1
|
Chen W, Fu G, Zhong Y, Liu Y, Yan H, Chen F. Antioxidant High-Fluorescent Silkworm Silk Development Based on Quercetin-Induced Luminescence. ACS Biomater Sci Eng 2025; 11:1402-1416. [PMID: 39936883 DOI: 10.1021/acsbiomaterials.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The fluorescent silk produced by feeding silkworms with traditional fluorescent dyes is limited in functionality and suffers from fluorescence quenching, rendering it unsuitable for long-term stable performance as a medical implant material in the human body. This work introduces an innovative strategy to develop a novel multifunctional fluorescent silk composite by incorporating quercetin (QR), a naturally occurring molecule with aggregation-induced emission (AIE) characteristics, into the diet of silkworms. Silk derived from QR-fed silkworms presents significant enhancements in fluorescence, antioxidant, and mechanical properties, with the QR-2.5% group presenting the best overall performance. The resulting silk exhibits superstrong blue fluorescence when exposed to 405 nm laser light, with a breaking strength of 4.26 ± 0.42 cN/D and a breaking energy of 5.96 ± 1.32 cN/cm, improvements of 15.76% and 18.25%, respectively, in comparison with regular silk. Fourier transform infrared spectroscopy (FTIR) analysis indicates that QR induces a structural transformation of fibroin protein from α-helix and random coil to β-sheet configuration, thereby increasing silk crystallinity. Additionally, compared with regular silk, the antioxidant properties of both sericin and silk fibroin increased by 88.66% and 17.25%, respectively. At the same time, this multifunctional silk has excellent biocompatibility and strong cell adhesion. The high-strength, uniformly luminescent silk developed in this study has outstanding antioxidant and mechanical properties. It effectively avoids the fluorescence quenching issue common in traditional fluorescent silk materials and introduces new functionalities. This advancement is significant for increasing the utility of functionally modified silk.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, Ganzhou Polytechnic, Ganzhou 341008, China
| | - Gangrong Fu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yangsheng Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanna Liu
- College of Animal Science, Ganzhou Polytechnic, Ganzhou 341008, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Pinheiro F, Pallarès I, Peccati F, Sánchez-Morales A, Varejão N, Bezerra F, Ortega-Alarcon D, Gonzalez D, Osorio M, Navarro S, Velázquez-Campoy A, Almeida MR, Reverter D, Busqué F, Alibés R, Sodupe M, Ventura S. Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. J Med Chem 2022; 65:14673-14691. [PMID: 36306808 PMCID: PMC9661476 DOI: 10.1021/acs.jmedchem.2c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Transthyretin amyloidosis
(ATTR) is a group of fatal diseases described
by the misfolding and amyloid deposition of transthyretin (TTR). Discovering
small molecules that bind and stabilize the TTR tetramer, preventing
its dissociation and subsequent aggregation, is a therapeutic strategy
for these pathologies. Departing from the crystal structure of TTR
in complex with tolcapone, a potent binder in clinical trials for
ATTR, we combined rational design and molecular dynamics (MD) simulations
to generate a series of novel halogenated kinetic stabilizers. Among
them, M-23 displays one of the highest affinities for
TTR described so far. The TTR/M-23 crystal structure
confirmed the formation of unprecedented protein–ligand contacts,
as predicted by MD simulations, leading to an enhanced tetramer stability
both in vitro and in whole serum. We demonstrate
that MD-assisted design of TTR ligands constitutes a new avenue for
discovering molecules that, like M-23, hold the potential
to become highly potent drugs to treat ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francesca Peccati
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Ortega-Alarcon
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Danilo Gonzalez
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marcelo Osorio
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- ICREA, Passeig Lluis Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
3
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev 2020; 49:3605-3637. [DOI: 10.1039/c9cs00849g] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents the recent progress of mussel-inspired hydrogels from fundamental interaction mechanisms and design principles to promising applications.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Baiheng Wu
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yongsen Zhou
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Zuankai Wang
- Department of Mechanical Engineering
- City University of Hong Kong
- China
| |
Collapse
|
5
|
The Chemistry behind Catechol-Based Adhesion. Angew Chem Int Ed Engl 2018; 58:696-714. [DOI: 10.1002/anie.201801063] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Indexed: 11/07/2022]
|
6
|
Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Die chemischen Grundlagen der Adhäsion von Catechol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| | - J. Mancebo-Aracil
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Nador
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Busqué
- Dpto. de Química (Unidad Química Orgánica); UniversidadAutónoma de Barcelona, Edificio C-Facultad de Ciencias; 08193 Cerdanyola del Vallès Barcelona Spanien
| | - D. Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| |
Collapse
|
7
|
Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7523-7540. [PMID: 29465221 PMCID: PMC6320233 DOI: 10.1021/acsami.7b19865] [Citation(s) in RCA: 902] [Impact Index Per Article: 128.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polydopamine is one of the simplest and most versatile approaches to functionalizing material surfaces, having been inspired by the adhesive nature of catechols and amines in mussel adhesive proteins. Since its first report in 2007, a decade of studies on polydopamine molecular structure, deposition conditions, and physicochemical properties have ensued. During this time, potential uses of polydopamine coatings have expanded in many unforeseen directions, seemingly only limited by the creativity of researchers seeking simple solutions to manipulating surface chemistry. In this review, we describe the current state of the art in polydopamine coating methods, describe efforts underway to uncover and tailor the complex structure and chemical properties of polydopamine, and identify emerging trends and needs in polydopamine research, including the use of dopamine analogs, nitrogen-free polyphenolic precursors, and improvement of coating mechanical properties.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Carbon Fusion Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, California 94720-1760, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
- Center for Nature-inspired Technology (CNiT), KAIST Institute of NanoCentury, 291 University Road, Daejeon 34141, South Korea
| |
Collapse
|
8
|
Castillo HD, Espinosa-Duran JM, Dobscha JR, Ashley DC, Debnath S, Hirsch BE, Schrecke SR, Baik MH, Ortoleva PJ, Raghavachari K, Flood AH, Tait SL. Amphiphile self-assembly dynamics at the solution-solid interface reveal asymmetry in head/tail desorption. Chem Commun (Camb) 2018; 54:10076-10079. [DOI: 10.1039/c8cc04465a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Asymmetric dynamics in fundamental adsorption and desorption steps drive self-assembly at solution/solid interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mu-Hyun Baik
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | | | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | |
Collapse
|
9
|
Shi G, Liao X, Olajide TM, Liu J, Jiang X, Weng X. Butylated caffeic acid: An efficient novel antioxidant. GRASAS Y ACEITES 2017. [DOI: 10.3989/gya.1278162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high temperatures such as deep frying and baking.
Collapse
|
10
|
Corno M, Delle Piane M, Choquet P, Ugliengo P. Models for biomedical interfaces: a computational study of quinone-functionalized amorphous silica surface features. Phys Chem Chem Phys 2017; 19:7793-7806. [DOI: 10.1039/c6cp07909a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural and IR features of amorphous silica surfaces, functionalized by ortho-benzoquinone groups, were computed to obtain a deeper knowledge of multifunctional coatings with antimicrobial properties.
Collapse
Affiliation(s)
- Marta Corno
- Dipartimento di Chimica and NIS – Nanostructured Interfaces and Surfaces – Centre
- Università degli Studi di Torino
- Torino
- Italy
| | - Massimo Delle Piane
- Faculty of Production Engineering and Bremen Center for Computational Materials Science
- University of Bremen
- Bremen
- Germany
| | - Patrick Choquet
- Luxembourg Institute of Science and Technology (LIST)
- Materials Research and Technology Department (MRT)
- L-4362 Esch/Alzette
- Luxembourg
| | - Piero Ugliengo
- Dipartimento di Chimica and NIS – Nanostructured Interfaces and Surfaces – Centre
- Università degli Studi di Torino
- Torino
- Italy
| |
Collapse
|
11
|
Yamamoto S, Uchiyama S, Miyashita T, Mitsuishi M. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets. NANOSCALE 2016; 8:5912-5919. [PMID: 26911546 DOI: 10.1039/c5nr08739b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N-dodecylacrylamide (DDA) and dopamine methacrylamide (DMA). The p(DDA/DMA) nanosheets were immersed into water dispersions of SiO2, Al2O3, and WO3 nanoparticles (NPs) respectively. The results show that the adsorption properties can be altered by varying the NP type: SiO2 NP adsorption was observed only below pH = 6, at which the o-quinone form in p(DDA/DMA) nanosheets transforms into the catechol form or vice versa. However, their transition point for Al2O3 NP adsorption was found at approximately pH 10, at which the surface potential of Al2O3 NPs changes the charge polarity, indicating that the electrostatic interaction is predominant. For WO3 NPs, adsorption was observed when citric acid, which modifies the surface of WO3 NPs by complex formation, was used as a pH-controlling agent, but no adsorption was found for hydrochloric acid used as a pH controlling agent. FT-IR measurements proved that miniscule amounts of water molecules were trapped in p(DDA/DMA) nanosheets and that they acquired hydrogen bonding network formations, which might assist nanoparticle adsorption underwater and make the catechol units adjustable. The results indicate that the nanoscale spatial arrangements of catechol units in films are crucially important for the application of multimodal adsorption of oxide nanoparticles on catechol-based polymer materials.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
12
|
García B, Saiz-Poseu J, Gras-Charles R, Hernando J, Alibés R, Novio F, Sedó J, Busqué F, Ruiz-Molina D. Mussel-inspired hydrophobic coatings for water-repellent textiles and oil removal. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17616-17625. [PMID: 25272371 DOI: 10.1021/am503733d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of catechol derivatives with a different number of linear alkyl chain substituents, and different length, have been shown to polymerize in the presence of aqueous ammonia and air, yielding hydrophobic coatings that present the ability to provide robust and efficient water repellency on weaved textiles, including hydrophilic cotton. The polymerization strategy presented exemplifies an alternative route to established melanin- and polydopamine-like functional coatings, affording designs in which all catechol (adhesive) moieties support specific functional side chains for maximization of the desired (hydrophobic) functionality. The coatings obtained proved effective in the transformation of polyester and cotton weaves, as well as filter paper, into reusable water-repellent, oil-absorbent materials capable of retaining roughly double their weight in model compounds (n-tetradecane and olive oil), as well as of separating water/oil mixtures by simple filtration.
Collapse
Affiliation(s)
- Beatríz García
- Fundació Privada Ascamm, Parc Tecnològic del Vallès , Avenida Universitat Autònoma 23, E-08290 Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu P, Miao X, Li Z, Zha B, Deng W. Two-dimensional self-assembly of single-, poly- and co-crystals at the liquid/solid interface. CrystEngComm 2014. [DOI: 10.1039/c4ce01183j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The observation of two polymorphs indicates that C2 cannot form single crystals because of an increase in molecular flexibility.
Collapse
Affiliation(s)
- Pei Liu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Xinrui Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Zhuomin Li
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Bao Zha
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Wenli Deng
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| |
Collapse
|
14
|
Zhang XM, Zeng QD, Wang C. Reversible Phase Transformation at the Solid-Liquid Interface: STM Reveals. Chem Asian J 2013; 8:2330-40. [DOI: 10.1002/asia.201300605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 11/09/2022]
|
15
|
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013. [PMID: 23180685 DOI: 10.1002/adma.201202343] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.
Collapse
Affiliation(s)
- Josep Sedó
- Centro de Investigación en Nanociencia y Nanotecnología, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Saiz-Poseu J, Martínez-Otero A, Roussel T, Hui JKH, Montero ML, Urcuyo R, MacLachlan MJ, Faraudo J, Ruiz-Molina D. Self-assembly of a catechol-based macrocycle at the liquid–solid interface: experiments and molecular dynamics simulations. Phys Chem Chem Phys 2012; 14:11937-43. [DOI: 10.1039/c2cp41407d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|