1
|
Kalitnik A, Lassota A, Polańska O, Gąsior‐Głogowska M, Szefczyk M, Barbach A, Chilimoniuk J, Jęśkowiak‐Kossakowska I, Wojciechowska AW, Wojciechowski JW, Szulc N, Kotulska M, Burdukiewicz M. Experimental methods for studying amyloid cross-interactions. Protein Sci 2025; 34:e70151. [PMID: 40384558 PMCID: PMC12086524 DOI: 10.1002/pro.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Interactions between amyloid proteins represent the cornerstone of various pathogenic pathways, including prion conversion and co-development of distinct kinds of systemic amyloidosis. Various experimental methodologies provide insights into the effects of such cross-interactions on amyloid self-assembly, which range from acceleration to complete inhibition. Here, we present a comprehensive review of experimental methods most commonly used to study amyloid cross-interactions both in vitro and in vivo, such as fluorescence-based techniques, high-resolution imaging, and spectroscopic methods. Although each method provides distinct information on amyloid interactions, we highlight that no method can fully capture the complexity of this process. In order to achieve an exhaustive portrayal, it is necessary to employ a hybrid strategy combining different experimental techniques. A core set of fluorescence methods (e.g., thioflavin T) and high-resolution imaging techniques (e.g., atomic force microscopy or Cryo-EM) are required to verify the lack of self-assembly or alterations in fibril morphology. At the same time, immuno-electron microscopy, mass spectrometry, or solid-state NMR can confirm the presence of heterotypic fibrils.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Anna Lassota
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Marlena Gąsior‐Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of ChemistryWroclaw University of Science and TechnologyWrocławPoland
| | - Agnieszka Barbach
- Department of Experimental OncologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | | | | | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Jakub W. Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
- Sano Centre for Computational MedicineKrakówPoland
| | - Natalia Szulc
- Department of Physics and BiophysicsWrocław University of Environmental and Life SciencesWrocławPoland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
| | - Michał Burdukiewicz
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
- Institute of BiotechnologyVilnius UniversityVilniausLithuania
| |
Collapse
|
2
|
Ma Y, Wang G, Chen H, Tsai M. Exploring Abeta42 monomer diffusion dynamics on fibril surfaces through molecular simulations. Protein Sci 2025; 34:e70131. [PMID: 40371804 PMCID: PMC12079388 DOI: 10.1002/pro.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
This study provides critical insights into the role of surface-mediated processes in Alzheimer's disease, with implications for the aggregation of Abeta42 peptides. Employing coarse-grained molecular dynamics simulations, we focus on elucidating the molecular intricacies of these processes beyond primary nucleation. Central to our investigation is the analysis of a freely diffusing Abeta42 monomer on preformed fibril structures. We conduct detailed calculations of the monomer's diffusion coefficient on fibril surfaces (as a one-dimensional case), along with various monomer orientations. Our findings reveal a strong and consistent correlation between the monomer's diffusion coefficient and its orientation on the surface. Further analysis differentiates the effects of parallel and perpendicular alignments with respect to the fibril axis. Additionally, we explore how different fibril surfaces influence monomer dynamics by comparing the C-terminal and N-terminal surfaces. We find that the monomer exhibits faster diffusion coefficients on the C-terminal surface. Differences in surface roughness (SR), quantified using root-mean-square distances, significantly affect monomer dynamics, thereby influencing its diffusion on the surface. Importantly, this study underscores that fibril twisting acts as a regulatory niche, selectively influencing these orientations and their diffusion properties necessary for facilitating fibril growth within biologically relevant time scales. This discovery opens new avenues for targeted therapeutic strategies aimed at manipulating fibril dynamics to mitigate the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuan‐Wei Ma
- Institute of Bioinformatics and Structural BiologyNational Tsing‐Hua UniversityHsinchuTaiwan
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Guan‐Fang Wang
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Hong‐Yi Chen
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Min‐Yeh Tsai
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
- Center for Nano Bio‐DetectionNational Chung Cheng UniversityChiayiTaiwan
- Division of Physics, National Center for Theoretical SciencesNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Gao W, Liu W, Dong X, Sun Y. Albumin-manganese dioxide nanocomposites: a potent inhibitor and ROS scavenger against Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Mater Chem B 2023; 11:10482-10496. [PMID: 37909060 DOI: 10.1039/d3tb01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease pathologically caused by amyloid-β protein (Aβ) aggregation, oxidative stress, and neuroinflammation. The pathogenesis of AD is still uncertain and intricate, and helpful therapy has rarely been recorded. So, discovering amyloid modulators is deemed a promising avenue for preventing and treating AD. In this study, human serum albumin (HSA), a protein-based Aβ inhibitor, was utilized as a template to guide the synthesis of HSA-manganese dioxide nanocomposites (HMn NCs) through biomineralization. The in situ formed MnO2 in HSA endows this nano-platform with outstanding reactive oxygen species (ROS) scavenging capability, including superoxide dismutase-mimetic and catalase-mimetic activities, which could scavenge the plethora of superoxide anion radicals and hydrogen peroxide. More importantly, the HMn NCs show enhanced potency in suppressing Aβ fibrillization compared with HSA, which further alleviates Aβ-mediated SH-SY5Y neurotoxicity by scavenging excessive ROS. Moreover, it is demonstrated that HMn NCs reduce Aβ-related inflammation in BV-2 cells by lowering tumor necrosis factor-α and interleukin-6. Furthermore, transgenic C. elegans studies showed that HMn NCs could remove Aβ plaques, reduce ROS in CL2006 worms, and promote the lifespan extension of worms. Thus, HMn NCs provide a promising tactic to facilitate the application of multifunctional nanocomposites in AD treatment.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Epigallocatechin gallate-derived carbonized polymer dots: A multifunctional scavenger targeting Alzheimer's β-amyloid plaques. Acta Biomater 2023; 157:524-537. [PMID: 36503076 DOI: 10.1016/j.actbio.2022.11.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The design of high-efficiency scavengers targeting β-amyloid protein (Aβ) plaques in the progress of Alzheimer's disease (AD) has been recognized as an effective way to prevent and treat AD. Herein, epigallocatechin gallate (EGCG)-derived carbonized polymer dots (E-CPDs) were synthesized for the first time via a hydrothermal method using EGCG, an Aβ inhibitor, as one of the raw materials. The inhibitory efficiency and fluorescent property of E-CPDs were elegantly modulated by adjusting the molar ratio of EGCG to nitrogen-containing dopant, o-phenylenediamine (oPD), and 75E-CPDs fabricated with 75 mM EGCG and 50 mM oPD showed the highest inhibitory capability. The multifunctionality of 75E-CPDs on inhibition of Aβ fibrillization, Aβ fibrils disaggregation, amyloid fluorescent detection, and intracellular reactive oxygen species scavenging was demonstrated. 75E-CPDs inhibited the formation of β-sheet-rich Aβ aggregates, alleviated Aβ-induced cytotoxicity of cultured cells from 47% to 15%, and prolonged the lifespan of AD nematodes by scavenging in vivo amyloid plaques, demonstrating much higher performance than either EGCG or EGCG-free carbon dots. Notably, 75E-CPDs could rapidly disaggregate Aβ fibrils on "second" scale, faster than any other disaggregating agents. The aromatic structure as well as hydroxyl and carboxyl groups existing on 75E-CPDs surface, which would interact with Aβ species via hydrogen bonding, electrostatic interactions, and hydrophobic interactions, played critical roles in their inhibition and disaggregation capabilities. This work reveals that potent CDs can be fabricated by using an Aβ inhibitor as the precursor, providing a new perspective for the design of multifunctional scavengers targeting amyloid plaques. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) is one of the top ten causes of death worldwide and seriously threatens human health. Recently, carbon nanomaterials have attracted much attention because of their good biocompatibility and capability in modulating Aβ aggregation via multiple interactions. This work has for the first time fabricated epigallocatechin gallate-derived carbonized polymer dots (E-CPDs) and revealed the multifunctional potency of E-CPDs on alleviating the multifaced symptoms associated with β-amyloid protein (Aβ) fibrillization in the progression of AD. Notably, E-CPDs exhibited enhanced fluorescence emission upon binding to Aβ fibrils, possessing potential as Aβ fluorescent probes. It is believed that this work would open a new horizon in the design of multifunctional carbon nanomaterials as a potent amyloid scavenger for AD theranostics.
Collapse
|
5
|
Zhu M, Zeng L, Li Z, Wang C, Wu L, Jiang X. Revealing the Nanoarchitectonics of Amyloid β-Aggregation on Two-Dimensional Biomimetic Membranes by Surface-Enhanced Infrared Absorption Spectroscopy. ChemistryOpen 2023; 12:e202200253. [PMID: 36744594 PMCID: PMC9906390 DOI: 10.1002/open.202200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface-enhanced infrared absorption (SEIRA) spectroscopy and atomic force microscopy (AFM), the adsorption, structure, and morphology of Aβ42 aggregating on different two-dimensional interfaces were investigated. Results show that interfaces facilitate the aggregation of Aβ42 and are conducive to the formation of homogeneous aggregates, while the aggregates vary on different interfaces. On hydrophobic interfaces, strong hydrophobic interactions with the C-terminus of Aβ42 result in the formation of small oligomers with a small proportion of the β-sheet structure. On hydrophilic interfaces, hydrogen-bonding interactions and electrostatic interactions promote the formation of large aggregate particles with β-sheet structure. The hydration repulsion plays an important role in the interaction of Aβ42 with interfaces. These findings help to understand the nature of Aβ42 adsorption and aggregation on the biomembrane interface and the origin of heterogeneity and polymorphism of Aβ42 aggregates.
Collapse
Affiliation(s)
- Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Zihao Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Chen Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
6
|
An in vitro study on probable inhibition of cerebrovascular disease by salidroside as a potent small molecule against Aβ aggregation and cytotoxicity in cerebrovascular endothelial cells. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Xu S, Sun Y, Dong X. Design of Gallic Acid-Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer's Amyloid-β Fibrillogenesis. Bioconjug Chem 2022; 33:677-690. [PMID: 35380783 DOI: 10.1021/acs.bioconjchem.2c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer's amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, Ka1 = 3.1 × 106 M-1) and the other weaker (site 2, Ka2 = 0.8 × 106 M-1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer's amyloid.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Dey C, Roy M, Dey SG. Insights from Self-Assembled Aggregates of Amyloid β Peptides on Gold Surfaces. ACS OMEGA 2022; 7:9973-9983. [PMID: 35382274 PMCID: PMC8973063 DOI: 10.1021/acsomega.1c06056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 06/12/2023]
Abstract
Amyloid β (Aβ) peptides mutated at different positions using a cysteine moiety assemble on Au electrodes using the thiol functionality of cysteine. Self-assembled monolayers (SAMs) of Aβ on Au surfaces can act as abiological platforms that allow the mimicking of fibrils and oligomeric Aβ via the formation of controlled large and small peptide aggregates. These Aβ constructs bind with heme and Cu and exhibit different reactivities. These abiological platforms can also be used to investigate potential drugs that can interact with heme and Cu-Aβ. SAM formation of Aβ mutants allows the study of different morphology and structure as well as behavior changes on binding with different metals and cytochrome c (Cyt c). This review provides a detailed insight into the structure and reactivities of various Aβ aggregated on Au electrodes mimicking the cell membrane.
Collapse
|
10
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
11
|
Zhao W, Jiang L, Wang W, Sang J, Sun Q, Dong Q, Li L, Lu F, Liu F. Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism. J Mater Chem B 2021; 9:6902-6914. [PMID: 34612337 DOI: 10.1039/d1tb00920f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Misfolding and the subsequent self-assembly of amyloid-β protein (Aβ) is very important in the occurrence of Alzheimer's disease (AD). Thus, inhibition of Aβ aggregation is currently an effective method to alleviate and treat AD. Herein, a carboxylated single-walled carbon nanotube (SWCNT-COOH) was rationally designed based on the hydrophobic binding-electrostatic repulsion (HyBER) mechanism. The inhibitory effect of SWCNT-COOH on Aβ fibrillogenesis was first studied. Based on the results of thioflavin T fluorescence and atomic force microscopy imaging assays, it was shown that SWCNT-COOH can not only effectively inhibit Aβ aggregation, but also depolymerize the mature fibrils of Aβ. In addition, its inhibitory action will be affected by the content of carboxyl groups. Moreover, the influence of SWCNT-COOH on cytotoxicity induced by Aβ was investigated by the MTT method. It was found that SWCNT-COOH can produce an anti-Aβ neuroprotective effect in vitro. Molecular dynamics simulations showed that SWCNT-COOH significantly destroyed the overall and internal structural stability of an Aβ40 trimer. Moreover, SWCNT-COOH interacted strongly with the N-terminal region, turn region and C-terminal region of the Aβ40 trimer via hydrogen bonds, salt bridges and π-π interactions, which triggered a large structural disturbance of the Aβ40 trimer, reduced the β-sheet content of the Aβ40 trimer and led to more disorder in these regions. All the above data not only reveal the suppressive effect of SWCNT-COOH on Aβ aggregation, but also reveal its inhibitory mechanism, which provides a useful clue to exploit anti-Aβ drugs in the future.
Collapse
Affiliation(s)
- Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The curvature of gold nanoparticles influences the exposure of amyloid-β and modulates its aggregation process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112269. [PMID: 34474828 DOI: 10.1016/j.msec.2021.112269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (GNP) are tunable nanomaterials that can be used to develop rational therapeutic inhibitors against the formation of pathological aggregates of proteins. In the case of the pathological aggregation of the amyloid-β protein (Aβ), the shape of the GNP can slow down or accelerate its aggregation kinetics. However, there is a lack of elementary knowledge about how the curvature of GNP alters the interaction with the Aβ peptide and how this interaction modifies key molecular steps of fibril formation. In this study, we analysed the effect of flat gold nanoprisms (GNPr) and curved gold nanospheres (GNS) on in vitro Aβ42 fibril formation kinetics by using the thioflavin-based kinetic assay and global fitting analysis, with several models of aggregation. Whereas GNPr accelerate the aggregation process and maintain the molecular mechanism of aggregation, GNS slow down this process and modify the molecular mechanism to one of fragmentation/secondary nucleation, with respect to controls. These results can be explained by a differential interaction between the Aβ peptide and GNP observed by Raman spectroscopy. While flat GNPr expose key hydrophobic residues involved in the Aβ peptide aggregation, curved GNS hide these residues from the solvent. Thus, this study provides mechanistic insights to improve the rational design of GNP nanomaterials for biomedical applications in the field of amyloid-related aggregation.
Collapse
|
13
|
Kong L, Zhou X, Shi G, Yu Y. Molybdenum disulfide nanosheets-based fluorescent "off-to-on" probe for targeted monitoring and inhibition of β-amyloid oligomers. Analyst 2021; 145:6369-6377. [PMID: 32729592 DOI: 10.1039/d0an00019a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel and simple "off-to-on" fluorescent sensing platform for β-amyloid oligomers (Aβo) was developed based on dye (FAM)-labeled single-strand DNA (FAM-ssDNA)-conjugated molybdenum disulfide nanosheets (MoS2 NSs). Due to strong adsorption of ss-DNA to the surface of MoS2 NSs, the fluorescence of FAM was quenched remarkably, leading to a fluorescent "off" state. However, in the presence of Aβo, a hybrid structure between Aβo and FAM-ssDNA resulted in the dissociation of FAM-ssDNA from MoS2 NSs and an obvious fluorescence recovery transformed the fluorescence to an "on" state. The developed fluorescence sensing assay showed a good linear relationship toward Aβo ranging from 0.01 to 20 μM (R2 = 0.994) with a satisfactory detection limit of 3.1 nM. Practical samples of hippocampus and cortex tissues from APP/PS1 double transgenic AD mice were applied to demonstrate feasibility of the assay. Moreover, we found that similar to MoS2 nanoparticles, MoS2 NSs possessed therapeutic effects on Alzheimer's disease (AD) by inhibiting Aβ aggregations and degrading the previously formed Aβ fibrils. Collectively, the high sensitivity, specificity, and good biocompatibility along with an efficient anti-aggregation ability, the presented fluorescent strategy with MoS2 NSs demonstrated their promising potential for future AD-related research.
Collapse
Affiliation(s)
- Lingna Kong
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | | | | | | |
Collapse
|
14
|
Hanke M, Yang Y, Ji Y, Grundmeier G, Keller A. Nanoscale Surface Topography Modulates hIAPP Aggregation Pathways at Solid-Liquid Interfaces. Int J Mol Sci 2021; 22:ijms22105142. [PMID: 34067963 PMCID: PMC8152259 DOI: 10.3390/ijms22105142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
The effects that solid–liquid interfaces exert on the aggregation of proteins and peptides are of high relevance for various fields of basic and applied research, ranging from molecular biology and biomedicine to nanotechnology. While the influence of surface chemistry has received a lot of attention in this context, the role of surface topography has mostly been neglected so far. In this work, therefore, we investigate the aggregation of the type 2 diabetes-associated peptide hormone hIAPP in contact with flat and nanopatterned silicon oxide surfaces. The nanopatterned surfaces are produced by ion beam irradiation, resulting in well-defined anisotropic ripple patterns with heights and periodicities of about 1.5 and 30 nm, respectively. Using time-lapse atomic force microscopy, the morphology of the hIAPP aggregates is characterized quantitatively. Aggregation results in both amorphous aggregates and amyloid fibrils, with the presence of the nanopatterns leading to retarded fibrillization and stronger amorphous aggregation. This is attributed to structural differences in the amorphous aggregates formed at the nanopatterned surface, which result in a lower propensity for nucleating amyloid fibrillization. Our results demonstrate that nanoscale surface topography may modulate peptide and protein aggregation pathways in complex and intricate ways.
Collapse
|
15
|
Xu S, Wang W, Dong X, Sun Y. Molecular Insight into Cu 2+-Induced Conformational Transitions of Amyloid β-Protein from Fast Kinetic Analysis and Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:300-310. [PMID: 33401892 DOI: 10.1021/acschemneuro.0c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cu2+-mediated amyloid β-protein (Aβ) aggregation is implicated in the pathogenesis of Alzheimer's disease, so it is of significance to understand Cu2+-mediated conformational transitions of Aβ. Herein, four Aβ mutants were created by using the environment-sensitive cyanophenylalanine to respectively substitute F4, Y10, F19, and F20 residues of Aβ40. By using stopped-flow fluorescence spectroscopy and molecular dynamics (MD) simulations, the early stage conformational transitions of the mutants mediated by Cu2+ binding were investigated. The fast kinetics unveils that Cu2+ has more significant influence on the conformational changes of N-terminal (F4 and Y10) than on the central hydrophobic core (CHC, F19, and F20) under different pH conditions (pH 6.6-8.0), especially Y10. Interestingly, lag periods of the conformational transitions are observed for the F19 and F20 mutants at pH 8.0, indicating the slow response of the two mutation sites on the conformational transitions. More importantly, significantly longer lag periods for F20 than for F19 indicate the conduction of the transition from F19 to F20. The conduction time (difference in lag period) decreases from 4.5 s at Cu2+ = 0 to undetectable (<1 ms) at Cu2+ = 10 μM. The significant difference in the response time of F19 and F20 and the fast local conformational changes of Y10 imply that the conformational transitions of Aβ start around Y10. MD simulations support the observation of hydrophobicity increase at N-terminal during the conformational transitions of Aβ-Cu2+. It also reveals that Y10 is immediately approached by Cu2+, supporting the speculation that the starting point of conformational transitions of Aβ is near Y10. The work has provided molecular insight into the early stage conformational transitions of Aβ40 mediated by Cu2+.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
16
|
Zheng Y, Wang P, Li S, Geng X, Zou L, Jin M, Zou Q, Wang Q, Yang X, Wang K. Development of DNA Aptamer as a β-Amyloid Aggregation Inhibitor. ACS APPLIED BIO MATERIALS 2020; 3:8611-8618. [DOI: 10.1021/acsabm.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Pei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Meimei Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Gao W, Wang W, Dong X, Sun Y. Nitrogen-Doped Carbonized Polymer Dots: A Potent Scavenger and Detector Targeting Alzheimer's β-Amyloid Plaques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002804. [PMID: 33006250 DOI: 10.1002/smll.202002804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Indexed: 05/16/2023]
Abstract
The fibrillization and deposition of β-amyloid protein (Aβ) are recognized to be the pathological hallmarks of Alzheimer's disease (AD), which signify the need for the effective detection and inhibition of Aβ accumulation. Development of multifunctional agents that can inhibit Aβ aggregation, rapidly disaggregate fibrils, and image aggregates is one of the effective strategies to treat and diagnose AD. Herein, the multifunctionality of nitrogen-doped carbonized polymer dots (CPDs) targeting Aβ aggregation is reported. CPDs inhibit the fibrillization of Aβ monomers and rapidly disintegrate Aβ fibrils by electrostatic interactions, hydrogen-bonding and hydrophobic interactions with Aβ in a time scale of seconds to minutes. Moreover, the interactions make CPDs label Aβ fibrils and emit enhanced red fluorescence by the binding, so CPDs can be used for in vivo imaging of the amyloids in transgenic Caenorhabditis elegans CL2006 as an AD model. Importantly, CPDs are demonstrated to scavenge the in vivo amyloid plaques and to promote the lifespan extension of CL2006 strain by alleviating the Aβ-triggered toxicity. Taken together, the multifunctional CPDs show an exciting prospect for further investigations in Aβ-targeted AD treatment and diagnosis, and this study provides new insight into the development of carbon materials in AD theranostics.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
18
|
Hao S, Li X, Han A, Yang Y, Luo X, Fang G, Wang H, Liu J, Wang S. Hydroxycinnamic Acid from Corncob and Its Structural Analogues Inhibit Aβ40 Fibrillation and Attenuate Aβ40-Induced Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8788-8796. [PMID: 32700906 DOI: 10.1021/acs.jafc.0c01841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) is deemed a vital pathological feature of Alzheimer's disease (AD). Hence, inhibiting Aβ aggregation is noticed as a major tactic for the prevention and therapy of AD. Hydroxycinnamic acid, as a natural phenolic compound, is widely present in plant foods and has several biological activities including anti-inflammation, antioxidation, and neuroprotective effects. Here, it was found that hydroxycinnamic acid and its structural analogues (3-hydroxycinnamic acid, 2-hydroxycinnamic acid, cinnamic acid, 3,4-dihydroxycinnamic acid, 2,4-dihydroxycinnamic acid, and 3,4,5-trihydroxycinnamic acid) could inhibit Aβ40 fibrillogenesis and reduce Aβ40-induced cytotoxicity in a dose-dependent manner. Among these small molecules investigated, 3,4,5-trihydroxycinnamic acid is considered to be the most effective inhibitor, which reduces the ThT fluorescence intensity to 30.79% and increases cell viability from 49.47 to 84.78% at 200 μM. Also, the results with Caenorhabditis elegans verified that these small molecules can ameliorate AD-like symptoms of worm paralysis. Moreover, molecular docking studies showed that these small molecules interact with the Aβ40 mainly via hydrogen bonding. These results suggest that hydroxycinnamic acid and its structural analogues could inhibit Aβ40 fibrillogenesis and the inhibition activity is enhanced with the increase of phenolic hydroxyl groups of inhibitors. These small molecules have huge potential to be developed into novel aggregation inhibitors in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xia Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
19
|
Cholko T, Barnum J, Chang CEA. Amyloid-β (Aβ42) Peptide Aggregation Rate and Mechanism on Surfaces with Widely Varied Properties: Insights from Brownian Dynamics Simulations. J Phys Chem B 2020; 124:5549-5558. [PMID: 32525673 DOI: 10.1021/acs.jpcb.0c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) plaques, which form by aggregation of harmless Aβ peptide monomers into larger fibrils, are characteristic of neurodegenerative disorders such as Alzheimer's disease. Efforts to treat Alzheimer's disease focus on stopping or reversing the aggregation process that leads to fibril formation. However, effective treatments are elusive due to certain unknown aspects of the process. Many hypotheses point to disruption of cell membranes by adsorbed Aβ monomers or oligomers, but how Aβ behaves and aggregates on surfaces of widely varying properties, such as those present in a cell, is unclear. Elucidating the effects of various surfaces on the dynamics of Aβ and the kinetics of the aggregation process from bulk solution to a surface-adsorbed multimer can help identify what drives aggregation, leading to new methods of intervention by inhibitory drugs or other means. In this work, we used all-atom Brownian dynamics simulations to study the association of two distinct Aβ42 monomer conformations with a surface-adsorbed or free-floating Aβ42 dimer. We calculated the association time, surface interaction energy, surface diffusion coefficient, surface residence time, and the mechanism of association on four different surfaces and two different bulk solution scenarios. In the presence of a surface, the majority of monomers underwent a two-dimensional surface-mediated association that depended primarily on an Aβ42 electrostatic interaction with the self-assembled monolayer (SAM) surfaces. Moreover, aggregation could be inhibited greatly by surfaces with high affinity for Aβ42 and heterogeneous charge distribution. Our results can be used to identify new opportunities for disrupting or reversing the Aβ42 aggregation process.
Collapse
Affiliation(s)
- Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Joseph Barnum
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
20
|
Yang J, Liu W, Sun Y, Dong X. LVFFARK-PEG-Stabilized Black Phosphorus Nanosheets Potently Inhibit Amyloid-β Fibrillogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1804-1812. [PMID: 32011894 DOI: 10.1021/acs.langmuir.9b03612] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Deposition of amyloid-β (Aβ) aggregates in the brain is a main pathological hallmark of Alzheimer's disease (AD), so inhibition of Aβ aggregation has been considered as a promising strategy for AD prevention and treatment. Black phosphorus (BP) is a 2D nanomaterial with high biocompatibility and unique biodegradability, but its potential application in biomedicine suffers from the rapid degradability and unfunctionability. To overcome the drawbacks and broaden its application, we have herein designed an Aβ inhibitor (LK7)-coupled and polyethylene glycol (PEG)-stabilized BP-based nanosystem. The PEGylated-LK7-BP nanosheets (PEG-LK7@BP) not only exhibited a good stability but also demonstrated a significantly enhanced inhibitory potency on Aβ42 fibrillogenesis in comparison with its counterparts. This elaborately designed PEG-LK7@BP stopped the conformational transition and suppressed the fibrillization of Aβ42, so it could completely rescue cultured cells from the toxicity of Aβ42 (by increasing the cell viability from 72 to 100%) at 100 μg/mL. It is considered that PEG-LK7@BP could bind Aβ species by enhanced electrostatic and hydrophobic interactions and thus efficiently alleviated Aβ-Aβ interactions. Meanwhile, the coupled LK7 on the BP surface formed a high local concentration that enhanced the affinity between the nanosystem and Aβ species. Finally, PEG could improve the stability and dispersibility of the nanoplatform to make it show an increased inhibitory effect on the amyloid formation. Hence, this work proved that PEG-LK7@BP is a promising nanosystem for the development of amyloid inhibitors fighting against AD.
Collapse
Affiliation(s)
- Junnan Yang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
21
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Wang Z, Dong X, Sun Y. Mixed Carboxyl and Hydrophobic Dendrimer Surface Inhibits Amyloid-β Fibrillation: New Insight from the Generation Number Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14681-14687. [PMID: 31635460 DOI: 10.1021/acs.langmuir.9b02527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibrillation of amyloid-β peptide (Aβ) is closely associated with the progression of Alzheimer's disease (AD), and so inhibition of Aβ fibrillation has been considered as one of the promising strategies for AD prevention and treatment. Our group has proposed the hydrophobic binding-electrostatic repulsion (HyBER) theory on inhibiting Aβ fibrillation by a surface with mixed negative charges and hydrophobic groups, which provides a new strategy for the design of potent amyloid inhibitors. Carboxyl-terminated polyamidoamine dendrimer (PAMAM) is a kind of biocompatible nanomaterial with only carboxyl groups on its surface, and its architecture and property vary with the generation number, low-generation dendrimers possessing sparse distributions of terminal groups while high-generation dendrimers having compact surface groups, which offer abundant base materials for further study of the HyBER theory. We have designed a potent amyloid inhibitor with generation 5 PAMAM. To provide new insights into the HyBER mechanism, we have herein proposed to synthesize phenyl-modified PAMAM dendrimers of generations 3 to 6 (G3-P to G6-P) and study the effect of the generation number on Aβ fibrillation. Results show that phenyl derivatives of low-generation dendrimers (G3-P and G4-P) do not show any interference with Aβ aggregation, whereas the phenyl derivatives of high-generation dendrimers (G5-P and G6-P) significantly inhibit Aβ42 aggregation and alter the ultrastructure of Aβ42 aggregates. The results indicate that the density and distribution of surface functional groups on a dendrimer is of great importance for the HyBER effect to happen. The new understanding on the HyBER mechanism would benefit in the development of potent amyloid inhibitors based on the theory.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
23
|
He Z, Li J, Chen SH, Zhou R. Surface Inhomogeneity of Graphene Oxide Influences Dissociation of Aβ 16-21 Peptide Assembly. J Phys Chem B 2019; 123:9098-9103. [PMID: 31566974 DOI: 10.1021/acs.jpcb.9b07359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormal peptide assembly and aggregation is associated with an array of neurodegenerative diseases including Alzheimer's disease (AD). A detailed understanding of how nanostructured materials such as oxidized graphene perturb the peptide assembly and subsequently induce fibril dissociation may open new directions for the development of potential AD treatments. Here, we investigate the impact of surface inhomogeneity of graphene oxide (GO) on the assembly of amyloid-beta Aβ16-21 peptides on GO surfaces with different degrees of oxidation using molecular dynamics simulations. Interestingly, nonuniform GO nanosheets (in terms of oxidation sites) have a much stronger perturbation effect on the structure of Aβ16-21 assembly. The Aβ peptides exhibit a remarkable tendency in binding to the scattered interfaces between unoxidized and oxidized regions, which induces the dissociation of Aβ amyloid fibril. These findings should deepen our understanding of surface-induced peptide dissociation and stimulate discovery of alternative AD treatments.
Collapse
Affiliation(s)
| | | | - Serena H Chen
- Computational Biological Center , IBM Thomas J. Watson Research Center , Yorktown Heights , New York 10598 , United States
| | - Ruhong Zhou
- Computational Biological Center , IBM Thomas J. Watson Research Center , Yorktown Heights , New York 10598 , United States
| |
Collapse
|
24
|
Zhao G, Qi F, Dong X, Zheng J, Sun Y. LVFFARK conjugation to poly (carboxybetaine methacrylate) remarkably enhances its inhibitory potency on amyloid β-protein fibrillogenesis. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Wang W, Dong X, Sun Y. Modification of Serum Albumin by High Conversion of Carboxyl to Amino Groups Creates a Potent Inhibitor of Amyloid β-Protein Fibrillogenesis. Bioconjug Chem 2019; 30:1477-1488. [PMID: 30964649 DOI: 10.1021/acs.bioconjchem.9b00209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrillogenesis of amyloid β-protein (Aβ) has been thought to be implicated in the progression of Alzheimer's disease (AD). Therefore, development of high-efficiency inhibitors is one of the strategies for the prevention and treatment of AD. Serum albumin has been found to capture Aβ monomers through its hydrophobic groove and suppress amyloid formation, but the inhibition efficiency is limited. Inspired by the strong inhibition potency of a basic protein, human lysozyme, we have herein proposed to develop a basified serum albumin by converting carboxyl groups into amino groups with ethylenediamine conjugated on the protein surface. The idea was verified with both bovine and human serum albumins (BSA/HSA). Four basified BSA (BSA-B) preparations with amino modification degrees (MDs) from 8.0 to 41.5 were first synthesized. Extensive biophysical and biological analyses revealed that the inhibition potency significantly increased with increasing amino MD. BSA-B of the highest MD (41.5), BSA-B4, which had an isoelectric point of 9.7, presented strong inhibition on Aβ42 fibrillation at a concentration as low as 0.5 μM, at which it functioned similarly with 25 μM native BSA to impede 25 μM Aβ fibrillation. Cell viability assays also confirmed that the detoxification of 5 μM BSA-B4 was superior over 25 μM native BSA by increasing cell viability from 60.6% to 96.0%. Fluorescence quenching study unveiled the decrease of the binding affinity between Aβ42 and the hydrophobic pocket region of BSA-B4, while quartz crystal microbalance experiments demonstrated that the binding constant of BSA-B4 to Aβ42 increased nearly 5 times. Therefore, the increase of electrostatic interactions between BSA-B4 and Aβ42 was the main reason for its high potency. Hence, aminated BSA achieved a conversion of binding way to Aβ from a mainly single-site hydrophobic binding to multiregional electrostatic interactions. Similar results were obtained with basified HSA preparations on inhibiting the amyloid formation and cytotoxicity. This work has thus provided new insights into the development of more efficient protein-based inhibitors against Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
26
|
Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, Yasuhara K, Fierke CA, Ramamoorthy A. A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chem Sci 2019; 10:3976-3986. [PMID: 31015938 PMCID: PMC6457205 DOI: 10.1039/c8sc05771k] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
In humans, β-amyloid and islet amyloid polypeptide (IAPP, also known as amylin) aggregations are linked to Alzheimer's disease and type-2 diabetes, respectively. There is significant interest in better understanding the aggregation process by using chemical tools. Here, we show the ability of a cationic polymethacrylate-copolymer (PMAQA) to quickly induce a β-hairpin structure and accelerate the formation of amorphous aggregates of β-amyloid-1-40, whereas it constrains the conformational plasticity of amylin for several days and slows down its aggregation at substoichiometric polymer concentrations. NMR experiments and microsecond scale atomistic molecular dynamics simulations reveal that PMAQA interacts with β-amyloid-1-40 residues spanning regions K16-V24 and A30-V40 followed by β-sheet induction. For amylin, it binds strongly close to the amyloid core domain (NFGAIL) and restrains its structural rearrangement. High-speed atomic force microscopy and transmission electron microscopy experiments show that PMAQA blocks the nucleation and fibrillation of amylin, whereas it induces the formation of amorphous aggregates of β-amyloid-1-40. Thus, the reported study provides a valuable approach to develop polymer-based amyloid inhibitors to suppress the formation of toxic intermediates of β-amyloid-1-40 and amylin.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takuya Genjo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takahiro W Nakayama
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Andrea K Stoddard
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Toshio Ando
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 6300192 , Japan
| | - Carol A Fierke
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
- Department of Chemistry , Texas A&M University , College Station , TX 77843 , USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| |
Collapse
|
27
|
Jia L, Wang W, Sang J, Wei W, Zhao W, Lu F, Liu F. Amyloidogenicity and Cytotoxicity of a Recombinant C-Terminal His 6-Tagged Aβ 1-42. ACS Chem Neurosci 2019; 10:1251-1262. [PMID: 30537813 DOI: 10.1021/acschemneuro.8b00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aggregation of amyloid β peptide (Aβ) is closely associated with the occurrence and development of Alzheimer's disease (AD). Reproducible and detailed studies on the aggregation kinetics and structure of various aggregates have been conducted using recombinant Aβ peptides. While the His6-tag is commonly used in the purification of recombinant proteins due to its great simplicity and affinity, there is little information on the aggregation of His6-tagged Aβ and its corresponding cytotoxicity. Moreover, it is also unclear whether there is an effect of the His6-tag on the amyloidogenicity and cytotoxicity of recombinant Aβ1-42. Herein, a method to express and purify a mutant C-terminally His6-tagged Aβ1-42 (named as Aβ1-42-His6) from Escherichia coli was described. Aβ1-42-His6 aggregated into β-sheet-rich fibrils as shown by thioflavin T fluorescence, atomic force microscopy and circular dichroism spectroscopy. Moreover, the fibrillar recombinant Aβ1-42-His6 showed strong toxicity toward PC12 cells in vitro. Molecular dynamics simulations revealed that the His6-tag contributed little to the secondary structure and intermolecular interactions, including hydrophobic interactions, salt bridges, and hydrogen bonding of the fibrillar pentamer of Aβ1-42. This highlights the biological importance of modification on the molecular structure of Aβ. Thus, the easily purified high-quality Aβ1-42-His6 offers great advantages for screening aggregation inhibitors or in vitro confirmation of rationally designed drugs for the treatment of AD.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenping Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
28
|
Hajiraissi R, Hanke M, Gonzalez Orive A, Duderija B, Hofmann U, Zhang Y, Grundmeier G, Keller A. Effect of Terminal Modifications on the Adsorption and Assembly of hIAPP(20-29). ACS OMEGA 2019; 4:2649-2660. [PMID: 31459500 PMCID: PMC6649277 DOI: 10.1021/acsomega.8b03028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
The assembly of peptides and proteins into nanoscale amyloid fibrils via formation of intermolecular β-sheets not only plays an important role in the development of degenerative diseases but also represents a promising approach for the synthesis of functional nanomaterials. In many biological and technological settings, peptide assembly occurs in the presence of organic and inorganic interfaces with different physicochemical properties. In an attempt to dissect the relative contributions of the different molecular interactions governing amyloid assembly at interfaces, we here present a systematic study of the effects of terminal modifications on the adsorption and assembly of the human islet amyloid polypeptide fragment hIAPP(20-29) at organic self-assembled monolayers (SAMs) presenting different functional groups (cationic, anionic, polar, or hydrophobic). Using a selection of complementary in situ and ex situ analytical techniques, we find that even this well-defined and comparatively simple model system is governed by a rather complex interplay of electrostatic interactions, hydrophobic interactions, and hydrogen bonding, resulting in a plethora of observations and dependencies, some of which are rather counterintuitive. In particular, our results demonstrate that terminal modifications can have tremendous effects on peptide adsorption and assembly dynamics, as well as aggregate morphology and molecular structure. The effects exerted by the terminal modifications can furthermore be modulated in nontrivial ways by the physicochemical properties of the SAM surface. Therefore, terminal modifications are an important factor to consider when conducting and comparing peptide adsorption and aggregation studies and may represent an additional parameter for guiding the assembly of peptide-based nanomaterials.
Collapse
Affiliation(s)
- Roozbeh Hajiraissi
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Marcel Hanke
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Alejandro Gonzalez Orive
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Belma Duderija
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Ulrike Hofmann
- B
CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Yixin Zhang
- B
CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| | - Guido Grundmeier
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Adrian Keller
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
29
|
Hao X, Zheng J, Sun Y, Dong X. Seeding and Cross-Seeding Aggregations of Aβ 40 and Its N-Terminal-Truncated Peptide Aβ 11-40. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2821-2831. [PMID: 30681866 DOI: 10.1021/acs.langmuir.8b03599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathological process. Herein, seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated Aβ11-40 were investigated in the solution and on the surfaces of chips with immobilized seeds by extensive biophysical and biological analyses. The results showed that Aβ40 and Aβ11-40 aggregates could seed both homologous and heterologous aggregations of the two monomers. However, the capability and characteristics of the seeding (homologous aggregation) and cross-seeding (heterologous aggregation) were significantly different. Aβ40 seeds showed stronger acceleration effects on the aggregations than Aβ11-40 seeds and induced β-sheet-rich fibrous aggregates of similar cytotoxicities for the two monomers. This indicates that Aβ40 and Aβ11-40 had similar aggregation pathways in the seeding and cross-seeding on Aβ40 seeds. By contrast, Aβ11-40 seeds led to different aggregation pathways of Aβ40 and Aβ11-40. Pure Aβ11-40 aggregates had higher toxicity than Aβ40 aggregates, and as seeds, Aβ11-40 seeds induced Aβ40 to form aggregates of higher cytotoxicity. However, homologous Aβ11-40 aggregates induced by Aβ11-40 seeds showed lower cytotoxicity than pure Aβ11-40 aggregates. The results suggest that Aβ11-40 plays an important role in the pathological process of AD.
Collapse
Affiliation(s)
- Xiuping Hao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
30
|
Yang B, Adams DJ, Marlow M, Zelzer M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15109-15125. [PMID: 30032622 DOI: 10.1021/acs.langmuir.8b01165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing. As the formation of supramolecular structures from these biomolecule derivatives inevitably brings them into contact with the surfaces of surrounding materials, understanding and controlling the impact of the properties of these surfaces on the self-assembly process are important. In this feature article, we present an overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules. The current mechanistic understanding of these processes will be discussed, and potential applications of surface-mediated self-assembly will be outlined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Maria Marlow
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Mischa Zelzer
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| |
Collapse
|
31
|
Li X, Xie B, Sun Y. Basified Human Lysozyme: A Potent Inhibitor against Amyloid β-Protein Fibrillogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15569-15577. [PMID: 30407837 DOI: 10.1021/acs.langmuir.8b03278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aggregation of amyloid β-proteins (Aβ) has been recognized as a key process in the pathogenesis of Alzheimer's disease (AD), so inhibiting Aβ aggregation is an important strategy to prevent the onset and treatment of AD. Our recent work indicated that decreasing the positive charges (or introducing negative charges) on human lysozyme (hLys) was unfavorable in keeping the inhibiting capability of hLys on Aβ aggregation. Therefore, we have herein proposed to basify hLys by conversion of the carboxyl groups into amino groups by modification with ethylene diamine. Basified hLys (Lys-B) preparations of three modification degrees (MDs), denoted as hLys-B1 (MD, 1.5), hLys-B2 (MD, 3.3), and hLys-B3 (MD, 4.4), were synthesized for modulating Aβ fibrillogenesis. The hLys-B preparations kept the stability and biocompatibility as native hLys did, whereas the inhibitory potency of hLys-B on Aβ fibrillogenesis increased with increasing MD. Cytotoxicity analysis showed that cell viability with 2.5 μM hLys-B3 increased from 62.5% (with 25 μM Aβ only) to 76.1%, similar to the case with 12.5 μM hLys (75.5%); cell viability with 6.25 μM hLys-B3 increased to 82.0%, similar to the case with 25 μM hLys (80.9%). The results indicate about four- to fivefold increase in the inhibition efficiency of hLys by the amino modification. Mechanistic analysis suggests that such a superior inhibitory capability of hLys-B was attributed to its more widely distributed positive charges, which promoted broad electrostatic interactions between Aβ and hLys-B. Thus, hLys-B suppressed the conformational transition of Aβ to β-sheet structures at low concentrations (e.g., 2.5 μM hLys-B3), leading to changes in the aggregation pathway and the formation of Aβ species with less cytotoxicity. The findings provided new insights into the development of more potent protein-based inhibitors against Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA) , Tianjin 300192 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
32
|
Wang Z, Dong X, Sun Y. Hydrophobic Modification of Carboxyl-Terminated Polyamidoamine Dendrimer Surface Creates a Potent Inhibitor of Amyloid-β Fibrillation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14419-14427. [PMID: 30388015 DOI: 10.1021/acs.langmuir.8b02890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amyloid β-peptide (Aβ) fibrillogenesis is a major hallmark of Alzheimer's disease (AD); inhibition of Aβ fibrillation is thus considered as a promising strategy for AD prevention and treatment. Our group has previously proposed the hydrophobic binding-electrostatic repulsion (HyBER) hypothesis, which provides guidance for the design of new amyloid inhibitors. Inspired by the HyBER hypothesis, we have herein proposed to synthesize hydrophobic-modified generation 5 carboxyl-terminated polyamidoamine dendrimer, denoted as PAMP, to create a potent inhibitor with a negatively charged hydrophobic surface. Results indicate that the PAMP with a proper degree of phenyl substitution (30-42%) alters the conformation of Aβ42 through both hydrophobic binding and electrostatic repulsive forces on its surface. With these well-balanced interactions, the inhibitor can even completely inhibit the formation of β-sheet structure of the peptide, accompanied by changes at the level of the fibrillary architecture. Moreover, the results also indicate that changes of Aβ42 aggregation pathway influenced by the PAMP occur at the very early stage, so the PAMP can significantly avoid the formation of toxic intermediates of Aβ42 aggregation.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
33
|
Zhang H, Dong X, Sun Y. Carnosine-LVFFARK-NH 2 Conjugate: A Moderate Chelator but Potent Inhibitor of Cu 2+-Mediated Amyloid β-Protein Aggregation. ACS Chem Neurosci 2018; 9:2689-2700. [PMID: 30036471 DOI: 10.1021/acschemneuro.8b00133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aggregation of amyloid-β (Aβ) protein stimulated by Cu2+ has been recognized as a crucial step in the neurodegenerative process of Alzheimer's disease. Hence, it is of significance to develop bifunctional agents capable of inhibiting Aβ aggregation as well as Cu2+-mediated Aβ toxicity. Herein, a novel bifunctional nonapeptide, carnosine-LVFFARK-NH2 ( Car-LK7), was proposed by integrating native chelator carnosine ( Car) and an Aβ aggregation inhibitor, Ac-LVFFARK-NH2 (LK7). Results revealed the bifunctionality of Car-LK7, including remarkably enhanced inhibition capability on Aβ aggregation as compared to LK7 and a moderate Cu2+ chelating affinity ( KD = 28.2 ± 2.1 μM) in comparison to the binding affinity for Aβ40 ( KD = 1.02 ± 0.13 μM). The moderate Cu2+ affinity was insufficient for Car-LK7 to sequester Cu2+ from Aβ40-Cu2+ species, but it was sufficient to form ternary Aβ40-Cu2+- Car-LK7 complexes. Formation of the ternary complexes directed the aggregation into small, unstructured aggregates with little β-sheet structure. Car-LK7 also showed higher activity on arresting Aβ40-Cu2+-catalyzed reactive oxygen species production than Car. Cell viability assays confirmed the prominent protection activity of Car-LK7 against Cu2+-mediated Aβ40 cytotoxicity; Car-LK7 could almost eliminate Aβ40 cytotoxicity at an equimolar dose (cell viability increased from 59% to 99%). The research has thus provided new insight into the design of potent bifunctional agents against metal-mediated amyloid toxicity by conjugating moderate metal chelators and existing inhibitors.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
34
|
Li X, Xie B, Dong X, Sun Y. Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on Inhibiting Zn 2+-Mediated Amyloid β-Protein Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5106-5115. [PMID: 29631401 DOI: 10.1021/acs.langmuir.8b00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregation of amyloid β-proteins (Aβ) mediated by metal ions such as Zn2+ has been suggested to be implicated in the progression of Alzheimer's disease (AD). Hence, development of bifunctional agents capable of inhibiting Aβ aggregation and modulating metal-Aβ species is an effective strategy for the treatment of AD. In this work, we modified iminodiacetic acid (IDA) onto human lysozyme (hLys) surface to create an inhibitor of Zn2+-mediated Aβ aggregation and cytotoxicity. The IDA-modified hLys (IDA-hLys) retained the stability and biocompatibility of native hLys. Extensive biophysical and biological analyses indicated that IDA-hLys significantly attenuated Zn2+-mediated Aβ aggregation and cytotoxicity due to its strong binding affinity for Zn2+, whereas native hLys showed little effect. Stopped-flow fluorescence spectroscopy showed that IDA-hLys could protect Aβ from Zn2+-induced aggregation and rapidly depolymerize Zn2+-Aβ aggregates. The research indicates that IDA-hLys is a bifunctional agent capable of inhibiting Aβ fibrillization and modulating Zn2+-mediated Aβ aggregation and cytotoxicity as a strong Zn2+ chelator.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization , State Oceanic Administration (SOA) , Tianjin 300192 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
35
|
Hernandez-Montelongo J, Corrales Ureña Y, Machado D, Lancelloti M, Pinheiro M, Rischka K, Lisboa-Filho P, Cotta M. Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2018; 164:370-378. [DOI: 10.1016/j.colsurfb.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
36
|
Zhang H, Dong X, Liu F, Zheng J, Sun Y. Ac-LVFFARK-NH 2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity. Biophys Chem 2018; 235:40-47. [DOI: 10.1016/j.bpc.2018.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 11/16/2022]
|
37
|
Jiang Z, Dong X, Sun Y. Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydr Res 2018; 461:11-18. [PMID: 29549749 DOI: 10.1016/j.carres.2018.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 03/04/2018] [Indexed: 12/26/2022]
Abstract
Amyloid β-protein (Aβ) aggregation is crucial for the pathogenesis of Alzheimer's disease, and surface charge of nanoparticles (NPs) has been recognized as an important factor influencing Aβ aggregation. Herein, we report a systematic study on the issue with a series of self-assembled chitosan-hyaluronic acid composite (CH) NPs of different surface charges (CH1 to CH7, zeta potentials from +38 to -35 mV). Both the positive and negative CH NPs inhibited Aβ aggregation and the inhibitory effect increased with increasing the surface charges density. Circular dichroism spectroscopy and atomic force microscopy revealed the difference in their working mechanisms. Studies at different pH values further confirmed the importance of electrostatic interactions in Aβ aggregation and presented that the effects of CH NPs changed due to the change of Aβ charge property with pH. This work has thus provided new insight into the surface charge effects on Aβ aggregation.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
38
|
Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-017-1687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Jia L, Wang W, Shang J, Zhao W, Wei W, Wang Y, Li L, Lu F, Liu F. Highly efficient soluble expression, purification and characterization of recombinant Aβ42 fromEscherichia coli. RSC Adv 2018; 8:18434-18441. [PMID: 35546794 PMCID: PMC9087987 DOI: 10.1039/c8ra00042e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Aggregation of amyloid-β protein (Aβ) is hypothesized to be a seminal neuropathological event in Alzheimer's disease (AD). Recombinant expression and purification of Aβ represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. Herein, we report a novel high-yield expression and purification method for Aβ42 based on fusion with maltose binding protein (MBP) followed by the soluble polypeptide linker (NANP)3 and a modified tobacco etch virus (TEV) cleavage site before the Aβ42. We obtained a final yield of ∼18 mg L−1 of recombinant Aβ42 that was confirmed by SDS-PAGE, protein immunoblotting and MALDI-TOF. Finally, thioflavin T fluorescence and atomic force microscopy revealed that the recombinant Aβ42 aggregated into long, branched fibrils. Furthermore, the aggregates of the recombinant peptide had a strong cytotoxic effect on PC12 cells. The method described here can therefore be used to efficiently express the soluble fusion protein MBP-Aβ42 and obtain high-purity Aβ42 peptide, which can be used to understand the molecular mechanism of Aβ42 fibrillization and screen new candidate drugs for AD. A novel high-yield expression and purification method for Aβ42 based on a fusion with maltose binding protein followed by the soluble polypeptide linker (NANP)3 and a modified tobacco etch virus cleavage site before the Aβ42 was developed.![]()
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Jinzhao Shang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Wenping Zhao
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Li Li
- College of Marine and Environmental Sciences
- Tianjin University of Science & Technology
- Tianjin 300457
- P. R. China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin
- P. R. China
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology)
- Ministry of Education
| |
Collapse
|
40
|
Xie B, Zhang H, Li X, Dong X, Sun Y. Iminodiacetic Acid-Modified Human Serum Albumin: A Multifunctional Agent against Metal-Associated Amyloid β-Protein Aggregation and Cytotoxicity. ACS Chem Neurosci 2017; 8:2214-2224. [PMID: 28767224 DOI: 10.1021/acschemneuro.7b00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metal-induced amyloid β-protein (Aβ) aggregation plays a key role in the pathogenesis of Alzheimer's disease. Although several agents have been recognized to block metal-associated Aβ aggregation, their therapeutic potential is marred due to the high-concentration metal ions in the amyloid plaques. To overcome this problem, we have herein developed iminodiacetic acid-modified human serum albumin (I-HSA) to fight against the aggregation. The multifunctional nature of I-HSA was extensively characterized in inhibiting the Aβ42 aggregation associated with Zn2+ and Cu2+. The results revealed the following: (1) I-HSA significantly inhibited Aβ42 aggregation and alleviated its cytotoxicity. (2) I-HSA possessed a metal-chelate capacity as high as 31.2 mol/mol, and 25 μM I-HSA could effectively inhibit the influence of 250 μM Zn2+ on Aβ42 aggregation. (3) Equimolar I-HSA remarkably attenuated the reactive oxygen species damage caused by the Aβ42 and Cu2+-Aβ42 species. (4) I-HSA could remodel metal-Aβ42 fibrils into unstructured aggregates with less neurotoxicity. The cytotoxicity of mature Cu2+-Aβ42 aggregates was mitigated from 64.8% to 25.4% under the functioning of I-HSA. In conclusion, I-HSA showed prominent advantages for the high metal-chelate capacity. To our knowledge, I-HSA is the first multifunctional macromolecule for inhibiting high-concentration metal-induced Aβ42 aggregation and remodeling mature metal-induced Aβ42 species.
Collapse
Affiliation(s)
- Baolong Xie
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Huan Zhang
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xi Li
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
41
|
Zhang M, Ren B, Liu Y, Liang G, Sun Y, Xu L, Zheng J. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. ACS Chem Neurosci 2017; 8:1789-1800. [PMID: 28585804 DOI: 10.1021/acschemneuro.7b00160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interaction of human islet amyloid polypeptide (hIAPP) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Type II diabetes (T2D). While it is known that the hIAPP-membrane interactions are considered to promote hIAPP aggregation into fibrils and induce membrane disruption, the membrane-induced conformation, orientation, aggregation, and adsorption behaviors of hIAPP peptides have not been well understood at the atomic level. Herein, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the adsorption, orientation, and surface interaction of hIAPP aggregates with different sizes (monomer to tetramer) and conformations (monomer with α-helix and tetramer with β-sheet-rich U-turn) upon adsorption on the lipid bilayers composed of both pure zwitterionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mixed anionic POPC/POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (3:1) lipids. MD simulation results show that hIAPP monomer with α-helical conformation and hIAPP pentamer with β-sheet conformation can adsorb on both POPC and POPC/POPE bilayers via a preferential orientation of N-terminal residues facing toward the bilayer surface. The hIAPP aggregates show stronger interactions with mixed POPC/POPE lipids than pure POPC lipids, consistent with experimental observation that hIAPP adsorption and fibrililation are enhanced on mixed lipid bilayers. While electrostatic interactions are main attractive forces to drive the hIAPP aggregates to adsorb on both bilayers, the introduction of the more hydrophilic head groups of POPE lipids further promote the formation of the interfacial hydrogen bonds. Complement to our previous studies of hIAPP aggregates in bulk solution, this computational work increases our knowledge about the mechanism of amyloid peptide-membrane interactions that is central to the understanding the progression of all amyloid diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lijian Xu
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
42
|
Liu H, Dong X, Liu F, Zheng J, Sun Y. Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn 2+-mediated amyloid β-protein aggregation and cytotoxicity. J Colloid Interface Sci 2017; 505:973-982. [PMID: 28693098 DOI: 10.1016/j.jcis.2017.06.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid β-protein (Aβ) fibrils in human brain, and the binding of metal ions, such as Zn2+, is closely associated with the aggregation and cytotoxicity of Aβ. Here, we designed and synthesized iminodiacetic acid-conjugated nanoparticles (IDA-NP) to modulate Aβ42 aggregation and reduce the cytotoxicity accelerated by Zn2+. Results showed that IDA-NP enabled high metal-chelate capacity (752μmol/g) and potent inhibition capability against Aβ42 fibrillation. Zn2+ ions could be completely removed by chelating to IDA-NP, which leads to the recovery of on-pathway Aβ42 fibrillation. Then, the special surface character of IDA-NP inhibited Aβ42 fibrillation. As a result, IDA-NP protected SH-SY5Y cells from the cytotoxicity induced by Zn2+-Aβ42 species, as evidenced by about 80% (from 47.6% to 86.3%) increase of the cell viability. The research proved that IDA-NP was a potent bifunctional nano-modulator for preventing Zn2+-mediated Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Hongchen Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Guo J, Yu L, Sun Y, Dong X. Kinetic Insights into Zn2+-Induced Amyloid β-Protein Aggregation Revealed by Stopped-Flow Fluorescence Spectroscopy. J Phys Chem B 2017; 121:3909-3917. [DOI: 10.1021/acs.jpcb.6b12187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jingjing Guo
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Linling Yu
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical
Engineering and Key Laboratory of Systems Bioengineering of the Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
44
|
Liu H, Yu L, Dong X, Sun Y. Synergistic effects of negatively charged hydrophobic nanoparticles and (−)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation. J Colloid Interface Sci 2017; 491:305-312. [DOI: 10.1016/j.jcis.2016.12.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
45
|
Xiong N, Zhao Y, Dong X, Zheng J, Sun Y. Design of a Molecular Hybrid of Dual Peptide Inhibitors Coupled on AuNPs for Enhanced Inhibition of Amyloid β-Protein Aggregation and Cytotoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601666. [PMID: 28112856 DOI: 10.1002/smll.201601666] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/07/2016] [Indexed: 05/28/2023]
Abstract
Aggregation of amyloid-β protein (Aβ) is a pathological hallmark of Alzheimer's disease (AD), so the inhibition of Aβ aggregation is an important strategy for the prevention and treatment of AD. Herein, we proposed to design molecular hybrids of peptide inhibitors by combining two peptide inhibitors, VVIA and LPFFD, into single sequences and examined their effects on Aβ42 aggregation and cytotoxicity. The hybrid peptides exhibit increased but moderate inhibitory activity as compared to their two precursors. By conjugating the peptides onto gold nanoparticles (AuNPs), however, the inhibition activity of the corresponding peptide@AuNPs against Aβ42 aggregation and cytotoxicity is greatly improved. Among them, VVIACLPFFD (VCD10)@AuNP is the most effective, which increases cell viability from 48% to 82% at a dosage as low as 0.1 nmol L-1 (NPs) or 40 nmol L-1 (peptide). The superior capacity of VCD10@AuNPs is considered due to its branched dual-inhibitor sequence, and its special surface orientation and conformation. These structural features promote its synergetic interactions with Aβ on AuNP surface, leading to strong inhibitions of Aβ oligomerization and fibrillation and the cytotoxicity caused by the aggregation species. The findings suggest that potent inhibitors can be derived by hybridization of multiple peptide inhibitors with the hybrid products coupled onto nanoparticles.
Collapse
Affiliation(s)
- Neng Xiong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanjiao Zhao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
46
|
Gao G, Zhang M, Gong D, Chen R, Hu X, Sun T. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. NANOSCALE 2017; 9:4107-4113. [PMID: 28276561 DOI: 10.1039/c7nr00699c] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A significant pathological signature of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) plaques in the brain and the synaptic dysfunction and neurodegeneration associated with it. Compounds or drugs that inhibit Aβ fibrillation are thus desirable to develop novel therapeutic strategies against AD. Conventional strategies usually require an elaborate design of their molecular structures. Here we report the size-effect of gold nanoparticles (AuNPs) and nanoclusters (AuNCs) in the inhibition of protein amyloidosis. Using l-glutathione stabilized AuNPs with different sizes and AuNCs as examples, we show that large AuNPs accelerate Aβ fibrillation, whereas small AuNPs significantly suppress this process. More interestingly, AuNCs with smaller sizes can completely inhibit amyloidosis. Dynamic light scattering (DLS) experiments show that AuNCs can efficiently prevent Aβ peptides from aggregation to larger oligomers (e.g. micelles) and thus avoid nucleation to form fibrils. This is crucially important for developing novel AD therapies because oligomers are the main source of Aβ toxicity. This work presents a novel strategy to design anti-amyloidosis drugs, which also provides interesting insights to understand how biological nanostructures participate in vivo in Aβ fibrillation from a new perspective.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.
| | - Dejun Gong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| | - Rui Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| | - Xuejiao Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People's Republic of China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| |
Collapse
|
47
|
Gregori M, Taylor M, Salvati E, Re F, Mancini S, Balducci C, Forloni G, Zambelli V, Sesana S, Michael M, Michail C, Tinker-Mill C, Kolosov O, Sherer M, Harris S, Fullwood NJ, Masserini M, Allsop D. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer's Aβ peptide. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:723-732. [PMID: 27769888 DOI: 10.1016/j.nano.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/21/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Aggregation of amyloid-β peptide (Aβ) is a key event in the pathogenesis of Alzheimer's disease (AD). We investigated the effects of nanoliposomes decorated with the retro-inverso peptide RI-OR2-TAT (Ac-rGffvlkGrrrrqrrkkrGy-NH2) on the aggregation and toxicity of Aβ. Remarkably low concentrations of these peptide inhibitor nanoparticles (PINPs) were required to inhibit the formation of Aβ oligomers and fibrils in vitro, with 50% inhibition occurring at a molar ratio of ~1:2000 of liposome-bound RI-OR2-TAT to Aβ. PINPs also bound to Aβ with high affinity (Kd=13.2-50 nM), rescued SHSY-5Y cells from the toxic effect of pre-aggregated Aβ, crossed an in vitro blood-brain barrier model (hCMEC/D3 cell monolayer), entered the brains of C57 BL/6 mice, and protected against memory loss in APPSWE transgenic mice in a novel object recognition test. As the most potent aggregation inhibitor that we have tested so far, we propose to develop PINPs as a potential disease-modifying treatment for AD.
Collapse
Affiliation(s)
- Maria Gregori
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Mark Taylor
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK
| | - Elisa Salvati
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Francesca Re
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Simona Mancini
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico/Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico/Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Vanessa Zambelli
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Silvia Sesana
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - Maria Michael
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK
| | - Christos Michail
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK
| | - Claire Tinker-Mill
- University of Lancaster, Department of Physics, Faculty of Science and Technology, Lancaster, UK
| | - Oleg Kolosov
- University of Lancaster, Department of Physics, Faculty of Science and Technology, Lancaster, UK
| | - Michael Sherer
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK
| | - Stephen Harris
- Quotient Bioresearch (Rushden) Ltd, Rushden, Northamptonshire, UK
| | - Nigel J Fullwood
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK
| | - Massimo Masserini
- University of Milano-Bicocca, Nanomedicine Center NANOMIB and School of Medicine and Surgery, Monza, (MB), Italy
| | - David Allsop
- University of Lancaster, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster, UK.
| |
Collapse
|
48
|
Hajiraissi R, Giner I, Grundmeier G, Keller A. Self-Assembly, Dynamics, and Polymorphism of hIAPP(20-29) Aggregates at Solid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:372-381. [PMID: 27935715 DOI: 10.1021/acs.langmuir.6b03288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The misfolding and subsequent assembly of proteins and peptides into insoluble amyloid structures play important roles in the development of numerous diseases. The dynamics of self-assembly and the morphology of the resulting aggregates critically depend on various environmental factors and especially on the presence of interfaces. Here, we show in detail how the presence of surfaces with different physicochemical properties influences the assembly dynamics and especially the aggregate morphology of hIAPP(20-29), an amyloidogenic fragment of the peptide hormone human islet amyloid polypeptide (hIAPP), which is involved in the development of type 2 diabetes. Time-lapse atomic force microscopy is employed to study the assembly dynamics of hIAPP(20-29) and the morphology of the resulting aggregates in bulk solution as well as at hydrophilic and hydrophobic model surfaces. We find that the presence of hydrophilic mica surfaces promotes fibrillation when compared with the assembly in bulk solution and results in a more pronounced polymorphism. Three fibrillar species are found to coexist on the mica surface, that is, straight, coiled, and ribbon-like fibrils, whereas only the straight and coiled fibrils are observed in bulk solution after comparable incubation times. In addition, the straight and coiled fibrils assembled at the mica surface have significantly different dimensions compared with those assembled in bulk solution. The three fibrillar species found on the mica surface most likely form independently by lateral association of arbitrary numbers of protofibrils with about 2 nm height. On hydrophobic hydrocarbon surfaces, fibrillation is retarded but not completely suppressed, in contrast to previous observations for full-length hIAPP(1-37). Our results show that peptide-surface interactions may induce diverse, peptide-specific alterations of amyloid assembly dynamics and fibrillar polymorphism. They may therefore contribute to a deeper understanding of the molecular processes that govern amyloid aggregation at different surfaces.
Collapse
Affiliation(s)
- Roozbeh Hajiraissi
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Ignacio Giner
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University , Warburger Strasse 100, 33098 Paderborn, Germany
| |
Collapse
|
49
|
Strømland Ø, Handegård ØS, Govasli ML, Wen H, Halskau Ø. Peptides derived from α-lactalbumin membrane binding helices oligomerize in presence of lipids and disrupt bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1029-1039. [PMID: 28069414 DOI: 10.1016/j.bbamem.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Helix A and -C of α-lactalbumin, a loosely folded amphitropic protein, perturb lipid monolayers by the formation of amyloid pore-like structures. To investigate whether these helices are able to disrupt fully formed bilayers, we designed peptides comprised of Helix A and -C, and investigated their membrane-perturbing properties. The peptides, designated A-Cage-C and A-Lnk-C, were prepared with tryptophan sites in the helical and the spacer segments in order to monitor which part were involved in membrane association under given conditions. The peptides associate with and disrupt negatively charged bilayers in a pH-dependent manner and α-helical tendencies increased upon membrane association. Both helices and the spacer segment were involved in membrane binding in the case of A-Lnk-C, and there are indications that the two helixes act in synergy to affect the membrane. However, the helices and the spacer segment could not intercalate when present as A-Cage-C at neutral conditions. At acidic pH, both helices could intercalate, but not the central spacer segment. AFM performed on bilayers under aqueous conditions revealed oligomers formed by the peptides. The presence of bilayers and acidic pHs were both drivers for the formation of these, suggestive of models for peptide oligomerization where segments of the peptide are stacked in an electrostatically favorable manner by the surface. Of the two peptides, A-Lnk-C was the more prolific oligomerizer, and also formed amyloid-fibril like structures at acidic pH and elevated concentrations. Our results suggest the peptides perturb membranes not through pore-like structures, but possibly by a thinning mechanism.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ørjan S Handegård
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Morten L Govasli
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Hanzhen Wen
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway.
| |
Collapse
|
50
|
Haspel N, Zheng J, Aleman C, Zanuy D, Nussinov R. A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods Mol Biol 2017; 1529:323-352. [PMID: 27914060 PMCID: PMC7900906 DOI: 10.1007/978-1-4939-6637-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, The University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Carlos Aleman
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, E-08028, Barcelona, Spain
| | - David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Ruth Nussinov
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Inst. of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|