1
|
Yamada H, Tsuruoka T, Nagao T, Shirahata N. Deep-blue amplified spontaneous emission and lasing in colloidal silicon nanoclusters. Chem Commun (Camb) 2025. [PMID: 40227843 DOI: 10.1039/d5cc01428j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
We report for the first time the amplified spontaneous emission (ASE) and lasing from blue-emitting silicon nanoclusters. The lasing threshold is determined as 1.8 mJ per pulse and the emission peaks at 434 nm. The laser-induced emission experiments demonstrated in this study encourage further development of solution-processed fabrication of a colloidal silicon quantum dot laser.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.
| | - Tohru Tsuruoka
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
2
|
Zhang J, Huang Y, Zhang X, Guo X, Chen K, Feng X, Kong J, Liu Y, Shang B, Xu W, Chen D. Flexible transparent and hydrophobic SiNCs/PDMS coatings for anti-counterfeiting applications. MATERIALS HORIZONS 2024; 11:3573-3584. [PMID: 38747363 DOI: 10.1039/d4mh00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Silicon nanocrystals (SiNCs) have attracted considerable attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, little attention has been paid to fluorescence anti-counterfeiting applications based on lipophilic silicon nanocrystals. Moreover, it is also a challenge to fabricate aging-resistant anti-counterfeiting coatings based on silicon nanocrystals. Herein, this paper presents a demonstration of aging-resistant fluorescent anti-counterfeiting coatings based on red fluorescent silicon nanocrystals. In this work, lipophilic silicon nanocrystals (De-SiNCs) with red fluorescence were prepared first by thermal hydrosilylation between hydrogen-terminated silicon nanocrystals (H-SiNCs) and 1-decene. Subsequently, a new SiNCs/PDMS coating (De-SiNCs/DV) was fabricated by dispersing De-SiNCs into reinforcing PDMS composites with vinyl-capped silicone resin. Interestingly, the De-SiNCs/DV composites exhibit superior transparency (up to 85%) in the visible light range, outstanding fluorescence stabilities with an average lifetime of 20.59 μs under various conditions including acidic/alkaline environments, different organic solvents, high-humidity environments and UV irradiation. Meanwhile, the encapsulation of De-SiNCs is beneficial to enhancing the mechanical properties and thermal stability of De-SiNCs/DV composites. Additionally, the De-SiNCs/DV coating exhibits an excellent anti-counterfeiting effect on cotton fabrics when used as an ink in screen-printing. These findings pave the way for developing innovative flexible multifunctional anti-counterfeiting coatings in the future.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaoyuan Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiajia Kong
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yanqing Liu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Bin Shang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, P. R. China.
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
3
|
Lazauskas A, Gimžauskaitė D, Ilickas M, Marcinauskas L, Aikas M, Abakevičienė B, Volyniuk D. Laser Ablation of Silicon Nanoparticles and Their Use in Charge-Coupled Devices for UV Light Sensing via Wavelength-Shifting Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2915. [PMID: 37999270 PMCID: PMC10674811 DOI: 10.3390/nano13222915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This study explores the controlled laser ablation and corresponding properties of silicon nanoparticles (Si NP) with potential applications in ultraviolet (UV) light sensing. The size distribution of Si NPs was manipulated by adjusting the laser scanning speed during laser ablation of a silicon target in a styrene solution. Characterization techniques, including transmission electron microscopy, Raman spectroscopy, and photoluminescence analysis, were employed to investigate the Si NP structural and photophysical properties. Si NP produced at a laser scanning speed of 3000 mm/s exhibited an average diameter of ~4 nm, polydispersity index of 0.811, and a hypsochromic shift in the Raman spectrum peak position. Under photoexcitation at 365 nm, these Si NPs emitted apparent white light, demonstrating their potential for optoelectronic applications. Photoluminescence analysis revealed biexponential decay behavior, suggesting multiple radiative recombination pathways within the nanoscale structure. Furthermore, a thin film containing Si NP was utilized as a passive filter for a 2nd generation CCD detector, expanding the functionality of the non-UV-sensitive detectors in optics, spectrometry, and sensor technologies.
Collapse
Affiliation(s)
- Algirdas Lazauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko 59, LT51423 Kaunas, Lithuania; (M.I.); (B.A.)
| | - Dovilė Gimžauskaitė
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT44403 Kaunas, Lithuania; (D.G.); (L.M.); (M.A.)
| | - Mindaugas Ilickas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko 59, LT51423 Kaunas, Lithuania; (M.I.); (B.A.)
| | - Liutauras Marcinauskas
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT44403 Kaunas, Lithuania; (D.G.); (L.M.); (M.A.)
| | - Mindaugas Aikas
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT44403 Kaunas, Lithuania; (D.G.); (L.M.); (M.A.)
| | - Brigita Abakevičienė
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko 59, LT51423 Kaunas, Lithuania; (M.I.); (B.A.)
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko 59, LT51423 Kaunas, Lithuania;
| |
Collapse
|
4
|
He Y, Gao M, Zhou Y, Zhou Y. Efficient photocatalytic remediation of typical antibiotics in water via Mn 3O 4 decorated carbon nitride nanotube. CHEMOSPHERE 2023; 311:136925. [PMID: 36283432 DOI: 10.1016/j.chemosphere.2022.136925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic abuse will seriously affect the ecology and environment. Photocatalytic oxidation technology based on carbon nitride (g-C3N4) has been widely adopted to treat wastewater containing antibiotics. Here, a novel composite photocatalyst MCNT was prepared by loading manganese oxide (Mn3O4) on the surface of g-C3N4 nanotubes (CNT). Three typical antibiotics, trimethoprim (TMP), norfloxacin (NOR), and tetracycline (TC) were used as model contaminants to evaluate the oxidative properties of prepared materials. Compared with bulk g-C3N4, the degradation rates of TMP, NOR, and TC catalyzed by MCNT-5 were increased by 2, 3, and 1.4 times, respectively, mainly due to 1) the larger specific surface area of the nanotube structure of CNT, which provides abundant active sites for antibiotic adsorption and catalytic oxidation, and 2) the loading of Mn3O4, which promotes the directional migration of photogenerated charges and improves the separation efficiency of photogenerated electrons and holes. The free radical capture and quenching experiments confirmed that MCNT degraded the target organic pollutants with hydroxyl radical (·OH) and singlet oxygen (1O2) as the main active oxidants. This catalyst maintained 80% photocatalytic oxidation performance after five cyclic experiments. This study provides new insights into developing efficient, stable, and environmentally-friendly photocatalysts and provides a new dimension to mitigate the antibiotic pollution problem.
Collapse
Affiliation(s)
- Yiling He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Gao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Um J, Cho S, Jin HJ. Amphiphilic-triblock-copolymer-derived protective layer for stable-cycling lithium metal anodes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
van Veenhuyzen B, Tichapondwa S, Hörstmann C, Chirwa E, Brink HG. High capacity Pb(II) adsorption characteristics onto raw- and chemically activated waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125943. [PMID: 34492870 DOI: 10.1016/j.jhazmat.2021.125943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
The Pb(II) adsorption characteristics of chemically activated waste activated sewage sludge (WAS) were compared to raw WAS. Adsorption kinetics and equilibrium isotherm parameters were fit using classic adsorption models. HCl and H2SO4 activation terminated any significant sludge-based adsorption. Raw and ZnCl2 activated WAS displayed Langmuir adsorption capacities of 307 mg/g and 274 mg/g, respectively. Surface characterization revealed that chemical activation with ZnCl2 increased the BET surface area for raw WAS from 0.97 m2/g to 1.78 m2/g, but did not significantly change the surface structure. FTIR analyzes and XPS were used to further investigate the nature of lead binding. The relationships between equilibrium ion concentration and Pb(II) adsorption suggest cationic exchange with hydrogen, calcium, and zinc as a significant mechanism of Pb(II) removal alongside electrostatic attraction. The pHPZC was determined as 2.58 and 2.30 for ZnCl2 activated WAS and raw WAS respectively. HNO3 and Ca(NO3)2 demonstrated sufficient elution properties for WAS recovery. For authentic industrial effluent both raw and ZnCl2 activated WAS displayed Pb(II) removal behavior comparable to simulated Pb(II) solutions. In comparison with modified and unmodified sludges from literature, this study demonstrates the auspicious potential of raw WAS as an effective Pb(II) adsorbent independent of pyrolytic or chemical activation.
Collapse
Affiliation(s)
- B van Veenhuyzen
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - S Tichapondwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - C Hörstmann
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - E Chirwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - H G Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
7
|
Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, Anbu P. Production and characterization of graphene from carbonaceous rice straw by cost-effect extraction. 3 Biotech 2021; 11:205. [PMID: 33868892 DOI: 10.1007/s13205-021-02740-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
Collapse
Affiliation(s)
- M N Aiman Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
| | - N H Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis Malaysia
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|
8
|
Miniewicz A, Ślemp M, Pfleger J. Organic Nanocrystal Fabrication Using the Process of Resonant Second-Harmonic Generation of Light. ACS OMEGA 2021; 6:10547-10556. [PMID: 34056209 PMCID: PMC8153771 DOI: 10.1021/acsomega.0c05156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Laser ablation with the use of ultra-short laser pulses is a widely used technique for the fabrication of nanoparticles of metals, inorganic and hybrid materials. However, fabrication of fragile organic nanocrystals via laser ablation is rarely used due to easy photodegradation of molecules. The method employing laser irradiation of the target material is beneficial as no other chemicals are used in the production of nanoparticles, except for a given material and a solvent. In this work, we test the concept of formation of nonlinear optical (NLO) organic nanocrystals dispersion in water by irradiation of the microcrystals of the NLO material with nonabsorbed infrared nanosecond light pulses. These pulses, due to a nonlinear optical process active in a noncentrosymmetric organic crystal, such as those studied in this work, DCNP dye (3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole), produce nanosecond pulses of second-harmonic (SH) light. Due to doubling of photon energy, they are reabsorbed in the volume of DCNP microcrystals and thermal shocks fracture them into nanometer size crystals. To the best of our knowledge, such process and its interpretation have not been described yet in the literature.
Collapse
Affiliation(s)
- Andrzej Miniewicz
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Michalina Ślemp
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jiri Pfleger
- Department
of Polymers for Electronics and Photonics, Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech
Republic, Heyrovského
nám. 2, CZ-162 06 Praha 6, Czech Republic
| |
Collapse
|
9
|
Nayak K, Tripathi BP. Molecularly grafted PVDF membranes with in-air superamphiphilicity and underwater superoleophobicity for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118068] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Sekar S, Lee S. Derivation of Luminescent Mesoporous Silicon Nanocrystals from Biomass Rice Husks by Facile Magnesiothermic Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:613. [PMID: 33804437 PMCID: PMC7999164 DOI: 10.3390/nano11030613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
High-quality silicon (Si) nanocrystals that simultaneously had superior mesoporous and luminescent characteristics were derived from sticky, red, and brown rice husks via the facile and cost-effective magnesiothermic reduction method. The Si nanocrystals were confirmed to comprise an aggregated morphology with spherical nanocrystals (e.g., average sizes of 15-50 nm). Due to the surface functional groups formed at the nanocrystalline Si surfaces, the Si nanocrystals clearly exhibited multiple luminescence peaks in visible-wavelength regions (i.e., blue, green, and yellow light). Among the synthesized Si nanocrystals, additionally, the brown rice husk (BRH)-derived Si nanocrystals showed to have a strong UV absorption and a high porosity (i.e., large specific surface area: 265.6 m2/g, small average pore diameter: 1.91 nm, and large total pore volume: 0.5389 cm3/g). These are indicative of the excellent optical and textural characteristics of the BRH-derived Si nanocrystals, compared to previously reported biomass-derived Si nanocrystals. The results suggest that the biomass BRH-derived Si nanocrystals hold great potential as an active source material for optoelectronic devices as well as a highly efficient catalyst or photocatalyst for energy conversion devices.
Collapse
Affiliation(s)
- Sankar Sekar
- Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea;
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| | - Sejoon Lee
- Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea;
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| |
Collapse
|
11
|
Adinarayana TVS, Mishra A, Singhal I, Koti Reddy DVR. Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe(iii) ions. NANOSCALE ADVANCES 2020; 2:4125-4132. [PMID: 36132780 PMCID: PMC9418957 DOI: 10.1039/d0na00307g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 05/03/2023]
Abstract
Fluorescent silicon nanoparticles (SiNPs) might be one of the excellent candidates for use as optical markers in biological profiling and diagnostic applications. To exploit this perspective, they ought to be essentially synthesized from any green precursor rich in silicon. Stable dispersibility in water along with prolonged luminescence under different conditions is also desired. Moreover, one of the main challenges is to produce such optically (photoluminescence) stable and water-dispersible SiNPs. In our present work, we have reported the synthesis of a highly stable silicon nanoparticle aqueous suspension via a single-step microwave-assisted facile green route. Our as-prepared SiNPs exhibit inherent stable dispersibility, strong fluorescence, and photo-stable behavior. The experimental results demonstrate that the synthesized SiNPs are highly suitable for the detection of Fe(iii) ions. This optical sensing study opens a new avenue for use of SiNPs as a valuable optical probe in chemosensory applications. Our results provide a single-step methodology for the synthesis of highly stable SiNPs from a biological precursor, which can be used as a promising tool for various chemical and biological applications.
Collapse
Affiliation(s)
- T V S Adinarayana
- Department of Instrument Technology, Andhra University College of Engineering, Andhra University Andhra Pradesh India
| | - Ayushi Mishra
- School of Biotechnology, Jawaharlal Nehru University New Delhi India
| | - Ishu Singhal
- School of Biotechnology, Jawaharlal Nehru University New Delhi India
| | - D V Rama Koti Reddy
- Department of Instrument Technology, Andhra University College of Engineering, Andhra University Andhra Pradesh India
| |
Collapse
|
12
|
Tokarska K, Shi Q, Otulakowski L, Wrobel P, Ta HQ, Kurtyka P, Kordyka A, Siwy M, Vasylieva M, Forys A, Trzebicka B, Bachmatiuk A, Rümmeli MH. Facile production of ultra-fine silicon nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200736. [PMID: 33047035 PMCID: PMC7540795 DOI: 10.1098/rsos.200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 05/17/2023]
Abstract
A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5) n sol-gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.
Collapse
Affiliation(s)
- Klaudia Tokarska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Qitao Shi
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Lukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Pawel Wrobel
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Huy Quang Ta
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Przemyslaw Kurtyka
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, Zabrze 41-800, Poland
| | - Aleksandra Kordyka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Margaryta Vasylieva
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Alicja Bachmatiuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Mark H. Rümmeli
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAN), M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
- Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
- Institute of Environmental Technology, VSB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
13
|
Cumba LR, Camisasca A, Giordani S, Forster RJ. Electrochemical Properties of Screen-Printed Carbon Nano-Onion Electrodes. Molecules 2020; 25:molecules25173884. [PMID: 32858929 PMCID: PMC7503887 DOI: 10.3390/molecules25173884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The properties of carbon nano-onions (CNOs) make them attractive electrode materials/additives for the development of low-cost, simple to use and highly sensitive Screen Printed Electrodes (SPEs). Here, we report the development of the first CNO-based ink for the fabrication of low-cost and disposable electrodes, leading to high-performance sensors. Achieving a true dispersion of CNOs is intrinsically challenging and a key aspect of the ink formulation. The screen-printing ink formulation is achieved by carefully selecting and optimising the conductive materials (graphite (GRT) and CNOs), the polymer binder, the organic solvent and the plasticiser. Our CNO/GRT-based screen-printed electrodes consist of an interconnected network of conducting carbon particles with a uniform distribution. Electrochemical studies show a heterogeneous electron transfer rate constant of 1.3 ± 0.7 × 10-3 cm·s-1 and a higher current density than the ferrocene/ferrocenium coupled to a commercial graphite SPEs. In addition, the CNO/GRT SPE can detect dopamine in the concentration range of 10.0-99.9 µM with a limit of detection of 0.92 µM (N = 3). They exhibit a higher analytical sensitivity than the commercial graphite-based SPE, with a 4-fold improvement observed. These results open up the possibility of using high-performing CNO-based SPEs for electrochemical applications including sensors, battery electrodes and electrocatalysis.
Collapse
Affiliation(s)
- Loanda R. Cumba
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland; (A.C.); (R.J.F.)
- Correspondence: (L.R.C.); (S.G.)
| | - Adalberto Camisasca
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland; (A.C.); (R.J.F.)
| | - Silvia Giordani
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland; (A.C.); (R.J.F.)
- Correspondence: (L.R.C.); (S.G.)
| | - Robert J. Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland; (A.C.); (R.J.F.)
- FutureNeuro SFI Research Centre, Dublin, Ireland
| |
Collapse
|
14
|
Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss 2020; 222:10-81. [DOI: 10.1039/d0fd00018c] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights many spectroscopy-based studies and selected phenomenological studies of silicon-based nanostructures that provide insight into their likely PL mechanisms, and also covers six application areas.
Collapse
Affiliation(s)
- Leigh Canham
- School of Physics and Astronomy
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
15
|
Yang N, Lu K. Thermophysical property and electrical conductivity of titanium isopropoxide – polysiloxane derived ceramics. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Taheri M, Mansour N. Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang J, Zhang Y, Hao H, Shen W. Structural evolution and effective improvement of emission quantum yields for silicon nanocrystals synthesized by femtosecond laser ablation in HF-contained solution. NANOTECHNOLOGY 2019; 30:015705. [PMID: 30362465 DOI: 10.1088/1361-6528/aae67c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable luminescent colloidal silicon (Si) nanocrystals (NCs) with sufficient surface protection are prepared through femtosecond laser ablation in organic solvent containing diverse concentrations of HF solution. The average size of Si NCs shows the decreasing tendency from 6.5 to 2.7 nm when the concentration of HF varies from 0 to 11.1 vol% (volume ratio). In line with the structural evolution, UV-visible absorption, photoluminescence (PL) excitation spectra, and time-resolved PL, we propose that room temperature blue emission peaks at 412 and 440 nm originate from alkyl-related radiative recombination centers. The enhanced PL quantum yield of colloidal Si NCs from 16.3% to 76.5% has been attributed to the effective passivation and suppression of non-radiative defect centers with increasing HF concentration from 0 to 11.1 vol%.
Collapse
Affiliation(s)
- Jianjun Wang
- College of Material Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | | | | | | |
Collapse
|
18
|
d’Amora M, Rodio M, Sancataldo G, Diaspro A, Intartaglia R. Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development. ACS APPLIED BIO MATERIALS 2018; 2:321-329. [DOI: 10.1021/acsabm.8b00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marta d’Amora
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marina Rodio
- Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
- Physical Chemistry, Hamburg University, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Giuseppe Sancataldo
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Florence 50121, Italy
| | - Alberto Diaspro
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Romuald Intartaglia
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
19
|
Ortega-Liebana MC, Hueso JL, Fernandez-Pacheco R, Irusta S, Santamaria J. Luminescent mesoporous nanorods as photocatalytic enzyme-like peroxidase surrogates. Chem Sci 2018; 9:7766-7778. [PMID: 30429985 PMCID: PMC6194581 DOI: 10.1039/c8sc03112f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
Herein we report on a novel inorganic peroxidase-mimicking nanocatalyst activated under blue LED photoirradiation. A novel flash-pyrolysis method has been developed for the generation of strong blue photoluminescence (PL) centers attributed to silicon and carbon-based sites within a mesoporous SBA-15 silica nanorod platform. The type of centers and their PL response can be controlled by varying the flash thermal treatment conditions. By tailoring the operating conditions the system can be driven towards the preferential generation of carbon-based luminescent centers, with or without the simultaneous generation of silicon-based centers. The properties and the nature of these luminescent centers within the mesoporous nanorods have been thoroughly corroborated by a battery of characterization techniques including fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) at the local level of the structures combined with scanning transmission electron microscopy (STEM) imaging. In addition, these luminescent mesoporous nanorods have been successfully tested as robust photocatalysts able to display peroxidase-like activity and indirect glucose sensing in a wider range of pH conditions compared to the natural enzyme, especially when carbogenic dots and oxygen-deficient silica centers are simultaneously present in the structure.
Collapse
Affiliation(s)
- M Carmen Ortega-Liebana
- Institute of Nanoscience of Aragon (INA) , Department of Chemical Engineering and Environmental Technology , University of Zaragoza , 50018 Zaragoza , Spain . ;
- Nerworking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain
| | - Jose L Hueso
- Institute of Nanoscience of Aragon (INA) , Department of Chemical Engineering and Environmental Technology , University of Zaragoza , 50018 Zaragoza , Spain . ;
- Nerworking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain
| | - Rodrigo Fernandez-Pacheco
- Advanced Microscopy Laboratory (LMA) , Institute of Nanoscience of Aragon (INA) , University of Zaragoza , 50018 Zaragoza , Spain
| | - Silvia Irusta
- Institute of Nanoscience of Aragon (INA) , Department of Chemical Engineering and Environmental Technology , University of Zaragoza , 50018 Zaragoza , Spain . ;
- Nerworking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain
| | - Jesus Santamaria
- Institute of Nanoscience of Aragon (INA) , Department of Chemical Engineering and Environmental Technology , University of Zaragoza , 50018 Zaragoza , Spain . ;
- Nerworking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain
| |
Collapse
|
20
|
Zhang YX, Wu WS, Hao HL, Shen WZ. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: effect of laser ablation time. NANOTECHNOLOGY 2018; 29:365706. [PMID: 29916813 DOI: 10.1088/1361-6528/aacd75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm by increasing the LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL and PL excitation spectra, we attribute room-temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen-deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% by prolonging the LAT from 30 to 120 min.
Collapse
Affiliation(s)
- Y X Zhang
- College of Material Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Wu WS, Hao HL, Zhang YX, Li J, Wang JJ, Shen WZ. Correlation between luminescence and structural evolution of colloidal silicon nanocrystals synthesized under different laser fluences. NANOTECHNOLOGY 2018; 29:025709. [PMID: 29227969 DOI: 10.1088/1361-6528/aa95a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a detailed investigation of the structural evolution and photoluminescence (PL) properties of colloidal silicon (Si) nanocrystals (NCs) synthesized through femtosecond laser ablation at different laser fluences. It is shown that the mean size of colloidal Si NCs increases from ∼0.97-2.37 nm when increasing laser fluence from 1.0-2.5 mJ cm-2. On the basis of structural characterization, temperature-dependent PL, time-resolved PL, and PL excitation spectra, we identify that the size-dependent spectral shift of violet emission is attributed to the quantum confinement effect. The localized excitons' radiative recombination via the oxygen-related surface states on the surface of the colloidal Si NCs is employed to explain the origin of the blue emission.
Collapse
Affiliation(s)
- W S Wu
- College of Material Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Kajiya D, Saitow KI. Si nanocrystal solution with stability for one year. RSC Adv 2018; 8:41299-41307. [PMID: 35559330 PMCID: PMC9091691 DOI: 10.1039/c8ra08816k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Colloidal silicon nanocrystals (SiNCs) are a promising material for next-generation nanostructured devices. High-stability SiNC solutions are required for practical use as well as studies on the properties of SiNC. Here, we show a solution of SiNCs that was stable for one year without aggregation. The stable solution was synthesized by a facile process, i.e., pulsed laser ablation of a Si wafer in isopropyl alcohol (IPA). The long-term stability was due to a large ζ-potential of −50 mV from a SiNC passivation layer composed of oxygen, hydrogen, and alkane groups, according to the results of eight experiments and theoretical calculations. This passivation layer also resulted in good performance as an additive for a conductive polymer film. Namely, a 5-fold enhancement in carrier density was established by the addition of SiNCs into an organic conductive polymer, poly(3-dodecylthiophene), which is useful for solar cells. Furthermore, it was found that fresh (<1 day) and aged (4 months) SiNCs give the same enhancement. The long-term stability was attributed to a great repulsive energy in IPA, whose value was quantified as a function the distance between SiNCs. A stable nanocrystal for one year without aggregation in a liquid is synthesized by one-step, one-pot, and one-hour process.![]()
Collapse
Affiliation(s)
- Daisuke Kajiya
- Natural Science Center for Basic Research and Development (N-BARD)
- Hiroshima University
- Higashi-hiroshima
- Japan
- Department of Chemistry
| | - Ken-ichi Saitow
- Natural Science Center for Basic Research and Development (N-BARD)
- Hiroshima University
- Higashi-hiroshima
- Japan
- Department of Chemistry
| |
Collapse
|
23
|
Ullah N, Chen S, Zhang R. Excited state dynamics study of the self-trapped exciton formation in silicon nanosheets. Phys Chem Chem Phys 2018; 20:29299-29305. [DOI: 10.1039/c8cp04806a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
After excitation to S1 (1), the exciton takes ∼450–850 femtoseconds to relax into the self-trapped (ST) state (2) with the occurrence of strong localization and a large Stokes shift, due to the significant stretching of the Si–Si bonds.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Physics, City University of Hong Kong
- Hong Kong SAR
- China
| | - Shunwei Chen
- Department of Physics, City University of Hong Kong
- Hong Kong SAR
- China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong
- Hong Kong SAR
- China
- Beijing Computational Science Research Center
- Beijing 100193
| |
Collapse
|
24
|
Xin Y, Kitasako T, Maeda M, Saitow KI. Solvent dependence of laser-synthesized blue-emitting Si nanoparticles: Size, quantum yield, and aging performance. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Yuan Z, Nakamura T, Adachi S, Matsuishi K. Luminescence color control and quantum-efficiency enhancement of colloidal Si nanocrystals by pulsed laser irradiation in liquid. NANOSCALE 2017; 9:1193-1200. [PMID: 28009922 DOI: 10.1039/c6nr08757d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate the emission color change of white-emitting chlorine-terminated silicon nanocrystals (Cl:Si-ncs) to blue-emitting carbon-terminated silicon nanocrystals (C:Si-ncs), together with the enhancement of the luminescence quantum efficiency from 7% to 13%, by post-laser ablation in 1-octene. Such changes of the PL properties are caused by the size reduction of Si-nc and efficient surface passivation by hydrocarbons, resulting from a high reactivity of 1-octene in the laser-ablation and subsequent nanoparticle-formation processes. Furthermore, the second post-laser irradiation of the C:Si-ncs in trichloroethylene reversibly results in the formation of the Cl:Si-ncs. The preparation yield of C:Si-ncs via the post-laser ablation of Cl:Si-ncs is higher than that of C:Si-ncs directly prepared only by the laser ablation of PSi in 1-octene. This high preparation yield is due to the high laser-ablation efficiency in trichloroethylene compared with 1-octene, which is attributed to the low heat loss of the solvent in the laser-ablation process.
Collapse
Affiliation(s)
- Ze Yuan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshihiro Nakamura
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | - Sadao Adachi
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan.
| | - Kiyoto Matsuishi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
26
|
Mazzaro R, Romano F, Ceroni P. Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys Chem Chem Phys 2017; 19:26507-26526. [DOI: 10.1039/c7cp05208a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding parameters affecting the luminescence of silicon nanocrystals will guide the design of improved systems for a plethora of applications.
Collapse
Affiliation(s)
- Raffaello Mazzaro
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Francesco Romano
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Paola Ceroni
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| |
Collapse
|
27
|
Mandal R, Anthony RJ. Aging of Silicon Nanocrystals on Elastomer Substrates: Photoluminescence Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35479-35484. [PMID: 27983777 DOI: 10.1021/acsami.6b10155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| | - Rebecca J Anthony
- Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Hao HL, Wu WS, Zhang Y, Wu LK, Shen WZ. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution. NANOTECHNOLOGY 2016; 27:325702. [PMID: 27348227 DOI: 10.1088/0957-4484/27/32/325702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.
Collapse
Affiliation(s)
- H L Hao
- College of Material Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Lee DS, Choe DH, Yoo SW, Kim JH, Jeong HD. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Don-Sung Lee
- Department of Chemistry; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Dong-Hoe Choe
- Department of Chemistry; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Seung-Wan Yoo
- Vacuum Center; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
| | - Jung-Hyung Kim
- Vacuum Center; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
| | - Hyun-Dam Jeong
- Department of Chemistry; Chonnam National University; Gwangju 500-757 Republic of Korea
| |
Collapse
|
30
|
Malumbres A, Martínez G, Hueso JL, Gracia J, Mallada R, Ibarra A, Santamaría J. Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation. NANOSCALE 2015; 7:8566-8573. [PMID: 25898392 DOI: 10.1039/c5nr01031d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stable, alkyl-terminated, light-emitting silicon nanoparticles have been synthesized in a continuous process by laser pyrolysis of a liquid trialkyl-silane precursor selected as a safer alternative to gas silane (SiH4). Stabilization was achieved by in situ reaction using a liquid collection system instead of the usual solid state filtration. The alkene contained in the collection liquid (1-dodecene) reacted with the newly formed silicon nanoparticles in an unusual room-temperature hydrosilylation process. It was achieved by the presence of fluoride species, also produced during laser pyrolysis from the decomposition of sulfur hexafluoride (SF6) selected as a laser sensitizer. This process directly rendered alkyl-passivated silicon nanoparticles with consistent morphology and size (<3 nm), avoiding the use of costly post-synthetic treatments.
Collapse
Affiliation(s)
- A Malumbres
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Le TH, Jeong HD. The effects of electronic coupling between capping molecules and quantum dots on the light absorption and emission of octyl, styryl, and 4-ethynylstyryl terminated silicon quantum dots. Phys Chem Chem Phys 2014; 16:18821-6. [DOI: 10.1039/c4cp02657h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical properties of silicon quantum dots (Si QDs) are greatly influenced by their size and surface chemistry.
Collapse
Affiliation(s)
- Thu-Huong Le
- Department of Chemistry
- Chonnam National University
- Gwangju 500-757, Republic of Korea
| | - Hyun-Dam Jeong
- Department of Chemistry
- Chonnam National University
- Gwangju 500-757, Republic of Korea
| |
Collapse
|
32
|
Tan D, Yamada Y, Zhou S, Shimotsuma Y, Miura K, Qiu J. Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. NANOSCALE 2013; 5:12092-12097. [PMID: 24141282 DOI: 10.1039/c3nr04392d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Carbon nanoparticles (CNPs), hollow CNPs, nanodiamonds, and hybrid graphene spheres (HGSPs) are produced by using fs laser ablation in solution. These carbon nanostructures emit tunable photoluminescence and two-photon luminescence. The photoinduced layer-by-layer assembly of graphene nanosheets is observed to form HGSPs with tailored broadly-ranged sizes for the first time.
Collapse
Affiliation(s)
- Dezhi Tan
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Tan D, Zhou S, Qiu J, Khusro N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Dung MX, Tung DD, Jeong S, Jeong HD. Tuning Optical Properties of Si Quantum Dots by π-Conjugated Capping Molecules. Chem Asian J 2013; 8:653-64. [DOI: 10.1002/asia.201201099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/03/2012] [Indexed: 11/07/2022]
|
35
|
Intartaglia R, Bagga K, Genovese A, Athanassiou A, Cingolani R, Diaspro A, Brandi F. Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid. Phys Chem Chem Phys 2012; 14:15406-11. [DOI: 10.1039/c2cp42195j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Tan D, Xu B, Chen P, Dai Y, Zhou S, Ma G, Qiu J. One-pot synthesis of luminescent hydrophilic silicon nanocrystals. RSC Adv 2012. [DOI: 10.1039/c2ra21044d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|