1
|
Wang L, Ji D, Liu X, Lei W, Taniguchi Y, Ling Y. Recent Progress of Triplex DNA Formation and Its Applications. J Med Chem 2025; 68:5055-5074. [PMID: 40019113 DOI: 10.1021/acs.jmedchem.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Recently, much attention has been focused on oligonucleotide drugs that precisely control the gene expression. Among these, triplex-forming oligonucleotides (TFOs) represent common antigene strategies because they bind specifically to the major groove position of genomic DNA to form a triplex DNA structure. Thus far, this promising triplex formation technique represents a successful strategy with strong application prospects for gene manipulation applications (e.g., cancer, Huntington's disease, inflammatory disease, etc.), analytical detection (e.g., nucleic acid, small molecules, etc.), and nanotechnology (e.g., molecular machines, etc.). This review summarizes in detail the full range of potential applications described above, particularly the various chemical modification strategies that have facilitated the stepwise advancement of TFO-based oligonucleotide drugs in recent years to improve the effectiveness, specificity, and applicability of triplex DNA and synergistically promote the effectiveness of triplex DNA.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Xiao Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Wenzhuo Lei
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yosuke Taniguchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
3
|
Kotammagari TK, Saleh LY, Lönnberg T. Organometallic modification confers oligonucleotides new functionalities. Chem Commun (Camb) 2024; 60:3118-3128. [PMID: 38385213 DOI: 10.1039/d4cc00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To improve their properties or to introduce entirely new functionalities, the intriguing scaffolds of nucleic acids have been decorated with various modifications, most recently also organometallic ones. While challenging to introduce, organometallic modifications offer the potential of expanding the field of application of metal-dependent functionalities to metal-deficient conditions, notably those of biological media. So far, organometallic moieties have been utilized as probes, labels and catalysts. This Feature Article summarizes recent efforts and predicts likely future developments in each of these lines of research.
Collapse
Affiliation(s)
- Tharun K Kotammagari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Lange Yakubu Saleh
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
4
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
5
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Lu C, Xu Y, Huang PJJ, Zandieh M, Wang Y, Zheng J, Liu J. Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly. NANOSCALE 2022; 14:14613-14622. [PMID: 36156621 DOI: 10.1039/d2nr03461a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yuancong Xu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yihao Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
7
|
Zhang Y, Tian X, Li X. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling. J Mater Chem B 2022; 10:3716-3722. [PMID: 35451448 DOI: 10.1039/d2tb00375a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulating enzyme activities or functionalities is one of the primary features of biological systems, which is, however, a great challenge for artificial enzyme systems. In this work, we designed and synthesized a series of self-assembling peptides from histidine and other amino acids (Asp, Ser, Lys or Arg), which exist in the active site of natural enzymes. These peptides could undergo a conformational transition from random coils to β-sheet structures under physiological conditions and formed self-assembled nanotubes with obvious hydrolase activities. After incorporation of transition metal ions such as Cu2+, these peptides could coordinate with Cu2+ ions, switch molecular conformations, and self-assemble into hybrid nanomaterials with altered morphologies and peroxidase-like activities. This work illustrates a facile approach for constructing artificial enzymes from self-assembling peptides with histidine residues whose catalytic functions could be modulated by incorporation of Cu2+ ions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Gao T, Li G. Bio-interfacial DNA self-assemblies for biomedical applications. DESIGN, PRINCIPLE AND APPLICATION OF SELF-ASSEMBLED NANOBIOMATERIALS IN BIOLOGY AND MEDICINE 2022:259-273. [DOI: 10.1016/b978-0-323-90984-6.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Gabriel P, Maranha FG, Nordlander E, Neves A, Terenzi H. A heterotrinuclear bioinspired coordination complex capable of binding to DNA and emulation of nuclease activity. J Inorg Biochem 2021; 226:111631. [PMID: 34717251 DOI: 10.1016/j.jinorgbio.2021.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
The investigation of compounds capable of strongly and selectively interacting with DNA comprises a field of research in constant development. In this work, we demonstrate that a trinuclear coordination complex based on a dinuclear Fe(III)Zn(II) core designed for biomimicry of the hydrolytic enzyme kidney bean purple acid phosphatase, containing an additional pendant arm coordinating a Pd(II) ion, has the ability to interact with DNA and to promote its hydrolytic cleavage. These results were found through analysis of plasmid DNA interaction and cleavage by the trinuclear complex 1 and its derivatives 2 and 3, in addition to the analysis of alteration in the DNA structure in the presence of the complexes through circular dichroism and DNA footprinting techniques. The suggested covalent interaction of the palladium-containing complex with DNA was analysed using an electrophoretic mobility assay, circular dichroism, high resolution gel separation techniques and kinetic analysis. This is a new and promising metal complex targeted to nucleic acids and acting in two separate ways: strong DNA interaction and hydrolytic cleavage.
Collapse
Affiliation(s)
- Philipe Gabriel
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-970, Brazil
| | - Filipy Gobbo Maranha
- Laboratório de Bioinorgânica e Cristalografia, Departamernto de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-970, Brazil
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Lund, Box 124, SE-221 00, Sweden
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia, Departamernto de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-970, Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-970, Brazil.
| |
Collapse
|
10
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
11
|
Arshad S, Arshad J, Khan MM, Parkinson S. Analysis of security and privacy challenges for DNA-genomics applications and databases. J Biomed Inform 2021; 119:103815. [PMID: 34022422 DOI: 10.1016/j.jbi.2021.103815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
DNA technology is rapidly moving towards digitization. Scientists use software tools and applications for sequencing, synthesizing, analyzing and sharing of DNA and genomic data, operate lab equipment and store genetic information in shared datastores. Using cutting-edge computing methods and techniques, researchers have decoded human genome, created organisms with new capabilities, automated drug development and transformed food safety. Such software applications are typically developed to progress scientific understanding and as such cyber security is never a concern for these applications. However, with the increasing commercialisation of DNA technologies, coupled with the sensitivity of DNA data, there is a need to adopt a security-by-design approach. In this paper we investigate bio-cyber security threats to genomic-DNA data and software applications making use of such data to advance scientific research. Specifically, we adopt an empirical approach to analyse and identify vulnerabilities within genomic-DNA databases and bioinformatics software applications that can lead to cyber-attacks affecting the confidentiality, integrity and availability of such sensitive data. We present a detailed analysis of these threats and highlight potential protection mechanisms to help researchers pursue these research directions.
Collapse
Affiliation(s)
- Saadia Arshad
- Department of Computer Science & IT, NED University of Engineering and Technology, Karachi, Pakistan
| | - Junaid Arshad
- School of Computing and Digital Technology, Birmingham City University, Birmingham, UK.
| | - Muhammad Mubashir Khan
- Department of Computer Science & IT, NED University of Engineering and Technology, Karachi, Pakistan
| | - Simon Parkinson
- Department of Computer Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
12
|
Abstract
Nanozymes have the potential to replace natural enzymes, so they are widely used in energy conversion technologies such as biosensors and signal transduction (converting biological signals of a target into optical, electrical, or metabolic signals). The participation of nucleic acids leads nanozymes to produce richer interface effects and gives energy conversion events more attractive characteristics, creating what are called “functional nanozymes”. Since different nanozymes have different internal structures and external morphological characteristics, functional modulation needs to be compatible with these properties, and attention needs to be paid to the influence of nucleic acids on nanozyme activity. In this review, “functional nanozymes” are divided into three categories, (nanozyme precursor ion)/ (nucleic acid) self-assembly, nanozyme-nucleic acid irreversible binding, and nanozyme-nucleic acid reversible binding, and the effects of nucleic acids on modulation principles are summarized. Then, the latest developments of nucleic acid-modulated nanozymes are reviewed in terms of their use in energy conversion technology, and their conversion mechanisms are critically discussed. Finally, we outline the advantages and limitations of “functional nanozymes” and discuss the future development prospects and challenges in this field.
Collapse
|
13
|
Saleh LY, Ora M, Lönnberg T. Cleavage of an RNA Model Compound by an Arylmercury Complex. Chembiochem 2021; 22:1761-1764. [PMID: 33448598 PMCID: PMC8247959 DOI: 10.1002/cbic.202000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Indexed: 11/22/2022]
Abstract
A water-soluble arylmercury complex has been synthesized, and its ability to catalyze the cleavage of the phosphodiester linkage of the RNA model compound adenylyl-3',5'-(2',3'-O-methyleneadenosine) has been assessed over a pH range of 3-8.5 and a catalyst concentration range of 0-7 mM. In the presence of 1 mM catalyst, the observed pH-rate profile featured a new pH-independent region between pH 6 and 7, the catalyzed reaction being as much as eight times faster than the background reaction. At pH 7, the acceleration increased linearly from three- to 17-fold upon increasing the catalyst concentration from 1 to 7 mM. The linear dependence indicates a relatively low affinity of the catalyst for the substrate and, hence, the potential for considerable improvement on tethering to an appropriate targeting group, such as an oligonucleotide.
Collapse
Affiliation(s)
- Lange Yakubu Saleh
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| | - Mikko Ora
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| |
Collapse
|
14
|
Moriya SS, Shibasaki H, Kohara M, Kuwata K, Imamura Y, Demizu Y, Kurihara M, Kittaka A, Sugiyama T. Synthesis and characterization of PNA oligomers containing preQ 1 as a positively charged guanine analogue. Bioorg Med Chem Lett 2021; 39:127850. [PMID: 33662538 DOI: 10.1016/j.bmcl.2021.127850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
We report the synthesis of a peptide nucleic acid (PNA) monomer containing preQ1, a positively charged guanine analogue. The new monomer was incorporated into PNA oligomers using standard Fmoc-chemistry-based solid-phase synthesis. The preQ1 unit-containing PNA oligomers exhibited improved affinity for their complementary DNA through electrostatic attraction, and their sequence specificity was not compromised. It could be beneficial to incorporate preQ1 into PNA oligomers instead of guanine when creating antisense/antigene agents or research tools.
Collapse
Affiliation(s)
- Shun-Suke Moriya
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hatsune Shibasaki
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Misaki Kohara
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasutada Imamura
- Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Ministry of Health and Welfare, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Masaaki Kurihara
- School of Pharmacy, International University of Health and Welfare, 2600-1, Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Toru Sugiyama
- Faculty of Pharmaceutical Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
15
|
Fantoni NZ, Brown T, Kellett A. DNA-Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. Chembiochem 2021; 22:2184-2205. [PMID: 33570813 DOI: 10.1002/cbic.202000838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Indexed: 12/20/2022]
Abstract
DNA binding metal complexes are synonymous with anticancer drug discovery. Given the array of structural and chemical reactivity properties available through careful design, metal complexes have been directed to bind nucleic acid structures through covalent or noncovalent binding modes. Several recognition modes - including crosslinking, intercalation, and oxidation - are central to the clinical success of broad-spectrum anticancer metallodrugs. However, recent progress in nucleic acid click chemistry coupled with advancement in our understanding of metal complex-nucleic acid interactions has opened up new avenues in genetic engineering and targeted therapies. Several of these applications are enabled by the hybridisation of oligonucleotide or polyamine probes to discrete metal complexes, which facilitate site-specific reactivity at the nucleic acid interface under the guidance of the probe. This Review focuses on recent advancements in hybrid design and, by way of an introduction to this topic, we provide a detailed overview of nucleic acid structures and metal complex-nucleic acid interactions. Our aim is to provide readers with an insight on the rational design of metal complexes with DNA recognition properties and an understanding of how the sequence-specific targeting of these interactions can be achieved for gene engineering applications.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for, Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
16
|
Huang PJJ, Liu J. In vitro selection and application of lanthanide-dependent DNAzymes. Methods Enzymol 2021; 651:373-396. [PMID: 33888210 DOI: 10.1016/bs.mie.2021.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly sensitive and selective detection of lanthanide ions is a major analytical challenge. In recent years, the use of DNA for this purpose has been pursued. For such highly charged cations, it is difficult to select their aptamers due to strong nonspecific binding. On the other hand, the use of catalytic DNA or DNAzymes has an advantage to overcome this problem, especially DNAzymes with RNA-cleaving activity. In this chapter, a few such DNAzymes are introduced and methods for in vitro selection of lanthanide-dependent RNA-cleaving DNAzymes are described in detail, including the selection protocols, the DNA sequences used, the characterization of selected DNAzymes and their conversion into biosensors. All of the experiments use only fluorophore-labeled DNA, and radioisotope labeling is completely avoided. The resulting DNAzymes can distinguish lanthanides from non-lanthanide metals, tell the difference between light and heavy lanthanides, and can be used together to discriminate individual lanthanides.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
17
|
Li Y, Liu J. Nanozyme's catching up: activity, specificity, reaction conditions and reaction types. MATERIALS HORIZONS 2021; 8:336-350. [PMID: 34821258 DOI: 10.1039/d0mh01393e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanozymes aim to mimic enzyme activities. In addition to catalytic activity, nanozymes also need to have specificity and catalyze biologically relevant reactions under physiological conditions to fit in the definition of enzyme and to set nanozymes apart from typical inorganic catalysts. Previous discussions in the nanozyme field mainly focused on the types of reactions or certain analytical, biomedical or environmental applications. In this article, we discuss efforts made to mimic enzymes. First, the catalytic cycles are compared, where a key difference is specific substrate binding by enzymes versus non-specific substrate adsorption by nanozymes. We then reviewed efforts to engineer and surface-modify nanomaterials to accelerate reaction rates, strategies to graft affinity ligands and molecularly imprinted polymers to achieve specific catalysis, and methods to bring nanozyme reactions to neutral pH and ambient temperature. Most of the current nanozyme reactions used a few model chromogenic substrates of no biological relevance. Therefore, we also reviewed efforts to catalyze the conversion of biomolecules and biopolymers using nanozymes. By the efforts to close the gaps between nanozymes and enzymes, we believe nanozymes are catching up rapidly. Still, challenges exist in materials design to further improve nanozymes as true enzyme mimics and achieve impactful applications.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
18
|
Zuin Fantoni N, McGorman B, Molphy Z, Singleton D, Walsh S, El-Sagheer AH, McKee V, Brown T, Kellett A. Development of Gene-Targeted Polypyridyl Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2020; 21:3563-3574. [PMID: 32755000 DOI: 10.1002/cbic.202000408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Indexed: 02/02/2023]
Abstract
In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Present address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Daniel Singleton
- ATDBio Ltd., School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Walsh
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,ATDBio Ltd., Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
19
|
Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron 2020; 168:112537. [PMID: 32882473 DOI: 10.1016/j.bios.2020.112537] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Nanozymes are engineered nanomaterials with enzyme-like activities. Over the past decade, impressive progresses on nanozymes in biosensing have been made due to their unique advantages of high stability, low cost, and easy modification compared to natural enzymes. For many biosensors, it is critical to conjugate nanozymes to affinity ligands such as antibodies and aptamers. Since different nanomaterials have different surface properties, conjugation methods need to be compatible with these properties. In addition, the effect of biomolecules on nanozyme activity needs to be considered. In this review, we first categorized nanozyme-based biosensors into four parts, respectively describing noncovalent and covalent modifications with antibodies and aptamers. Meanwhile, recent advances in antibody and aptamer labeled nanozyme biosensors are summarized, and the methods of their conjugation are further illustrated. Finally, conclusions and future perspectives for the development and application of nanozyme bioconjugates are discussed.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing, 400715, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Xin Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
20
|
Wu W, Huang L, Wang E, Dong S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci 2020; 11:9741-9756. [PMID: 34094238 PMCID: PMC8162425 DOI: 10.1039/d0sc03522j] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.
Collapse
Affiliation(s)
- Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
21
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
22
|
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020; 30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
23
|
Mercury(II)-Catalyzed Cleavage, Isomerization and Depurination of RNA and DNA Model Compounds and Desulfurization of Their Phosphoromonothioate Analogs. Catalysts 2020. [DOI: 10.3390/catal10020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The potential of Hg(II), a metal ion so-far overlooked in the development of artificial nucleases, to cleave RNA and DNA has been assessed. Accordingly, Hg(II)-promoted cleavage and isomerization of the RNA model compound adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) and depurination of 2′-deoxyadenosine were followed by HPLC as a function of pH (5.0–6.0) and the desulfurization of both diastereomers of the phosphoromonothioate analog of adenylyl-3′,5′-(2′,3′-O-methyleneadenosine) at a single pH (6.9). At 5 mM [Hg(II)], cleavage of the RNA model compound was accelerated by two orders of magnitude at the low and by one order of magnitude at the high end of the pH range. Between 0 and 5 mM [Hg(II)], the cleavage rate showed a sigmoidal dependence on [Hg(II)], suggesting the participation of more than one Hg(II) in the reaction. Isomerization and depurination were also facilitated by Hg(II), but much more modestly than cleavage, less than 2-fold over the entire pH range studied. Phosphoromonothioate desulfurization was by far the most susceptible reaction to Hg(II) catalysis, being accelerated by more than four orders of magnitude.
Collapse
|
24
|
Panattoni A, El-Sagheer AH, Brown T, Kellett A, Hocek M. Oxidative DNA Cleavage with Clip-Phenanthroline Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2019; 21:991-1000. [PMID: 31680391 DOI: 10.1002/cbic.201900670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/13/2022]
Abstract
A systematic study of several new types of hybrids of Cu-chelated clamped phenanthroline artificial metallonuclease (AMN) with triplex-forming oligonucleotides (TFO) for sequence-specific cleavage of double-stranded DNA (dsDNA) is reported. The synthesis of these AMN-TFO hybrids is based on application of the alkyne-azide cycloaddition click reaction as the key step. The AMN was attached through different linkers at either the 5'- or 3'-ends or in the middle of the TFO stretch. The diverse hybrids efficiently formed triplexes with the target purine-rich sequence and their copper complexes were studied for their ability to cleave dsDNA in the presence of ascorbate as a reductant. In all cases, the influence of the nature and length of the AMN-TFO, time, conditions and amounts of ascorbate were studied, and optimum conjugates and a procedure that gave reasonably efficient (up to 34 %) cleavage of the target sequence, while rendering an off-target dsDNA intact, were found. The footprint of cleavage on PAGE was identified only in one case, with low conversion; this means that cleavage does not proceed with single nucleotide precision. On the other hand, these AMN-TFO hybrids are useful for the selective degradation of target dsDNA sequences. Future improvements to this design may provide higher resolution and selectivity.
Collapse
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Centre, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences, National Institute for Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Centre, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
25
|
Xu F, Lu Q, Huang PJJ, Liu J. Nanoceria as a DNase I mimicking nanozyme. Chem Commun (Camb) 2019; 55:13215-13218. [PMID: 31577297 DOI: 10.1039/c9cc06782e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein communicate the DNase I like activity of nanoceria (CeO2 nanoparticles). Both CeO2 and DNase I cleave polyadenine (poly-A) DNA down to ∼5-mer fragments as the major products, although further cleavage to even shorter fragments was observed with CeO2. Mass spectrometry indicates a hydrolytic cleavage mechanism instead of oxidative cleavage.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China and Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Qinwei Lu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
26
|
Zhou D, Wang C, Luo J, Yang M. C 3N 4 nanosheet-supported Prussian Blue nanoparticles as a peroxidase mimic: colorimetric enzymatic determination of lactate. Mikrochim Acta 2019; 186:735. [PMID: 31673799 DOI: 10.1007/s00604-019-3834-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023]
Abstract
Prussian Blue nanoparticles were deposited on g-C3N4 nanosheets. The resulting nanocomposite possesses peroxidase-like (POx) activity and can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine at room temperature in the presence of H2O2. This leads to formation of a blue product with an absorption maximum at 650 nm. The formation of the Prussian Blue nanoparticles on the g-C3N4 nanosheets, and the POx-like activity of the composite were characterized in detail. The POx mimic was used for determination of L-lactic acid via detection of H2O2 that is produced by the enzyme lactate oxidase (LOx). The assay has a linear range that extends from 5 to 100 μM, and the detection limit is 2.2 μM. The method was successfully applied to the determination of L-lactic acid in spiked human serum. Graphical abstract Ultra-small Prussian Blue (PB) nanoparticles were used to modify g-C3N4 nanosheets, and their peroxidase-like activity was explored for detection of L-lactic acid. LOx represent L-lactate oxidase, and TMB represents 3,3',5,5'-tetramethylbenzidine.
Collapse
Affiliation(s)
- Dandan Zhou
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Congsen Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Junjun Luo
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
27
|
Zhang B, Zhao M, Qi Y, Tian R, Carter BB, Zou H, Zhang C, Wang C. The Intrinsic Enzyme Activities of the Classic Polyoxometalates. Sci Rep 2019; 9:14832. [PMID: 31619704 PMCID: PMC6795894 DOI: 10.1038/s41598-019-50539-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
The mimicking enzyme activities of eighteen classic POMs with different structures, Keggin (H3PW12O40, H4SiW12O40, H4GeW12O40, K4GeW12O40, H3PMo12O40, H4SiMo12O40 and Eu3PMo12O40), Wells-Dawson (H6P2Mo18O62, α-(NH4)6P2W18O62 and α-K6P2W18O62·14H2O), lacunary-Keggin (Na8H[α-PW9O34], Na10[α-SiW9O34], Na10[α-GeW9O34] and K8[γ-SiW10O36]), the transition-metal substituted-type (α-1,2,3-K6H[SiW9V3O34] and H5PMo10V2O40), sandwich-type (K10P2W18Fe4(H2O)2O68) and an isopolyoxotungstate (Na10H2W12O42) were screened and compared. The mechanisms and reaction conditions of POMs with mimicking enzyme-like activities were also analyzed. The results shown that the structures, the hybrid atoms, the coordination atoms, the substituted metal atoms, pH and substrate are the effect factors for the enzyme mimic activities of POM. Among the eighteen POMs, H3PW12O40, H4SiW12O40, H4GeW12O40, α-(NH4)6P2W18O62, α-K6P2W18O62·14H2O, Na8H[α-PW9O34], Na10[α-SiW9O34], Na10[α-GeW9O34], K8[γ-SiW10O36], K10P2W18Fe4(H2O)2O68 and Na10H2W12O42 had the peroxidase activities. Eu3PMo12O40, H3PMo12O40, H4SiMo12O40, α-1,2,3-K6H [SiW9V3O34], H6P2Mo18O62 and H5PMo10V2O40 showed the oxidase-like activities. K4GeW12O40 did not show the peroxidase and oxidase activities. The Na8H[α-PW9O34], Na10[α-SiW9O34] and Na10[α-GeW9O34] showed intrinsic enzyme activities at alkaline conditions, which were different from other type of POMs. The sandwich-type K10P2W18Fe4(H2O)2O68 displayed the strongest peroxidase activity, which is similar to natural horseradish peroxidase.
Collapse
Affiliation(s)
- Boyu Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Mingming Zhao
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Rui Tian
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Boye B Carter
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Hangjin Zou
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Chuhan Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Chunyan Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
28
|
|
29
|
Diez-Castellnou M, Salassa G, Mancin F, Scrimin P. The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Front Chem 2019; 7:469. [PMID: 31334218 PMCID: PMC6616306 DOI: 10.3389/fchem.2019.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1, 4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate, HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow the characteristic bell-shape profile typical of complexes with penta-coordinated metal centers. By the contrary, two reactive species, featuring different deprotonation states, are present, with the tri-aqua complex being more reactive than the mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex charge which plays an important role in the stability of the transition state/s of the reactions. Relevant insight on the reaction mechanism were hence obtained.
Collapse
Affiliation(s)
| | - Giovanni Salassa
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| |
Collapse
|
30
|
Gao T, Chen T, Feng C, He X, Mu C, Anzai JI, Li G. Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells. Nat Commun 2019; 10:2946. [PMID: 31270421 PMCID: PMC6610073 DOI: 10.1038/s41467-019-10845-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
The capability to encapsulate designated live cells into a biologically and mechanically tunable polymer layer is in high demand. Here, an approach to weave functional DNA polymer cocoons has been proposed as an encapsulation method. By developing in situ DNA-oriented polymerization (isDOP), we demonstrate a localized, programmable, and biocompatible encapsulation approach to graft DNA polymers onto live cells. Further guided by two mutually aided enzymatic reactions, the grafted DNA polymers are assembled into DNA polymer cocoons at the cell surface. Therefore, the coating of bacteria, yeast, and mammalian cells has been achieved. The capabilities of this approach may offer significant opportunities to engineer cell surfaces and enable the precise manipulation of the encapsulated cells, such as encoding, handling, and sorting, for many biomedical applications.
Collapse
Affiliation(s)
- Tao Gao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, Shanghai, P.R. China
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, Shanghai, P.R. China
| | - Chang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, P.R. China
| | - Xiang He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China
| | - Chaoli Mu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, P.R. China
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, Shanghai, P.R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, P.R. China.
| |
Collapse
|
31
|
Zhou YH, Zhang Z, Patrick M, Yang F, Wei R, Cheng Y, Gu J. Cleaving DNA-model phosphodiester with Lewis acid-base catalytic sites in bifunctional Zr-MOFs. Dalton Trans 2019; 48:8044-8048. [PMID: 31094382 DOI: 10.1039/c9dt00246d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Organophosphates exist in many biomolecules. The design of artificial nucleases for efficient P-O bond cleavage is essential for the fields of genetic engineering and molecular biology. Herein, metal-organic frameworks (MOFs) with cooperatively isolated multi-catalytic active sites were utilized as heterogeneous catalysts for the hydrolytic cleavage of bis(p-nitrophenyl) phosphate (BNPP).
Collapse
Affiliation(s)
- Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Tian R, Zhang B, Zhao M, Zou H, Zhang C, Qi Y, Ma Q. Fluorometric enhancement of the detection of H 2O 2 using different organic substrates and a peroxidase-mimicking polyoxometalate. RSC Adv 2019; 9:12209-12217. [PMID: 35515876 PMCID: PMC9063527 DOI: 10.1039/c9ra00505f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Simple, sensitive and stable fluorometric sensors based on the polyoxotungstate intrinsic peroxidase (Na10[α-SiW9O34]) induced fluorescent enhancement of benzoic acid (BA), thiamine (TH) and 3-(4-hydroxyphenyl)propionic acid (HPPA) for the detection of hydrogen peroxide (H2O2) are developed for the first time. In three assays, the three non-fluorescent substrates BA, TH and HPPA were oxidized with the ·OH radicals decomposed from H2O2 under the catalysis of Na10[α-SiW9O34] under basic pH conditions. The optimal conditions for the detection of H2O2 were evaluated and possible mechanisms are also discussed. The fluorescence intensity increases were linearly related to the concentration of H2O2 in the ranges 1 × 10-8 to 1.6 × 10-6, 1.6 × 10-6 to 1 × 10-4, and 1 × 10-5to 2.5 × 10-4 M with BA, TH, and HPPA as substrates, respectively. Detection limits for the three systems were found to be 6.7 × 10-9, 2.2 × 10-7 and 9.6 × 10-6 M (3σ), respectively. The RSD values ranged from 2.57% to 4.66%, 0.82% to 4.06%, and 1.08% to 2.75%, respectively. The rates of recoveries were between 99.73% and 113.06%, 95.20% and 104.22%, and 95.28% and 128.76%, respectively. Moreover, the effects of interference were studied. The proposed work was successfully applied to the determination of H2O2 in water and a sensitive, rapid and easy to operate assay was built, which has great potential applications in environmental science.
Collapse
Affiliation(s)
- Rui Tian
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Boyu Zhang
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Mingming Zhao
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Hangjin Zou
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Chuhan Zhang
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Yanfei Qi
- School of Public Health, Jilin University Changchun Jilin 130021 China +86-431-85619441
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
34
|
Shigi N, Mizuno Y, Kunifuda H, Matsumura K, Komiyama M. Promotion of Single-Strand Invasion of PNA to Double-Stranded DNA by Pseudo-Complementary Base Pairing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Narumi Shigi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Mizuno
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hiroko Kunifuda
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazunari Matsumura
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
35
|
Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 2019; 7:850-875. [DOI: 10.1039/c8tb02878h] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight the recent developments in functional nanomaterials with unique enzyme-like characteristics for sensing applications.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin Universty
- Hyogo 660-1337
- Japan
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
36
|
Machnik G, Skudrzyk E, Bułdak Ł, Ruczyński J, Kozłowska A, Mucha P, Rekowski P, Szkróbka W, Basiak M, Bołdys A, Sławska H, Okopień B. Monitoring the Transcriptional Activity of Human Endogenous Retroviral HERV-W Family Using PNA Strand Invasion into Double-Stranded DNA. Mol Biotechnol 2018; 60:124-133. [PMID: 29313202 PMCID: PMC5799313 DOI: 10.1007/s12033-017-0057-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the presented assay, we elaborated a method for distinguishing sequences that are genetically closely related to each other. This is particularly important in a situation where a fine balance of the allele abundance is a point of research interest. We developed a peptide nucleic acid (PNA) strand invasion technique for the differentiation between multiple sclerosis-associated retrovirus (MSRV) and ERVWE1 sequences, both molecularly similar, belonging to the human endogenous retrovirus HERV-W family. We have found that this method may support the PCR technique in screening for minor alleles which, in certain conditions, may be undetected by the standard PCR technique. We performed the analysis of different ERVWE1 and MSRV template mixtures ranging from 0 to 100% of ERVWE1 in the studied samples, finding the linear correlation between template composition and signal intensity of final reaction products. Using the PNA strand invasion assay, we were able to estimate the relative ERVWE1 expression level in human specimens such as U-87 MG, normal human astrocytes cell lines and placental tissue. The results remained in concordance with those obtained by semi-quantitative or quantitative PCR.
Collapse
Affiliation(s)
- Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland.
| | - Estera Skudrzyk
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Jarosław Ruczyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Mucha
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Witold Szkróbka
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Helena Sławska
- Department of Gynaecology, Obstetrics and Oncological Gynaecology, Medical University of Silesia, Batorego 15, 41-902, Bytom, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
37
|
Sun M, Xu L, Qu A, Zhao P, Hao T, Ma W, Hao C, Wen X, Colombari FM, de Moura AF, Kotov NA, Xu C, Kuang H. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat Chem 2018; 10:821-830. [DOI: 10.1038/s41557-018-0083-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
|
38
|
Hrdlicka PJ, Karmakar S. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science. Org Biomol Chem 2017; 15:9760-9774. [PMID: 29135014 PMCID: PMC5711458 DOI: 10.1039/c7ob02152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.
Collapse
|
39
|
Yuan Y, Zhao Y, Chen L, Wu J, Chen G, Li S, Zou J, Chen R, Wang J, Jiang F, Tang Z. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G-T mismatch. Nucleic Acids Res 2017; 45:8676-8683. [PMID: 28911109 PMCID: PMC5587794 DOI: 10.1093/nar/gkx602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Riboflavin (vitamin B2) has been thought to be a promising antitumoral agent in photodynamic therapy, though the further application of the method was limited by the unclear molecular mechanism. Our work reveals that riboflavin was able to recognize G–T mismatch specifically and induce single-strand breaks in duplex DNA targets efficiently under irradiation. In the presence of riboflavin, the photo-irradiation could induce the death of tumor cells that are defective in mismatch repair system selectively, highlighting the G–T mismatch as potential drug target for tumor cells. Moreover, riboflavin is a promising leading compound for further drug design due to its inherent specific recognition of the G–T mismatch.
Collapse
Affiliation(s)
- Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.,College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yongyun Zhao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lianqi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiasi Wu
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Sheng Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiawei Zou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Rong Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jian Wang
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
40
|
Applications of PNA-Based Artificial Restriction DNA Cutters. Molecules 2017; 22:molecules22101586. [PMID: 28934140 PMCID: PMC6151779 DOI: 10.3390/molecules22101586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
More than ten years ago, artificial restriction DNA cutters were developed by combining two pseudo-complementary peptide nucleic acid (pcPNA) strands with either Ce(IV)/EDTA or S1 nuclease. They have remarkably high site-specificity and can cut only one predetermined site in the human genome. In this article, recent progress of these man-made tools have been reviewed. By cutting the human genome site-selectively, desired fragments can be clipped from either the termini of chromosomes (telomeres) or from the middle of genome. These fragments should provide important information on the biological functions of complicated genome system. DNA/RNA hybrid duplexes, which are formed in living cells, are also site-selectively hydrolyzed by these cutters. In order to further facilitate the applications of the artificial DNA cutters, various chemical modifications have been attempted. One of the most important successes is preparation of PNA derivatives which can form double-duplex invasion complex even under high salt conditions. This is important for in vivo applications, since the inside of living cells is abundant of metal ions. Furthermore, site-selective DNA cutters which require only one PNA strand, in place of a pair of pcPNA strands, are developed. This progress has opened a way to new fields of PNA-based biochemistry and biotechnology.
Collapse
|
41
|
Salvio R, Casnati A. Guanidinium Promoted Cleavage of Phosphoric Diesters: Kinetic Investigations and Calculations Provide Indications on the Operating Mechanism. J Org Chem 2017; 82:10461-10469. [DOI: 10.1021/acs.joc.7b01925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Riccardo Salvio
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Università La Sapienza, 00185 Roma, Italy
| | - Alessandro Casnati
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
42
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
43
|
Krejcova L, Richtera L, Hynek D, Labuda J, Adam V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens Bioelectron 2017. [PMID: 28641203 DOI: 10.1016/j.bios.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, CZ-166 28 Prague, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Jan Labuda
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
44
|
Conjugates between minor groove binders and Zn(II)-tach complexes: Synthesis, characterization, and interaction with plasmid DNA. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Diez-Castellnou M, Martinez A, Mancin F. Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Komiyama M. Design of Highly Active Ce(IV) Catalysts for DNA Hydrolysis and Their Applications. CHEM LETT 2016. [DOI: 10.1246/cl.160786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2036-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Salvio R, Volpi S, Cacciapaglia R, Sansone F, Mandolini L, Casnati A. Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. J Org Chem 2016; 81:9012-9019. [DOI: 10.1021/acs.joc.6b01643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Salvio
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Stefano Volpi
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Roberta Cacciapaglia
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Francesco Sansone
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Luigi Mandolini
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Alessandro Casnati
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
49
|
|
50
|
Asanuma H, Niwa R, Akahane M, Murayama K, Kashida H, Kamiya Y. Strand-invading linear probe combined with unmodified PNA. Bioorg Med Chem 2016; 24:4129-4137. [PMID: 27394693 DOI: 10.1016/j.bmc.2016.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration.
Collapse
Affiliation(s)
- Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Rie Niwa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mariko Akahane
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukiko Kamiya
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|