1
|
Cui K, Fangming Z, Shi T, Zhao S, Zhou Y, Liu X, Hu Y, Hu Z, Kong L, Zhang Z. Iterative Screening of Vitamin E-Based Functional Lipid Nanoparticles for mRNA Delivery. ACS NANO 2025. [PMID: 40433897 DOI: 10.1021/acsnano.5c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Ionizable lipids are crucial for the effective delivery of mRNA by using lipid nanoparticles (LNPs). Endowing ionizable lipids with tailored biological properties could potentially augment the therapeutic efficacy of mRNA-based treatments. Herein, a functional vitamin E (VE)-based lipid library with distinct head groups was designed and synthesized. Due to the presence of VE, these lipids inherently exhibited immunomodulatory properties, including the promotion of cellular uptake, dendritic cells maturation, and antigen presentation. Through iterative optimization of the LNP components and the architecture of ionizable lipids, the correlation between the structure of ionizable lipids and their mRNA delivery efficiency has been established, leading to the finding of the most effective delivery formulation. Benefiting from the high mRNA delivery efficiency and the immunomodulatory function of LNPs themselves, VE-based LNPs have demonstrated complete remission in colon cancer by delivering mIL-12, which offered a beneficial combination with immune checkpoint blockade. The proposed functional LNPs were anticipated to furnish potential delivery systems for mRNA-based cancer treatments.
Collapse
Affiliation(s)
- Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhang Fangming
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianzi Shi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyu Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixuan Zhou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550025 China
| | - Yong Hu
- ENO Bio mRNA Innovation Institute, Shenzhen Rhegen Biotechnology Co., Ltd., Wuhan 430030, China
| | - Zhaoyu Hu
- ENO Bio mRNA Innovation Institute, Shenzhen Rhegen Biotechnology Co., Ltd., Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Yap SL, Dyett B, Hobro AJ, Nguyen H, Smith NI, Drummond CJ, Conn CE, Tran N. The Internal Nanostructure of Lipid Nanoparticles Influences Their Diverse Cellular Uptake Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500903. [PMID: 40392028 DOI: 10.1002/smll.202500903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Lipid nanoparticles have emerged as critical platforms for bioactive agent delivery, with their success in COVID-19 vaccines highlighting the urgent need to address gaps in understanding their biological interactions. Lyotropic liquid crystalline nanoparticles (LLCNPs) represent promising nanocarriers for bioactive agent delivery. In this study, it is revealed for the first time how internal nanostructures of LLCNPs - liposomes, cubosomes, hexosomes, and micellar cubosomes - influence their cellular uptake pathways. By isolating the effects of mesophase while maintaining consistent particle size, charge, and surface coating, it is demonstrated that non-lamellar LLCNPs, particularly cubosomes, significantly enhance cellular uptake via distinct endocytic and non-endocytic mechanisms. These nanoparticles predominantly utilize passive non-endocytic pathways, such as membrane fusion, bypassing endocytic recycling challenges faced by most nanomaterials, including lamellar liposomes. Among active endocytic pathways, macropinocytosis emerges as the dominant route for non-lamellar particles. The findings establish a direct link between LLCNP internal nanostructure and cellular internalization mechanisms, highlighting the critical role of mesophase design in optimizing nanocarrier performance. This knowledge enables the rational engineering of LLCNPs tailored to target specific uptake pathways, facilitating precision delivery for diverse therapeutic applications and addressing key barriers in intracellular drug transport.
Collapse
Affiliation(s)
- Sue Lyn Yap
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 5650871, Japan
| | - Han Nguyen
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nicholas I Smith
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 5650871, Japan
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
3
|
Lee C, Chan AM, Nijhawan AK, Ho MB, Kosheleva I, Chen LX. Millisecond Phase Transition Kinetics of Lyotropic Liquid Crystalline Nanoparticles Observed by Time-Resolved Small Angle X-ray Solution Scattering. Chemphyschem 2025:e2401072. [PMID: 40293325 DOI: 10.1002/cphc.202401072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
This study investigates the dynamic behavior of lyotropic liquid crystal nanoparticles (LCNPs), which are widely recognized for their applications in drug delivery. By employing nanosecond near-infrared laser pulse-induced temperature jump (T-jump) and time-resolved X-ray solution scattering, the structural dynamics of phase transitions in phytantriol-based cubosomes and hexosomes are revealed. Both cubosome and hexosome LCNPs undergo phase transitions into noncrystalline phases at high temperatures. Their phase transition kinetics, occurring within milliseconds (ms) and involving one intermediate structure, are captured. Additionally, the reverse self-assembly processes of LCNPs were observed, occurring on the timescale of a few hundred ms. To our knowledge, this is the first observation of LCNP T-jump induced phase transitions on the ms timescale and their reverse self-assembly. These findings provide valuable insights into the LCNP phase transition processes, with potential implications for drug delivery applications.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Incheon National University, 22012, Incheon, Korea
| | - Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Madeline B Ho
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
4
|
Aoki N, Tang Y, Zeng X, Ichikawa T. Design of Functional Gyroid Minimal Surfaces Transporting Proton Based Solely on Surface Hopping Conduction Mechanism. Macromol Rapid Commun 2025; 46:e2400619. [PMID: 39491048 DOI: 10.1002/marc.202400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO3 - groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction. In this study, a series of polymerizable amphiphilic-zwitterions is prepared, forming bicontinuous cubic liquid-crystalline assemblies with gyroid symmetry in the presence of suitable amounts of bis(trifluoromethanesulfonyl) imide (HTf2N) and water. In situ polymerization of these compounds yields gyroid-nanostructured polymer films, as confirmed by synchrotron small-angle X-ray scattering experiments. The high proton conductivity of the films on the order of 10-2 S cm-1 at 40 °C and relative humidity of 90% is based solely on the SPHC mechanism.
Collapse
Affiliation(s)
- Nanami Aoki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
5
|
Galstyan A. Tracking Microenvironmental Response on Self-Assembled Phthalocyanine Systems - Adaptive and Non-Adaptive Antibacterial Photosensitization. Chemistry 2024; 30:e202401305. [PMID: 39034685 DOI: 10.1002/chem.202401305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Self-assembly has proven to be one of the effective methods for the formation of nanoscale therapeutics without the need to use nanodelivery systems. Such minimal models of supramolecular systems formed from amphiphilic photosensitizers (PS) have recently emerged as a new class of photoactive systems, providing unique and in some cases superior activities. Although the mechanism of photogenerated reactive oxygen species (ROS) in such systems is studied and to a certain extent understood, there are very limited studies investigating the influence of intricate environmental factors, including those occurring in the cellular environment, on the self-assembly and thus the activity of the system. Understanding the optimal conditions for the formation of active PS aggregates is an important area of research in the field of photodynamic therapy (PDT), as it is directly linked to the optimal treatment dose. In this study, we describe the synthesis, self-assembly properties, photophysical characterization, and photobiological efficacy of structurally closely related low-symmetry phthalocyanine derivatives. Studying the decay behavior of the PS fluorescence lifetime in the presence of molecular crowders and different bacterial strains, we found that certain derivatives exhibited adaptive behavior and change in activity, while others demonstrated non-adaptive characteristics.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Centre for Water and Environmental Research (ZWU) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
6
|
Ichikawa T, Obara S, Yamaguchi S, Tang Y, Kato T, Zeng X. Design of V-shaped ionic liquid crystals: atropisomerisation ability and formation of double-gyroid molecular assemblies. Chem Commun (Camb) 2024; 60:11279-11282. [PMID: 39196639 DOI: 10.1039/d4cc03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We designed V-shaped ionic liquid crystals with two sterically congested ionic parts at the vertex. Depending on the degree of steric hindrance, atropisomerisation occurred in solution. All compounds formed bicontinuous cubic phases with double-gyroid structures in the bulk state, partially owing to the co-existence of atropisomers with opposite chirality.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Soki Obara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Saori Yamaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Toshiyo Kato
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
7
|
Rosso AP, de Oliveira FA, Guégan P, Jager E, Giacomelli FC. Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories. J Colloid Interface Sci 2024; 671:88-99. [PMID: 38795537 DOI: 10.1016/j.jcis.2024.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.
Collapse
Affiliation(s)
- Anabella P Rosso
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, Paris, France
| | - Eliezer Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
8
|
Zhou Y, Wei J, Li X, Wąsik P, Liu H, Liu T. Complex Phase Transitions of Fully Rigid Sphere-Rod Amphiphiles Induced by Solvent Polarity in Dilute Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51512-51520. [PMID: 39269327 DOI: 10.1021/acsami.4c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We report complex macrophase and microphase transitions of rigid amphiphiles with spherical Keggin molecular clusters as the solvophilic block and rod-like rigid oligofluorene (OF) as the solvophobic block in mixed solvents of water and polar organic solvent. By properly adjusting the solvent polarity, the amphiphiles are found to respond accordingly by self-assembling into multilayered incomplete onion-like structures (10-25 vol % THF), single-layered vesicular structures (60 vol % THF), and an unexpected macrophase separation in the middle (40-50 vol % THF), which is due to the anomalous trends in Keggin solubility as a result of the nature of TBA+ counterions. The rigidity of the OF block prevents the amphiphile from assembling by following the rule of packing parameters; instead, interdigitation among different rods leads to the formation of the solvophobic domain to achieve self-assembly. The incomplete onion structures are controlled by the interdigitation of rigid rods for the number of layers and the electrostatic interaction among Keggin head groups for the interlayer distance. When the degree of interdigitation becomes lower, the self-assembly process shows a trend that can be explained by the traditional rule of packing parameter. This study demonstrates the formation of different self-assembled structures by rigid amphiphiles and their transitions induced by solvent composition. The self-assembly (microphase separation) of rigid amphiphiles in a dilute solution could indeed represent a broad area containing complicated, uncharted rules.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jingfan Wei
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Patryk Wąsik
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
9
|
Tang C, Lu W, Zhang Y, Zhang W, Cui C, Liu P, Han L, Qian X, Chen L, Xu F, Mai Y. Toward Ultrahigh Rate and Cycling Performance of Cathode Materials of Sodium Ion Battery by Introducing a Bicontinuous Porous Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402005. [PMID: 38598862 DOI: 10.1002/adma.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Indexed: 04/12/2024]
Abstract
The emerging sodium-ion batteries (SIBs) are one of the most promising candidates expected to complement lithium-ion batteries and diversify the battery market. However, the exploitation of cathode materials with high-rate performance and long-cycle stability for SIBs has remained one of the major challenges. To this end, an efficient approach to enhance rate and cycling performance by introducing an ordered bicontinuous porous structure into cathode materials of SIBs is demonstrated. Prussian blue analogues (PBAs) are selected because they are recognized as a type of most promising SIB cathode materials. Thanks to the presence of 3D continuous channels enabling fast Na+ ions diffusion as well as the intrinsic mechanical stability of bicontinuous architecture, the resultant PBAs exhibit excellent rate capability (80 mAh g-1 at 2.5 A g-1) and ultralong cycling life (>3000 circulations at 0.5 A g-1), reaching the top performance of the reported PBA-based cathode materials. This study opens a new avenue for boosting sluggish ion diffusion kinetics in electrodes of rechargeable batteries and also provides a new paradigm for solving the dilemma that electrodes' failure due to high-stress concentration upon ion storage.
Collapse
Affiliation(s)
- Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), In-situ Center for Physical Sciences, and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Lu
- School of Mechanical Engineering, State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), In-situ Center for Physical Sciences, and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Congcong Cui
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Pan Liu
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoshi Qian
- School of Mechanical Engineering, State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), In-situ Center for Physical Sciences, and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), In-situ Center for Physical Sciences, and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), In-situ Center for Physical Sciences, and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Wei P, Duan Y, Wang C, Sun P, Sun N. Co-Assembled Supramolecular Organohydrogels of Amphiphilic Zwitterion and Polyoxometalate with Controlled Microstructures. Molecules 2024; 29:2286. [PMID: 38792147 PMCID: PMC11124011 DOI: 10.3390/molecules29102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.
Collapse
Affiliation(s)
- Peilin Wei
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Yu Duan
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Chen Wang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Panpan Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| |
Collapse
|
11
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Yu H, Dyett B, Kirby N, Cai X, Mohamad ME, Bozinovski S, Drummond CJ, Zhai J. pH-Dependent Lyotropic Liquid Crystalline Mesophase and Ionization Behavior of Phytantriol-Based Ionizable Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309200. [PMID: 38295089 DOI: 10.1002/smll.202309200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Nigel Kirby
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
13
|
Liu Y, Zhou Q, Yu H, Yang Q, Wang M, Huang C, Xiang L, Li C, Heine T, Hu G, Wang S, Feng X, Mai Y. Increasing the Accessibility of Internal Catalytic Sites in Covalent Organic Frameworks by Introducing a Bicontinuous Mesostructure. Angew Chem Int Ed Engl 2024; 63:e202400985. [PMID: 38353140 DOI: 10.1002/anie.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/05/2024]
Abstract
Introducing continuous mesochannels into covalent organic frameworks (COFs) to increase the accessibility of their inner active sites has remained a major challenge. Here, we report the synthesis of COFs with an ordered bicontinuous mesostructure, via a block copolymer self-assembly-guided nanocasting strategy. Three different mesostructured COFs are synthesized, including two covalent triazine frameworks and one vinylene-linked COF. The new materials are endowed with a hierarchical meso/microporous architecture, in which the mesochannels exhibit an ordered shifted double diamond (SDD) topology. The hierarchically porous structure can enable efficient hole-electron separation and smooth mass transport to the deep internal of the COFs and consequently high accessibility of their active catalytic sites. Benefiting from this hierarchical structure, these COFs exhibit excellent performance in visible-light-driven catalytic NO removal with a high conversion percentage of up to 51.4 %, placing them one of the top reported NO-elimination photocatalysts. This study represents the first case of introducing a bicontinuous structure into COFs, which opens a new avenue for the synthesis of hierarchically porous COFs and for increasing the utilization degree of their internal active sites.
Collapse
Affiliation(s)
- Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Qin Zhou
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Hongde Yu
- Department of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069, Dresden, Germany
| | - Qiqi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Thomas Heine
- Department of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, Forschungsstelle Leipzig, 04318, Leipzig, Germany
- Department of Chemistry, Yonsei University and ibs center for nanomedicine, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Shengyao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- College of Science, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
14
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Tiboni M, Astolfi P, Verboni M, Benedetti S, Giorgini E, Notarstefano V, Vita F, Ranieri S, Duranti A, Lucarini S, Casettari L, Pisani M. The influence of mannose-based esters on the mesophase behaviour of lyotropic liquid crystalline nanosystems as drug delivery vectors. Colloids Surf B Biointerfaces 2023; 232:113596. [PMID: 37918304 DOI: 10.1016/j.colsurfb.2023.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Lyotropic Liquid Crystalline (LLC) nanoparticles represent an emerging class of smart, biocompatible, and biodegradable systems for the delivery of drugs. Among these, structures with complex 3D architectures such as cubosomes are of particular interest. These are non- lamellar assemblies having hydrophobic and hydrophilic portions able to carry drugs of different nature. They can further be modulated including suitable additives to control the release of the active payload, and to promote an active targeting. Starting from monoolein (GMO) cubic phase, different concentrations of mannose-based esters were added, and the eventual structural modifications were monitored to ascertain the effects of the presence of glycolipids. Moreover, the structural properties of these nanosystems loaded with Dexamethasone (DEX), a very well-known anti-inflammatory steroid, were also studied. Experiments were carried out by synchrotron Small Angle X-ray Scattering (SAXS), Raman Microspectroscopy (RMS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) measurements. The drug delivery potential (i.e. entrapment efficiency and release properties) of the obtained nanoparticles was evaluated. Finally, in vitro cytocompatibility and anti-inflammatory activity studies of the prepared formulations were carried out. Inclusion of mannose-based surfactants up to 10 mol% influenced the structural parameters of Im3m cubic phase and swollen cubic phases were obtained with the different glycolipids with lattice parameters significantly higher than GMO. A complete cytocompatibility and an increased DEX activity were observed, thus suggesting the possibility to use GMO/glycolipids nanoparticles to formulate innovative drug delivery systems.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Paola Astolfi
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Michele Verboni
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences - DISVA, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences - DISVA, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Francesco Vita
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Simone Ranieri
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences - DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, PU, Italy
| | - Michela Pisani
- Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy.
| |
Collapse
|
16
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Balestri A, Gibot L, Amenitisch H, Cervelli L, Montis C, Lonetti B, Berti D. PNIPAM-stabilized cubosomes as fusogenic delivery nanovectors for anticancer applications. Colloids Surf B Biointerfaces 2023; 231:113532. [PMID: 37722254 DOI: 10.1016/j.colsurfb.2023.113532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
In recent years, lipid cubic nanoparticles have emerged as promising nanocarriers for drug delivery, due to the several advantages they exhibit with respect to other lipid systems. Here, we report on lipid cubic nanoparticles stabilized by PNIPAM-based amphiphilic block copolymers, specifically, poly(N, N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a new class of drug delivery systems (DDS). In vitro studies on the internalization efficiency of the DDS towards two types of human cancer cells (colon HCT-116 and bladder T24 cells), carried out employing a set of sensitive techniques (confocal laser scanning microscopy (CLSM), flow cytometry, scanning electron microscopy (SEM), fluorescence spectroscopy), highlight a prominent role of PDMA-b-PNIPAM stabilizer in enhancing the uptake of cubosomes, compared to the standard Pluronic F127-based formulations. The drug delivery potential of cubosomes, tested by encapsulating a chemotherapeutic drug, camptothecin (CPT), and conducting cytotoxicity studies against 2D plated cells and 3D spheroids, confirm that PDMA-b-PNIPAM-stabilized cubosomes improve the efficacy of treatment with CPT. The origin of this effect lies in the higher lipophilicity of the stabilizer, as we confirm by studying the interaction between the cubosomes and biomimetic membranes of lipid vesicles with Small Angle X-Ray Scattering (SAXS) and CLSM experiments. These results corroborate our fundamental understanding of the interaction between cubosomes and cells, and on the role of polymer to formulate lipid cubic nanoparticles as DDS.
Collapse
Affiliation(s)
- Arianna Balestri
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France
| | - Heinz Amenitisch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Lorenzo Cervelli
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" (DICUS) & Consorzio Sistemi a Grande Interfase (CSGI), University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Yu H, Iscaro J, Dyett B, Zhang Y, Seibt S, Martinez N, White J, Drummond CJ, Bozinovski S, Zhai J. Inverse Cubic and Hexagonal Mesophase Evolution within Ionizable Lipid Nanoparticles Correlates with mRNA Transfection in Macrophages. J Am Chem Soc 2023. [PMID: 37870621 DOI: 10.1021/jacs.3c08729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
mRNA lipid nanoparticle (LNP) technology presents enormous opportunities to prevent and treat various diseases. Here, we developed a novel series of LNPs containing ionizable amino-lipids showing a remarkable array of tunable and pH-sensitive lyotropic liquid crystalline mesophases including the inverse bicontinuous cubic and hexagonal phases characterized by high-throughput synchrotron radiation X-ray scattering. Furthermore, with an interest in developing mRNA therapeutics for lung macrophage targeting, we discovered that there is a strong correlation between the mesophase transition of the LNPs during acidification and the macrophage association/transfection efficiency of mRNAs. The slight molecular structural differences between the SM-102 and ALC-0315 ionizable lipids are linked to the LNP's ability to transform their internal structures from an amorphous state to the inverse micellar, hexagonal, and finally cubic structures during endosomal maturation. SM-102 LNPs showed exceptionally improved transfection efficiency due to their ability to form a cubic structure at a lower pH than the ALC-0315 analogues, which remained within the hexagonal structure, previously attributed to promoting endosomal escape of the ionizable LNPs. Overall, the new knowledge draws our attention to the important role of mesophase transition in endosomal escape, and the novel LNP libraries reported herein have broad prospects for advancing mRNA therapeutics.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Joshua Iscaro
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yiran Zhang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Natalia Martinez
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue,Clayton, Victoria 3169, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID. Coencapsulation of Gemcitabine and Thymoquinone in Citrem-Phosphatidylcholine Hexosome Nanocarriers Improves In Vitro Cellular Uptake in Breast Cancer Cells. Mol Pharm 2023; 20:4611-4628. [PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-01906 Fukuoka, Japan
| | - Armania Nurdin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
21
|
Yu H, Angelova A, Angelov B, Dyett B, Matthews L, Zhang Y, El Mohamad M, Cai X, Valimehr S, Drummond CJ, Zhai J. Real-Time pH-Dependent Self-Assembly of Ionisable Lipids from COVID-19 Vaccines and In Situ Nucleic Acid Complexation. Angew Chem Int Ed Engl 2023; 62:e202304977. [PMID: 37391876 DOI: 10.1002/anie.202304977] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Za Radnici 835, 25241, Dolni Brezany, Czech Republic
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043, Grenoble, France
| | - Yiran Zhang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sepideh Valimehr
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Preetam S, Jonnalagadda S, Kumar L, Rath R, Chattopadhyay S, Alghamdi BS, Abuzenadah AM, Jha NK, Gautam A, Malik S, Ashraf GM. Therapeutic potential of lipid nanosystems for the treatment of Parkinson's disease. Ageing Res Rev 2023; 89:101965. [PMID: 37268112 DOI: 10.1016/j.arr.2023.101965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.
Collapse
Affiliation(s)
- Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden; Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Swathi Jonnalagadda
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Rajeswari Rath
- Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata-700013, West Bengal, India.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India; Guru Nanak College of Pharmaceutical Sciences, Chakrata Road, Jhajra, Dehradun 248007, India.
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences.
| |
Collapse
|
23
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
24
|
Ye S, Cheng Y, Guo Z, Wang X, Wei W. A lipid toolbox of sugar alcohol fatty acid monoesters for single-component lipid nanoparticles with temperature-controlled release. Colloids Surf B Biointerfaces 2023; 228:113426. [PMID: 37399694 DOI: 10.1016/j.colsurfb.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to prepare single-component LNPs with sugar alcohol fatty acid monoesters for temperature-controlled release. In total, 20 kinds of lipids with a series of sugar alcohol head groups (ethylene glycol, glycerol, erythritol, xylitol and sorbitol) and fatty acyl tails (12:0, 14:0, 16:0 and 18:0) were synthesised via lipase-catalysed esterification. Their physicochemical properties and upper/lower critical solution temperature (LCST/USCT) were analysed. Two groups of mixed lipids, 78 % ethylene glycol lauric acid monoester + 22 % sorbitol stearic acid monoester (LNP-1) and 90 % ethylene glycol lauric acid monoester + 10 % xylitol myristic acid monoester (LNP-2), had LCST/USCT of approximately 37 °C, which formed empty LNPs using the emulsification-diffusion method. These two mixed lipids were prepared for LNPs loaded with curcumin, showing high encapsulation (>90 %), mean particle sizes of approximately 250 nm and low polydispersity index (≤0.2). These lipids have the potential for tailor-made LNPs achieving thermo-responsivity in delivering bioactive agents and drugs.
Collapse
Affiliation(s)
- Shengyuan Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J Funct Biomater 2023; 14:jfb14050244. [PMID: 37233354 DOI: 10.3390/jfb14050244] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Silver nanoparticles (AgNPs) are the most investigated antibacterial agents against multidrug resistant (MDR) pathogens. They can lead to cellular death by means of different mechanisms, damaging several cell compartments, from the external membrane, to enzymes, DNA and proteins; this simultaneous attack amplifies the toxic effect on bacteria with respect to traditional antibiotics. The effectiveness of AgNPs against MDR bacteria is strongly correlated with their chemical and morphological properties, which influence the pathways involved in cellular damage. In this review, AgNPs' size, shape and modification by functional groups or other materials are reported, both to investigate the different synthetic pathways correlated with nanoparticles' modifications and to evaluate the related effect on their antibacterial activity. Indeed, understanding the synthetic conditions for obtaining performing antibacterial AgNPs could help to tailor new and improved silver-based agents to combat multidrug resistance.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
26
|
Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023; 634:279-289. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jamie B Strachan
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, Australia.
| |
Collapse
|
27
|
Li C, Pan Y, Xiao T, Xiang L, Li Q, Tian F, Manners I, Mai Y. Metal Organic Framework Cubosomes. Angew Chem Int Ed Engl 2023; 62:e202215985. [PMID: 36647212 DOI: 10.1002/anie.202215985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im 3 ‾ ${\bar{3}}$ m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm 3 ‾ ${\bar{3}}$ m) and average mesopore diameters of 60-65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10-4 , indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Ian Manners
- Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
28
|
Fracassi A, Podolsky KA, Pandey S, Xu C, Hutchings J, Seifert S, Baiz CR, Sinha SK, Devaraj NK. Characterizing the Self-Assembly Properties of Monoolein Lipid Isosteres. J Phys Chem B 2023; 127:1771-1779. [PMID: 36795462 PMCID: PMC9986874 DOI: 10.1021/acs.jpcb.2c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| | - Sudip Pandey
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mayer Hall Addition 4561, La Jolla, California92093, United States
| | - Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas78712-1224, United States
| | - Joshua Hutchings
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California92093, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas78712-1224, United States
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mayer Hall Addition 4561, La Jolla, California92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California92093, United States
| |
Collapse
|
29
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Interplay of Hydropathy and Heterogeneous Diffusion in the Molecular Transport within Lamellar Lipid Mesophases. Pharmaceutics 2023; 15:pharmaceutics15020573. [PMID: 36839895 PMCID: PMC9959094 DOI: 10.3390/pharmaceutics15020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid mesophases are being intensively studied as potential candidates for drug-delivery purposes. Extensive experimental characterization has unveiled a wide palette of release features depending on the nature of the host lipids and of the guest molecule, as well as on the environmental conditions. However, only a few simulation works have addressed the matter, which hampers a solid rationalization of the richness of outcomes observed in experiments. Particularly, to date, there are no theoretical works addressing the impact of hydropathy on the transport of a molecule within lipid mesophases, despite the significant fraction of hydrophobic molecules among currently-available drugs. Similarly, the high heterogeneity of water mobility in the nanoscopic channels within lipid mesophases has also been neglected. To fill this gap, we introduce here a minimal model to account for these features in a lamellar geometry, and systematically study the role played by hydropathy and water-mobility heterogeneity by Brownian-dynamics simulations. We unveil a fine interplay between the presence of free-energy barriers, the affinity of the drug for the lipids, and the reduced mobility of water in determining the net molecular transport. More in general, our work is an instance of how multiscale simulations can be fruitfully employed to assist experiments in release systems based on lipid mesophases.
Collapse
|
31
|
Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207684. [PMID: 36255138 DOI: 10.1002/adma.202207684] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Porous materials with their ordered bicontinuous structures have attracted great interest owing to ordered periodic structures as well as 3D interconnected network and pore channels. Bicontinuous structures may favor efficient mass diffusion to the interior of materials, thus increasing the utilization ratio of active sites. In addition, ordered bicontinuous structures confer materials with exceptional optical and magnetic properties, including tunable photonic bandgap, negative refraction, and multiple equivalent magnetization configurations. The attractive structural advantages and physical properties have inspired people to develop strategies for preparing bicontinuous-structured porous materials. Among a few synthetic approaches, the self-assembly of block copolymers represents a versatile strategy to prepare various bicontinuous-structured functional materials with pore sizes and lattice parameters ranging from 1 to 500 nm. This article overviews progress in this appealing area, with an emphasis on the synthetic strategies, the structural control (including topologies, pore sizes, and unit cell parameters), and their potential applications in energy storage and conversion, metamaterials, photonic crystals, cargo delivery and release, nanoreactors, and biomolecule selection.
Collapse
Affiliation(s)
- Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiqi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
32
|
Design and Characterization of Lipid-Surfactant-Based Systems for Enhancing Topical Anti-Inflammatory Activity of Ursolic Acid. Pharmaceutics 2023; 15:pharmaceutics15020366. [PMID: 36839688 PMCID: PMC9960079 DOI: 10.3390/pharmaceutics15020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.
Collapse
|
33
|
Paporakis S, Binns J, Yalcin D, Drummond CJ, Greaves TL, Martin AV. Automation of liquid crystal phase analysis for SAXS, including the rapid production of novel phase diagrams for SDS-water-PIL systems. J Chem Phys 2023; 158:014902. [PMID: 36610972 DOI: 10.1063/5.0122516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.
Collapse
Affiliation(s)
- Stefan Paporakis
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Jack Binns
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Dilek Yalcin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| |
Collapse
|
34
|
Zhou Y, Luo J, Liu T, Wen T, Williams-Pavlantos K, Wesdemiotis C, Cheng SZD, Liu T. Molecular Geometry-Directed Self-Recognition in the Self-Assembly of Giant Amphiphiles. Macromol Rapid Commun 2023; 44:e2200216. [PMID: 35557023 DOI: 10.1002/marc.202200216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Indexed: 01/11/2023]
Abstract
Three sets of polyoxometalate (POM)-based amphiphilic hybrid macromolecules with different rigidity in their organic tails are used as models to understand the effect of molecular rigidity on their possible self-recognition feature during self-assembly processes. Self-recognition is achieved in the mixed solution of two structurally similar, sphere-rigid T-shape-linked oligofluorene(TOF4 ) rod amphiphiles, with the hydrophilic clusters being Anderson (Anderson-TOF4 ) and Dawson (Dawson-TOF4 ), respectively. Anderson-TOF4 is observed to self-assemble into onion-like multilayer structures and Dawson-TOF4 forms multilayer vesicles. The self-assembly is controlled by the interdigitation of hydrophobic rods and the counterion-mediated attraction among charged hydrophilic inorganic clusters. When the hydrophobic blocks are less rigid, e.g., partially rigid polystyrene and fully flexible alkyl chains, self-recognition is not observed, attributing to the flexible conformation of hydrophobic molecules in the solvophobic domain. This study reveals that the self-recognition among amphiphiles can be achieved by the geometrical limitation of the supramolecular structure due to the rigidity of solvophobic domains.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jiancheng Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tong Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong, 50610, China
| | | | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.,Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - Stephen Z D Cheng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.,South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong, 50610, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
35
|
Wu H, Huang H, Zhang Y, Lu X, Majewski PW, Feng X. Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS NANO 2022; 16:21139-21151. [PMID: 36516967 DOI: 10.1021/acsnano.2c09103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, and School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People's Repubic of China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, Anhui230026, People's Repubic of China
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw02089, Poland
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| |
Collapse
|
36
|
Zhai J, Bao L, Walduck AK, Dyett BP, Cai X, Li M, Nasa Z, Drummond CJ. Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers. NANOSCALE 2022; 14:17940-17954. [PMID: 36349848 DOI: 10.1039/d2nr03415h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Anna K Walduck
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Miaosi Li
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zeyad Nasa
- Micro Nano Research Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
37
|
Sahu S, Schwindt NS, Coscia BJ, Shirts MR. Obtaining and Characterizing Stable Bicontinuous Cubic Morphologies and Their Nanochannels in Lyotropic Liquid Crystal Membranes. J Phys Chem B 2022; 126:10098-10110. [PMID: 36417348 DOI: 10.1021/acs.jpcb.2c06119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amphiphilic monomers in polar solvents can self-assemble into lyotropic liquid crystal (LLC) bicontinuous cubic structures under the right composition and temperature conditions. After cross-linking, the resulting polymer membranes with three-dimensional (3D) continuous uniform channels are excellent candidates for filtration applications. Designing such membranes with the desired physical and chemical properties requires molecular-level understanding of the structure, which can be obtained through molecular modeling. However, building molecular models of bicontinuous cubic structures is challenging due to their narrow regime of stability and the difficulty of self-assembly of large unit cells in molecular simulations. We developed a protocol for building stable bicontinuous cubic unit cells involving both parameterization and assembly of the components. We validate the theoretical structure against experimental results for one such LLC monomer and provide insight into the structure missing in experimental data, as well as demonstrate the qualitative nature of water and solute transport through these membranes.
Collapse
Affiliation(s)
- Subin Sahu
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Nathanael S Schwindt
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Benjamin J Coscia
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Michael R Shirts
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
38
|
Tchakalova V, Zemb T, Testard F. Swollen cubic phases with reduced hardness solubilizing a model fragrance oil as a co-surfactant. J Chem Phys 2022; 157:214901. [PMID: 36511558 DOI: 10.1063/5.0124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Swollen cubic lyotropic ternary phases with Pn3m symmetry and reduced hardness were obtained from a specific binary mixture of cubic phase-forming (phytantriol) and lamellar phase-forming (decaglycerol monooleate) compounds. The microstructures were determined by using a small-angle x-ray scattering technique. The softness and temperature-induced phase transitions were investigated by means of rheology. The incorporation of a surface-active fragrance compound (linalool) at concentrations up to 6 wt. % induced a structural transition toward a softer Im3m bulk cubic phase with longer water channels. Higher linalool concentrations allowed for the spontaneous dispersion of the bulk cubic phase into microscopic particles with a cubic structure (cubosomes).
Collapse
Affiliation(s)
- Vera Tchakalova
- Firmenich SA, R&D Division, Rue de la Bergère 7, CH-1242 Satigny, Switzerland
| | - Thomas Zemb
- Institut de Chimie Séparative, UMR 5257 CEA/CNRS/UM, Centre de Marcoule, F30207 Bagnols sur Ceze, France
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
39
|
Clemente I, D’Aria F, Giancola C, Bonechi C, Slouf M, Pavlova E, Rossi C, Ristori S. Structuring and de-structuring of nanovectors from algal lipids. Part 1: physico-chemical characterization. Colloids Surf B Biointerfaces 2022; 220:112939. [DOI: 10.1016/j.colsurfb.2022.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
|
40
|
Lotfy NM, Ahmed MA, El Hoffy NM, Bendas ER, Morsi NM. Development and optimization of amphiphilic self-assembly into nanostructured liquid crystals for transdermal delivery of an antidiabetic SGLT2 inhibitor. Drug Deliv 2022; 29:3340-3357. [PMID: 36377493 PMCID: PMC9848419 DOI: 10.1080/10717544.2022.2144546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anti-hyperglycemic sodium glucose co-transporter 2 inhibitor Canagliflozin (CFZ) represents a recent antihyperglycemic modality, yet it suffers from low oral bioavailability. The current work aims to formulate CFZ-loaded transdermal nanostructured liquid crystal gel matrix (NLCG) to improve its therapeutic efficiency. Pre-formulation study included the construction of pseudoternary phase diagrams to explore the effect of two conventional amphiphiles against amphiphilic tri-block copolymer in the formulation of NLCG. The influence of different co-solvents was also investigated with the use of monooleine as the oil. Physical characterization, morphological examination and skin permeation were performed for the optimized formulations. The formula of choice was further investigated for skin irritation and chemical stability. Pharmacodynamic evaluation of the successful formula was conducted on hyperglycemic as well as normoglycemic mice. In addition, oral glucose tolerance test was conducted. Results revealed the supremacy of Poloxamer for stabilizing and maximizing liquid crystal gel (LCG) area percentage that reached up to 12.6%. CFZ-NLCG2 isotropic formula showed the highest permeation parameters; maximum flux value of 7460 μg/cm2 h and Q24 of 5327 μg/cm2. Pharmacodynamic evaluation revealed the superiority of the antihyperglycemic activity of CFZ-NLCG2 in fasting mice and its equivalence in the oral glucose tolerance test (OGTT) compared to the oral one. The obtained results confirmed the success of CFZ-NLCG2 in the transdermal delivery of CFZ in therapeutically effective concentration compared to the oral route, bypassing first pass effect; in addition, eliminates the possible gastrointestinal side effects related to the inhibition of intestinal sodium glucose co-transporter (SGLT) and maximizes its selectivity to the desired inhibition of renal SGLT.
Collapse
Affiliation(s)
- Nancy M. Lotfy
- Future Factory for Industrial Training, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mohammed Abdallah Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt,CONTACT Nada Mohamed El Hoffy Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ehab R. Bendas
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Nadia M. Morsi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
41
|
Yu H, Palazzolo JS, Ju Y, Niego B, Pan S, Hagemeyer CE, Caruso F. Polyphenol-Functionalized Cubosomes as Thrombolytic Drug Carriers. Adv Healthc Mater 2022; 11:e2201151. [PMID: 36037807 DOI: 10.1002/adhm.202201151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jason S Palazzolo
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Be'eri Niego
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
42
|
Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. Int J Pharm 2022; 628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
43
|
Mistry S, Fuhrmann PL, de Vries A, Karshafian R, Rousseau D. Structure-rheology relationship in monoolein liquid crystals. J Colloid Interface Sci 2022; 630:878-887. [DOI: 10.1016/j.jcis.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
44
|
Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-Responsive Molecular Release from Cubosomes Using Swell-Squeeze Lattice Control. J Am Chem Soc 2022; 144:19532-19541. [PMID: 36222426 DOI: 10.1021/jacs.2c08583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive materials are crucial to advance controlled delivery systems for drugs and catalysts. Lyotropic liquid crystals (LLCs) have well-defined internal structures suitable to entrap small molecules and can be broken up into low-viscosity dispersions, aiding their application as delivery systems. In this work, we demonstrate the first example of light-responsive cubic LLC dispersions, or cubosomes, using photoswitchable amphiphiles to enable external control over the LLC structure and subsequent on-demand release of entrapped guest molecules. Azobenzene photosurfactants (AzoPS), containing a neutral tetraethylene glycol head group and azobenzene-alkyl tail, are combined (from 10-30 wt %) into monoolein-water systems to create LLC phases. Homogenization of the bulk LLC forms dispersions of particles, ∼200 nm in diameter with internal bicontinuous primitive cubic phases, as seen using small-angle X-ray scattering and cryo-transmission electron microscopy. Notably, increasing the AzoPS concentration leads to swelling of the cubic lattice, offering a method to tune the internal nanoscale structure. Upon UV irradiation, AzoPS within the cubosomes isomerizes within seconds, which in turn leads to squeezing of the cubic lattice and a decrease in the lattice parameter. This squeeze mechanism was successfully harnessed to enable phototriggerable release of trapped Nile Red guest molecules from the cubosome structure in minutes. The ability to control the internal structure of LLC dispersions using light, and the dramatic effect this has on the retention of entrapped molecules, suggests that these systems may have huge potential for the next-generation of nanodelivery.
Collapse
Affiliation(s)
- Beatrice E Jones
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Elaine A Kelly
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
45
|
Zahid NI, Salim M, Liew CY, Boyd BJ, Hashim R. Structural investigation and steric stabilisation of Guerbet glycolipid-based cubosomes and hexosomes using triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids Surf B Biointerfaces 2022; 220:112884. [DOI: 10.1016/j.colsurfb.2022.112884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022]
|
47
|
Xiang L, Yuan S, Wang F, Xu Z, Li X, Tian F, Wu L, Yu W, Mai Y. Porous Polymer Cubosomes with Ordered Single Primitive Bicontinuous Architecture and Their Sodium-Iodine Batteries. J Am Chem Soc 2022; 144:15497-15508. [PMID: 35979963 DOI: 10.1021/jacs.2c02881] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bicontinuous porous materials, which possess 3D interconnected pore channels facilitating a smooth mass transport, have attracted much interest in the fields of energy and catalysis. However, their synthesis remains very challenging. We report a general approach, using polymer cubosomes as the template, for the controllable synthesis of bicontinuous porous polymers with an ordered single primitive (SP) cubic structure, including polypyrrole (SP-PPy), poly-m-phenylenediamine (SP-PmPD), and polydopamine (SP-PDA). Specifically, the resultant SP-PPy had a unit cell parameter of 99 nm, pore diameter of 45 nm, and specific surface area of approximately 60 m2·g-1. As a proof of concept, the I2-adsorbed SP-PPy was employed as the cathode materials of newly emerged Na-I2 batteries, which delivered a record-high specific capacity (235 mA·h·g-1 at 0.5 C), excellent rate capability, and cycling stability (with a low capacity decay of 0.12% per cycle within 400 cycles at 1 C). The advantageous contributions of the bicontinuous structure and I3- adsorption mechanism of SP-PPy were revealed by a combination of ion diffusion experiments and theoretical calculations. This study opens a new avenue for the synthesis of porous polymers with new topologies, broadens the spectrum of bicontinuous-structured materials, and also develops a novel potential application for porous polymers.
Collapse
Affiliation(s)
- Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siqi Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, Dresden 01069, Germany
| | - Zhihan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
48
|
Kim JY, Choi W, Mangal U, Seo JY, Kang TY, Lee J, Kim T, Cha JY, Lee KJ, Kim KM, Kim JM, Kim D, Kwon JS, Hong J, Choi SH. Multivalent network modifier upregulates bioactivity of multispecies biofilm-resistant polyalkenoate cement. Bioact Mater 2022; 14:219-233. [PMID: 35310353 PMCID: PMC8897648 DOI: 10.1016/j.bioactmat.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohee Lee
- Johns Hopkins University, 3400 N. Charles St., Mason Hall, Baltimore, MD 21218, USA
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
49
|
Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, Bilewicz R, Walczak R, Majka E, Mames A, Bruchertseifer F, Morgenstern A, Bilewicz A, Majkowska-Pilip A. Cubosomal Lipid Formulation for Combination Cancer Treatment: Delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213Bi. Mol Pharm 2022; 19:2818-2831. [PMID: 35849547 PMCID: PMC9346610 DOI: 10.1021/acs.molpharmaceut.2c00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.
Collapse
Affiliation(s)
- Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Emilia Majka
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Postfach 2340, 76125 Karlsruhe, Germany
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
50
|
Nakayama M, Kato T. Biomineral-Inspired Colloidal Liquid Crystals: From Assembly of Hybrids Comprising Inorganic Nanocrystals and Organic Polymer Components to Their Functionalization. Acc Chem Res 2022; 55:1796-1808. [PMID: 35699654 PMCID: PMC9260960 DOI: 10.1021/acs.accounts.2c00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Bioinspired organic/inorganic synthetic composites have been studied as high-performance and functional materials. In nature, biominerals such as pearls, teeth, and bones are self-organized organic/inorganic composites. The inorganic components are composed of calcium carbonate (CaCO3) and hydroxyapatite (HAp), while the organic components consist of peptides and polysaccharides. These composites are used as structural materials in hard biological tissues. Biominerals do not show significantly higher performances than synthetic composites such as glass-fiber- or carbon-fiber-reinforced plastics. However, biominerals consist of environmentally friendly and biocompatible components that are prepared under mild conditions. Moreover, they form elaborate nanostructures and self-organized hierarchical structures. Much can be learned about material design from these biomineral-based hierarchical and nanostructured composites to assist in the preparation of functional materials.Inspired by these biological hard tissues, we developed nanostructured thin films and bulk hybrid crystals through the self-organization of organic polymers and inorganic crystals of CaCO3 or HAp. In biomineralization, the combination of insoluble components and soluble acidic macromolecules controls the crystallization process. We have shown that poly(acrylic acid) (PAA) or acidic peptides called polymer additives induce the formation of thin film crystals of CaCO3 or HAp by cooperation with insoluble organic templates such as chitin and synthetic polymers bearing the OH group. Moreover, we recently developed CaCO3- and HAp-based nanostructured particles with rod and disk shapes. These were obtained in aqueous media using a macromolecular acidic additive, PAA, without using insoluble polymer templates. At appropriate concentrations, the anisotropic particles self-assembled and formed colloidal liquid-crystalline (LC) phases.LC materials are generally composed of organic molecules. They show ordered and mobile states. The addition of stimuli-responsive properties to organic rod-like LC molecules led to the successful development of informational displays, which are now widely used. On the other hand, colloidal liquid crystals are colloidal self-assembled dispersions of anisotropic organic and inorganic nano- and micro-objects. For example, polysaccharide whiskers, clay nanosheets, gibbsite plate-shaped particles, and silica rod-shaped particles exhibit colloidal LC states.In this Account, we focused on the material design and hierarchical aspects of biomineral-based colloidal LC polymer/inorganic composites. We describe the design and preparation, nanostructures, and self-assembled behavior of these new bioinspired and biocompatible self-organized materials. The characterization results for these self-assembled nanostructured colloidal liquid crystals found using high-resolution transmission electron microscopy, small-angle X-ray scattering, and neutron scattering and rheological measurements are also reported. The functions of these biomineral-inspired liquid crystals are presented. Because these biomineral-based LC colloidal liquid crystals can be prepared under mild and aqueous conditions and they consist of environmentally friendly and biocompatible components, new functions are expected for these materials.
Collapse
Affiliation(s)
- Masanari Nakayama
- Department
of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department
of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|