xenografts. Significantly, our findings suggest a potential targeted therapeutic approach to manage HNCs by exploiting intratumoural CYP expression for metabolic activation of duocarmycin-based prodrugs such as ICT2700.
Collapse
Affiliation(s)
- Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Syed A Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, 19 Claremont Crescent, Sheffield, S10 2TA, UK
| | - Amir Z A Zubir
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, 19 Claremont Crescent, Sheffield, S10 2TA, UK
| | - Sneha Smarakan
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Mark Sutherland
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - James McCaul
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.,Regional Maxillofacial Unit, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
| |
Collapse
|
9
|
Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Swigonska S, Orlowska K, Molcan T, Jastrzebski JP, Ciereszko RE. Transcriptional profiling of Chinese hamster ovary (CHO) cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reprod Toxicol 2021; 104:143-154. [PMID: 34363982 DOI: 10.1016/j.reprotox.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a man-made chemical compound contaminating the environment. An exposure of organisms to TCDD results in numerous disorders. The main mechanism of TCDD action involves the induction of the aryl hydrocarbon receptor (AhR) pathway followed by the increase in the expression and activity of cytochrome P450 family 1 (CYP1) enzymes. The main aim of the present study was to identify, by means of RNA sequencing, transcripts involved in the mechanism of TCDD action in Chinese hamster ovary (CHO) cells, known to not express CYP1A1 enzyme. The CHO cells were treated with TCDD for 3, 12 or 24 h, and total RNA was isolated and sequenced. Thirty six (padjusted < 0.05) or six (padjusted < 0.05, log2FC ≥ 1.0/log2FC≤-1.0) differentially expressed genes (DEGs) were identified in TCDD-treated cells depending on the assumed statistical criteria. The dioxin up- and downregulated the expression of genes associated with ovarian follicle functions, development, cardiovascular system, signal transduction, inflammation and carcinogenesis. TCDD did not affect the expression of any of 522 miRNAs which were identified in the cells. The expression of CYP1A1, CYP1A2 and CYP1B1 was demonstrated neither in control nor in TCDD-treated CHO cells, although the respective genes were found in the cell genome. Twenty two other CYP enzymes were identified in CHO cells, however their expression was also not affected by TCDD.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
10
|
Ortuzar N, Karu K, Presa D, Morais GR, Sheldrake HM, Shnyder SD, Barnieh FM, Loadman PM, Patterson LH, Pors K, Searcey M. Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compounds. Bioorg Med Chem 2021; 40:116167. [PMID: 33932713 DOI: 10.1016/j.bmc.2021.116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.
Collapse
Affiliation(s)
- Natalia Ortuzar
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kersti Karu
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Francis M Barnieh
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
11
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
12
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Jukes Z, Morais GR, Loadman PM, Pors K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov Today 2020; 26:577-584. [PMID: 33232841 DOI: 10.1016/j.drudis.2020.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval. In this review, we provide an overview of the most promising strategies currently used and include both tumour-targeted prodrug approaches and antibody-directed technologies.
Collapse
Affiliation(s)
- Zoë Jukes
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
14
|
Errington RJ, Sadiq M, Cosentino L, Wiltshire M, Sadiq O, Sini M, Lizano E, Pujol MD, Morais GR, Pors K. Probing cytochrome P450 bioactivation and fluorescent properties with morpholinyl-tethered anthraquinones. Bioorg Med Chem Lett 2018; 28:1274-1277. [PMID: 29576510 DOI: 10.1016/j.bmcl.2018.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Structural features from the anticancer prodrug nemorubicin (MMDX) and the DNA-binding molecule DRAQ5™ were used to prepare anthraquinone-based compounds, which were assessed for their potential to interrogate cytochrome P450 (CYP) functional activity and localisation. 1,4-disubstituted anthraquinone 8 was shown to be 5-fold more potent in EJ138 bladder cancer cells after CYP1A2 bioactivation. In contrast, 1,5-bis((2-morpholinoethyl)amino) substituted anthraquinone 10 was not CYP-bioactivated but was shown to be fluorescent and subsequently photo-activated by a light pulse (at a bandwidth 532-587 nm), resulting in punctuated foci accumulation in the cytoplasm. It also showed low toxicity in human osteosarcoma cells. These combined properties provide an interesting prospective approach for opto-tagging single or a sub-population of cells and seeking their location without the need for continuous monitoring.
Collapse
Affiliation(s)
- Rachel J Errington
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laura Cosentino
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Marie Wiltshire
- Tumour MicroEnvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Tenovus Building, Cardiff CF14 4XN, UK
| | - Omair Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Marcella Sini
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Enric Lizano
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK; Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Gonal 643, E-08028 Barcelona, Spain
| | - Maria D Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Gonal 643, E-08028 Barcelona, Spain
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| |
Collapse
|
15
|
Fortin S, Charest-Morin X, Turcotte V, Lauvaux C, Lacroix J, Côté MF, Gobeil S, C-Gaudreault R. Activation of Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonates Prodrugs by CYP1A1 as New Antimitotics Targeting Breast Cancer Cells. J Med Chem 2017; 60:4963-4982. [PMID: 28535350 DOI: 10.1021/acs.jmedchem.7b00343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prodrug-mediated utilization of the cytochrome P450 (CYP) 1A1 to obtain the selective release of potent anticancer products within cancer tissues is a promising approach in chemotherapy. We herein report the rationale, preparation, biological evaluation, and mechanism of action of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) that are antimicrotubule prodrugs activated by CYP1A1. Although PAIB-SOs are inert in most cells tested, they are highly cytocidal toward several human breast cancer cells, including hormone-independent and chemoresistant types. PAIB-SOs are N-dealkylated into cytotoxic phenyl 4-(2-oxo-3-imidazolidin-1-yl)benzenesulfonates (PIB-SOs) in CYP1A1-positive cancer cells, both in vitro and in vivo. In conclusion, PAIB-SOs are novel chemotherapeutic prodrugs with no equivalent among current antineoplastics and whose selective action toward breast cancer is tailored to the characteristic pattern of CYP1A1 expression observed in a large percentage of human breast tumors.
Collapse
Affiliation(s)
- Sébastien Fortin
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5.,Faculty of Pharmacy, Université Laval , Quebec City, Quebec, Canada G1V 0A6
| | - Xavier Charest-Morin
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5
| | - Vanessa Turcotte
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5
| | - Coraline Lauvaux
- CHU de Québec Research Centre, Endocrinology and Nephrology Division, CHUL , 2705 Boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2
| | - Jacques Lacroix
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5
| | - Marie-France Côté
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5
| | - Stéphane Gobeil
- CHU de Québec Research Centre, Endocrinology and Nephrology Division, CHUL , 2705 Boulevard Laurier, Quebec City, Quebec, Canada G1V 4G2.,Department of Molecular Medicine, Faculty of Medicine, Université Laval , Quebec City, Quebec, Canada G1V 0A6
| | - René C-Gaudreault
- CHU de Québec Research Centre, Oncology Division, Hôpital Saint-François d'Assise , 10 rue de l'Espinay, Quebec City, Quebec, Canada G1L 3L5.,Department of Molecular Medicine, Faculty of Medicine, Université Laval , Quebec City, Quebec, Canada G1V 0A6
| |
Collapse
|
16
|
Pan Y, Ong EC. Cytochrome P450 2W1 (CYP2W1) - ready for use as the biomarker and drug target for cancer? Xenobiotica 2016; 47:923-932. [PMID: 27690753 DOI: 10.1080/00498254.2016.1244370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. This article aims to evaluate the potentials of using cytochrome P450 2W1 (CYP2W1) as a biomarker and a drug target of cancer because of its characteristic cancer-specific expression. 2. Discrepant findings comparing the expression levels of CYP2W1 in cancer and non-cancer samples were reported. In general, the expression followed a developmental pattern. The demethylation status of CpG island and the expression levels of CYP2W1 genes was positively correlated. 3. CYP2W1 was able to activate several procarcinogens, anticancer pro-drugs and to metabolise many endogenous substances including fatty acids and lysophospholipids. 4. CYP2W1 expression level was suggested to serve as an independent prognostic biomarker in colorectal cancer and hepatocellular carcinoma. The correlation of genetic polymorphisms of CYP2W1 and cancer risk was uncertain. 5. Further characterisation of CYP2W1 structure is suggested to link to its functions. More studies are warranted to reveal the true status and the regulation of CYP2W1 expression across normal and cancer tissues. Catalytic activity of CYP2W1 should be tested on a wider spectrum of endogenous and exogenous substances before its use as the drug target. Larger size of clinical samples can be included to verify the potential of CYP2W1 as the prognostic or cancer risk biomarker.
Collapse
Affiliation(s)
- Yan Pan
- a Department of Biomedical Science , the University of Nottingham Malaysia Campus , Selangor , Malaysia and
| | - Eng Chin Ong
- b Jeffery Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Malaysia , Selangor , Malaysia
| |
Collapse
|
17
|
Sellars JD, Skipsey M, Sadr-Ul-Shaheed, Gravell S, Abumansour H, Kashtl G, Irfan J, Khot M, Pors K, Patterson LH, Sutton CW. Rational Development of Novel Activity Probes for the Analysis of Human Cytochromes P450. ChemMedChem 2016; 11:1122-8. [PMID: 27154431 DOI: 10.1002/cmdc.201600134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/01/2016] [Indexed: 11/07/2022]
Abstract
The identification and quantification of functional cytochromes P450 (CYPs) in biological samples is proving important for robust analyses of drug efficacy and metabolic disposition. In this study, a novel CYP activity-based probe was rationally designed and synthesised, demonstrating selective binding of CYP isoforms. The dependence of probe binding upon the presence of NADPH permits the selective detection of functionally active CYP. This allows the detection and analysis of these enzymes using biochemical and proteomic methodologies and approaches.
Collapse
Affiliation(s)
- Jonathan D Sellars
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, University Boulevard, Stockton-on-Tees, TS17 6BH, UK.
| | - Mark Skipsey
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, University Boulevard, Stockton-on-Tees, TS17 6BH, UK
| | - Sadr-Ul-Shaheed
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Sebastian Gravell
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Hamza Abumansour
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Ghasaq Kashtl
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Jawaria Irfan
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Mohamed Khot
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Klaus Pors
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Laurence H Patterson
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Chris W Sutton
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| |
Collapse
|
18
|
Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2015; 33:97-113. [PMID: 26445849 PMCID: PMC4740561 DOI: 10.1007/s10585-015-9755-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence indicating that aldehyde dehydrogenase (ALDH) activity selects for cancer cells with increased aggressiveness, capacity for sustained proliferation, and plasticity in primary tumors. However, emerging data also suggests an important mechanistic role for the ALDH family of isoenzymes in the metastatic activity of tumor cells. Recent studies indicate that ALDH correlates with either increased or decreased metastatic capacity in a cellular context-dependent manner. Importantly, it appears that different ALDH isoforms support increased metastatic capacity in different tumor types. This review assesses the potential of ALDH as biological marker and mechanistic mediator of metastasis in solid tumors. In many malignancies, most notably in breast cancer, ALDH activity and expression appears to be a promising marker and potential therapeutic target for treating metastasis in the clinical setting.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Torres
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada. .,London Regional Cancer Program, Room A4-132, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.
| |
Collapse
|
19
|
Stephenson MJ, Howell LA, O'Connell MA, Fox KR, Adcock C, Kingston J, Sheldrake H, Pors K, Collingwood SP, Searcey M. Solid-Phase Synthesis of Duocarmycin Analogues and the Effect of C-Terminal Substitution on Biological Activity. J Org Chem 2015; 80:9454-67. [PMID: 26356089 DOI: 10.1021/acs.joc.5b01373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The duocarmycins are potent antitumor agents with potential for use in the development of antibody-drug conjugates (ADCs) as well as being clinical candidates in their own right. In this article, we describe the synthesis of a duocarmycin monomer (DSA) that is suitably protected for utilization in solid-phase synthesis. The synthesis was performed on a large scale, and the resulting racemic protected Fmoc-DSA subunit was separated by supercritical fluid chromatography (SFC) into the single enantiomers; its application to solid-phase synthesis methodology gave a series of monomeric and extended duocarmycin analogues with amino acid substituents. The DNA sequence selectivity was similar to that in previous reports for both the monomeric and extended compounds. Substitution at the C-terminus of duocarmycin caused a decrease in antiproliferative activity for all of the compounds studied. An extended compound containing an alanine at the C-terminus was converted to the primary amide or to an extended structure containing a terminal tertiary amine, but this had no beneficial effects on biological activity.
Collapse
Affiliation(s)
| | | | | | - Keith R Fox
- Centre for Biological Sciences, University of Southampton , Life Sciences Building 85, Southampton SO17 1BJ, United Kingdom
| | - Claire Adcock
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jenny Kingston
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Helen Sheldrake
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Klaus Pors
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Stephen P Collingwood
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | | |
Collapse
|
20
|
Uematsu M, Brody DM, Boger DL. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins. Tetrahedron Lett 2015; 56:3101-3104. [PMID: 26069351 PMCID: PMC4459655 DOI: 10.1016/j.tetlet.2014.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation, characterization and examination of the CBI-based 5-membered lactone 5 capable of serving as a prodrug or protein (antibody) conjugation reagent are disclosed along with its incorporation into the corresponding CC-1065 and duocarmycin analog 6, and the establishment of their properties.
Collapse
Affiliation(s)
- Mika Uematsu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel M. Brody
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Vinader V, Sadiq M, Sutherland M, Huang M, Loadman PM, Elsalem L, Shnyder SD, Cui H, Afarinkia K, Searcey M, Patterson LH, Pors K. Probing cytochrome P450-mediated activation with a truncated azinomycin analogue. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00411f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective cytochrome P450 bioactivation of truncated azinomycin.
Collapse
Affiliation(s)
| | - Maria Sadiq
- Institute of Cancer Therapeutics
- University of Bradford
- UK
| | | | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology
- Southwest University
- Chongqing
- China
| | | | - Lina Elsalem
- Institute of Cancer Therapeutics
- University of Bradford
- UK
| | | | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology
- Southwest University
- Chongqing
- China
| | | | - Mark Searcey
- School of Pharmacy
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | | | - Klaus Pors
- Institute of Cancer Therapeutics
- University of Bradford
- UK
| |
Collapse
|
22
|
Pors K, Moreb JS. Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today 2014; 19:1953-63. [PMID: 25256776 DOI: 10.1016/j.drudis.2014.09.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of 19 isozymes that are known to participate in many physiologically important biosynthetic processes including detoxification of specific endogenous and exogenous aldehyde substrates. The high expression levels of an emerging number of ALDHs in various cancer tissues suggest that these enzymes have pivotal roles in cancer cell survival and progression. Mapping out the heterogeneity of tumours and their cancer stem cell (CSC) component will be key to successful design of strategies involving therapeutics that are targeted against specific ALDH isozymes. This review summarises recent progress in ALDH-focused cancer research and discovery of small-molecule-based inhibitors.
Collapse
Affiliation(s)
- Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Jan S Moreb
- Hematological Malignancies, PO Box 100278, Gainesville, FL 32610-0277, USA.
| |
Collapse
|
23
|
Liu X, Hu L, Ge G, Yang B, Ning J, Sun S, Yang L, Pors K, Gu J. Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay. Proteomics 2014; 14:1943-51. [DOI: 10.1002/pmic.201400025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Xidong Liu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Lianghai Hu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Bo Yang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Jing Ning
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Shixin Sun
- Asia Pacific Application Support Center; Applied Biosystems; Shanghai P.R. China
| | - Ling Yang
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Klaus Pors
- Institute of Cancer Therapeutics; School of Life Sciences; University of Bradford; West Yorkshire UK
| | - Jingkai Gu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| |
Collapse
|
24
|
Androutsopoulos VP, Spyrou I, Ploumidis A, Papalampros AE, Kyriakakis M, Delakas D, Spandidos DA, Tsatsakis AM. Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors. PLoS One 2013; 8:e82487. [PMID: 24358191 PMCID: PMC3864999 DOI: 10.1371/journal.pone.0082487] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Background The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited. Results In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression. Conclusions The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Vasilis P. Androutsopoulos
- Laboratory of Toxicology, Department of Morphology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Laboratory of Clinical Virology, Department of Laboratory Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- * E- mail:
| | - Ioannis Spyrou
- First Department of Surgery, University of Athens, Laiko Hospital, Athens, Greece
| | - Achilles Ploumidis
- Department of Urology, “Asklipeio” General Hospital, Voula, Athens, Greece
| | | | - Michalis Kyriakakis
- Laboratory of Toxicology, Department of Morphology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Demetrios Delakas
- Department of Urology, “Asklipeio” General Hospital, Voula, Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Department of Laboratory Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, Department of Morphology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
25
|
Wolfe AL, Duncan KK, Lajiness JP, Zhu K, Duerfeldt AS, Boger DL. A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding. J Med Chem 2013; 56:6845-57. [PMID: 23944748 DOI: 10.1021/jm400665c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two systematic series of increasingly hydrophilic derivatives of duocarmycin SA that feature the incorporation of ethylene glycol units (n = 1-5) into the methoxy substituents of the trimethoxyindole subunit are described. These derivatives exhibit progressively increasing water solubility along with progressive decreases in cell growth inhibitory activity and DNA alkylation efficiency with the incremental ethylene glycol unit incorporations. Linear relationships of cLogP with -log IC50 for cell growth inhibition and -log AE (AE = cell-free DNA alkylation efficiency) were observed, with the cLogP values spanning the productive range of 2.5-0.49 and the -log IC50 values spanning the range of 11.2-6.4, representing IC50 values that vary by a factor of 10(5) (0.008 to 370 nM). The results quantify the fundamental role played by the hydrophobic character of the compound in the expression of the biological activity of members in this class (driving the intrinsically reversible DNA alkylation reaction) and define the stunning magnitude of its effect.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
26
|
Sheldrake HM, Travica S, Johansson I, Loadman PM, Sutherland M, Elsalem L, Illingworth N, Cresswell AJ, Reuillon T, Shnyder SD, Mkrtchian S, Searcey M, Ingelman-Sundberg M, Patterson LH, Pors K. Re-engineering of the Duocarmycin Structural Architecture Enables Bioprecursor Development Targeting CYP1A1 and CYP2W1 for Biological Activity. J Med Chem 2013; 56:6273-7. [DOI: 10.1021/jm4000209] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Helen M. Sheldrake
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Sandra Travica
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Inger Johansson
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Paul M. Loadman
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Mark Sutherland
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Lina Elsalem
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Nicola Illingworth
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | | | - Tristan Reuillon
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Steven D. Shnyder
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Souren Mkrtchian
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Mark Searcey
- School
of Pharmacy, University of East Anglia,
Norwich Research Park, Norwich
NR4 7TJ, U.K
| | | | | | - Klaus Pors
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| |
Collapse
|
27
|
Wolfe AL, Duncan KK, Parelkar NK, Brown D, Vielhauer GA, Boger DL. Efficacious cyclic N-acyl O-amino phenol duocarmycin prodrugs. J Med Chem 2013; 56:4104-15. [PMID: 23627265 PMCID: PMC3687800 DOI: 10.1021/jm400413r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel cyclic N-acyl O-amino phenol prodrugs are reported as new members of a unique class of reductively cleaved prodrugs of the duocarmycin family of natural products. These prodrugs were explored with the expectation that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles and were designed to liberate the free drug without the release of an extraneous group. In vivo evaluation of the prodrug 6 showed that it exhibits extraordinary efficacy (T/C > 1500, L1210; 6/10 one year survivors), substantially exceeding that of the free drug, that its therapeutic window of activity is much larger, permitting a dosing ≥ 40-fold higher than the free drug, and yet that it displays a potency in vivo that approaches the free drug (within 3-fold). Clearly, the prodrug 6 benefits from either its controlled slow release of the free drug or its preferential intracellular reductive cleavage.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract 2224: Re-engineering of the duocarmycin structural architecture enables tumour-selective CYP2W1-mediated drug activation in human colon cancer xenografts. Cancer Res 2013. [DOI: 10.1158/1538-7445.am2013-2224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
There is now growing evidence that CYP1A1, 1B1, 2J2, 2S1 and 2W1 are over-expressed in many human tumour types. The ultrapotent duocarmycins are ideal candidates for bioprecursor drug development and we have demonstrated that these can be re-engineered into derivatives selectively activated by CYP1A1 in vitro and in vivo.1,2 In the present study, we have focussed on CYP2W1 as a potential therapeutic target. CYP2W1 is detected in 30% of colon cancers, while its protein expression in non-transformed adult tissues is absent or insignificant.3 We have presented results indicating that the immunohistochemically assessed level of CYP2W1 enzyme could fulfil the criteria for being a prognostic biomarker for stages II and III colorectal cancer.4 Here we present data on furanoindole-based duocarmycins that have the potential to be used as a chemical probe (e.g. ICT2726) to show CYP2W1 functional activity. We also report on indoline-based analogues that elicit potent antiproliferative activity after CYP2W1-mediated activation in cancer cells. Specifically, we have transfected human HEK293, Colo320 and SW480 cells to express CYP2W1 and shown that these suffer rapid loss of viability following treatment with two halogenated duocarmycin bioprecursor compounds (ICT2705 and ICT2706) while no activity in mock-transfected cells was seen. Significantly, ICT2706 was shown to totally prevent tumour growth when administered to SCID mice bearing SW480-2W1 xenografts (dosed daily with 100 mg/kg for 8 days) but not the mock-transfected variant. Subsequent to this treatment, the tumours were extracted for further analysis. Using H2A.X phosphorylation as a marker for DNA damage, our data revealed a time-dependent increase in expression supporting CYP2W1-mediated activation of ICT2706 in vivo. Our findings reveal the opportunities in targeting CYP2W1 as a novel therapeutic approach in colon cancer chemotherapy.
Citation Format: Klaus Pors, Sandra Travica, Paul M. Loadman, Steven D. Shnyder, Mark Sutherland, Helen M. Sheldrake, Mark Searcey, Inger Johansson, Souren Mkrtchian, Magnus IngelmanSundberg, Laurence H. Patterson. Re-engineering of the duocarmycin structural architecture enables tumour-selective CYP2W1-mediated drug activation in human colon cancer xenografts. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2224. doi:10.1158/1538-7445.AM2013-2224
Collapse
|
29
|
Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, Sheldrake HM, Mkrtchian S, Patterson LH, Ingelman-Sundberg M. Colon Cancer–Specific Cytochrome P450 2W1 Converts Duocarmycin Analogues into Potent Tumor Cytotoxins. Clin Cancer Res 2013; 19:2952-61. [DOI: 10.1158/1078-0432.ccr-13-0238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Abstract
A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues.
Collapse
Affiliation(s)
- Paul R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
31
|
Cosentino L, Redondo-Horcajo M, Zhao Y, Santos AR, Chowdury KF, Vinader V, Abdallah QMA, Abdel-Rahman H, Fournier-Dit-Chabert J, Shnyder SD, Loadman PM, Fang WS, Díaz JF, Barasoain I, Burns PA, Pors K. Synthesis and Biological Evaluation of Colchicine B-Ring Analogues Tethered with Halogenated Benzyl Moieties. J Med Chem 2012; 55:11062-6. [PMID: 23176628 DOI: 10.1021/jm301151t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Cosentino
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | | | - Ying Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking
Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.
R. China
| | - Ana Rita Santos
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Kaniz F. Chowdury
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Victoria Vinader
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Qasem M. A. Abdallah
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Hamdy Abdel-Rahman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | | | - Steven D. Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Wei-shuo Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking
Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.
R. China
| | | | - Isabel Barasoain
- Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Philip A. Burns
- Section of Pathology
and Tumor
Biology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF, U.K
| | - Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| |
Collapse
|
32
|
Fournier-Dit-Chabert J, Vinader V, Santos AR, Redondo-Horcajo M, Dreneau A, Basak R, Cosentino L, Marston G, Abdel-Rahman H, Loadman PM, Shnyder SD, Díaz JF, Barasoain I, Falconer RA, Pors K. Synthesis and biological evaluation of colchicine C-ring analogues tethered with aliphatic linkers suitable for prodrug derivatisation. Bioorg Med Chem Lett 2012; 22:7693-6. [DOI: 10.1016/j.bmcl.2012.09.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/14/2023]
|
33
|
Sutherland M, Gill JH, Loadman PM, Laye JP, Sheldrake HM, Illingworth NA, Alandas MN, Cooper PA, Searcey M, Pors K, Shnyder SD, Patterson LH. Antitumor Activity of a Duocarmycin Analogue Rationalized to Be Metabolically Activated by Cytochrome P450 1A1 in Human Transitional Cell Carcinoma of the Bladder. Mol Cancer Ther 2012; 12:27-37. [DOI: 10.1158/1535-7163.mct-12-0405] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|