1
|
Ahmed J, Khan MA, Khaliq S, Masood A, Breena, Bhat MA, Khan MR, Raza A, Al-Omar MA, Ullah F. Synthesis, characterization, and enzyme inhibition evaluation of sitagliptin derivatives and their metal complexes. Future Med Chem 2025; 17:195-207. [PMID: 39745178 PMCID: PMC11749388 DOI: 10.1080/17568919.2024.2447223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/21/2025] Open
Abstract
AIMS This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction. MATERIAL & METHOD The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy. The biological efficacy of these compounds was assessed through α-amylase and α-glucosidase enzyme inhibition assays, with molecular simulation studies providing additional confirmation of their inhibitory activity. RESULTS Among the tested derivatives, SD7, SD4, SD3, SD5, and SD9 demonstrated enzyme inhibition profiles comparable to the standard inhibitors. However, the metal complexes exhibited absorption challenges, which may influence their bioavailability. CONCLUSION These findings highlight the significant anti-diabetic potential of the synthesized compounds against targeted enzymes, establishing a foundation for their development as lead molecules in future therapeutic research.
Collapse
Affiliation(s)
- Javed Ahmed
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College, London, UK
| | - Saharish Khaliq
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Anum Masood
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Breena
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Mashooq A. Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Asim Raza
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan
| |
Collapse
|
2
|
Dayanand Y, Pather R, Xulu N, Booysen I, Sibiya N, Khathi A, Ngubane P. Exploring the Biological Effects of Anti-Diabetic Vanadium Compounds in the Liver, Heart and Brain. Diabetes Metab Syndr Obes 2024; 17:3267-3278. [PMID: 39247428 PMCID: PMC11380877 DOI: 10.2147/dmso.s417700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2024] Open
Abstract
The prevalence of diabetes mellitus and diabetes-related complications is rapidly increasing worldwide, placing a substantial financial burden on healthcare systems. Approximately 537 million adults are currently diagnosed with type 1 or type 2 diabetes globally. However, interestingly, the increasing morbidity rate is primarily influenced by the effects of long-term hyperglycemia on vital organs such as the brain, the liver and the heart rather than the ability of the body to use glucose effectively. This can be attributed to the summation of the detrimental effects of excessive glucose on major vascular systems and the harmful side effects attributed to the current treatment associated with managing the disease. These drugs have been implicated in the onset and progression of cardiovascular disease, hepatocyte injury and cognitive dysfunction, thereby warranting extensive research into alternative treatment strategies. Literature has shown significant progress in utilizing metal-based compounds, specifically those containing transition metals such as zinc, magnesium and vanadium, in managing hyperglycaemia. Amongst these metals, research carried out on vanadium reflected the most promising anti-diabetic efficacy in cell culture and animal studies. This was attributed to the ability to improve glucose management in the bloodstream by enhancing its uptake and metabolism in the kidney, brain, skeletal muscle, heart and liver. Despite this, organic vanadium was considered toxic due to its accumulative characteristics. To alleviate vanadium's toxic nature while subsequently manipulating its therapeutic properties, vanadium complexes were synthesized using either vanadate or vanadyl as a base compound. This review attempts to evaluate organic vanadium salts' therapeutic and toxic effects, highlight vanadium complexes' research and provide insight into the novel dioxidovanadium complex synthesized in our laboratory to alleviate hyperglycaemia-associated macrovascular complications in the brain, heart and liver.
Collapse
Affiliation(s)
- Yalka Dayanand
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Reveshni Pather
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Nombuso Xulu
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Irvin Booysen
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Kostenkova K, Levina A, Walters DA, Murakami HA, Lay PA, Crans DC. Vanadium(V) Pyridine-Containing Schiff Base Catecholate Complexes are Lipophilic, Redox-Active and Selectively Cytotoxic in Glioblastoma (T98G) Cells. Chemistry 2023; 29:e202302271. [PMID: 37581946 DOI: 10.1002/chem.202302271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 μM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 μM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.
Collapse
Affiliation(s)
- Kateryna Kostenkova
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Aviva Levina
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Drew A Walters
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Heide A Murakami
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Peter A Lay
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C Crans
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
4
|
Levina A, Uslan C, Murakami H, Crans DC, Lay PA. Substitution Kinetics, Albumin and Transferrin Affinities, and Hypoxia All Affect the Biological Activities of Anticancer Vanadium(V) Complexes. Inorg Chem 2023; 62:17804-17817. [PMID: 37858311 DOI: 10.1021/acs.inorgchem.3c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 μM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 μM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 μM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heide Murakami
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Debbie C Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
6
|
Murakami HA, Uslan C, Haase AA, Koehn JT, Vieira AP, Gaebler DJ, Hagan J, Beuning CN, Proschogo N, Levina A, Lay PA, Crans DC. Vanadium Chloro-Substituted Schiff Base Catecholate Complexes are Reducible, Lipophilic, Water Stable, and Have Anticancer Activities. Inorg Chem 2022; 61:20757-20773. [PMID: 36519680 DOI: 10.1021/acs.inorgchem.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 μM DTB, 34 ± 7 μM 3-MeCat, and 19 ± 2 μM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 μM DTB, 18 ± 3 μM 3-MeCat, and 8.1 ± 0.6 μM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.
Collapse
Affiliation(s)
- Heide A Murakami
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Allison A Haase
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan T Koehn
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adriana Pires Vieira
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - D Jackson Gaebler
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - John Hagan
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Cheryle N Beuning
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,Sydney Analytical, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
8
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
9
|
Gong D, Han Y, Zhang Q, Xu B, Zhang C, Li K, Tan L. Development of Leather Fiber/Polyurethane Composite with Antibacterial, Wet Management, and Temperature-Adaptive Flexibility for Foot Care. ACS Biomater Sci Eng 2022; 8:4557-4565. [DOI: 10.1021/acsbiomaterials.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dakai Gong
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yanting Han
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bo Xu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
12
|
Gabriel C, Tsave O, Yavropoulou MP, Architektonidis T, Raptopoulou CP, Psycharis V, Salifoglou A. Evaluation of Insulin-Like Activity of Novel Zinc Metal-Organics toward Adipogenesis Signaling. Int J Mol Sci 2021; 22:ijms22136757. [PMID: 34201755 PMCID: PMC8268141 DOI: 10.3390/ijms22136757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus is a debilitating disease, plaguing a significant number of people around the globe. Attempts to develop new drugs on well-defined atoxic metalloforms, which are capable of influencing fundamental cellular processes overcoming insulin resistance, has triggered an upsurge in molecular research linked to zinc metallodrugs. To that end, meticulous efforts were launched toward the design and synthesis of materials with insulin mimetic potential. Henceforth, trigonelline and N-(2-hydroxyethyl)-iminodiacetic acid (HeidaH2) were selected as organic substrates seeking binding to zinc (Zn(II)), with new crystalline compounds characterized by elemental analysis, FT-IR, X-rays, thermogravimetry (TGA), luminescence, NMR, and ESI-MS spectrometry. Physicochemical characterization was followed by in vitro biochemical experiments, in which three out of the five zinc compounds emerged as atoxic, exhibiting bio-activity profiles reflecting enhanced adipogenic potential. Concurrently, well-defined qualitative–quantitative experiments provided links to genetic loci responsible for the observed effects, thereby unraveling their key involvement in signaling pathways in adipocyte tissue and insulin mimetic behavior. The collective results (a) signify the quintessential role of molecular studies in unearthing unknown facets of pathophysiological events in diabetes mellitus II, (b) reflect the close associations of properly configured molecular zincoforms to well-defined biological profiles, and (c) set the stage for further physicochemical-based development of efficient zinc antidiabetic metallodrugs.
Collapse
Affiliation(s)
- Catherine Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (O.T.); (T.A.)
- Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Olga Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (O.T.); (T.A.)
| | - Maria P. Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Goudi, 11527 Athens, Greece;
| | - Theodore Architektonidis
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (O.T.); (T.A.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
- Correspondence: (C.P.R.); (A.S.); Tel.: +30-2310-996-179 (A.S.)
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (O.T.); (T.A.)
- Correspondence: (C.P.R.); (A.S.); Tel.: +30-2310-996-179 (A.S.)
| |
Collapse
|
13
|
Noor A, Qayyum S, Jabeen F. Selective synthesis of mono(amidinate) chromium(II) chloride complexes and a computational insight of their interaction with human insulin. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur J Med Chem 2020; 213:113064. [PMID: 33279292 DOI: 10.1016/j.ejmech.2020.113064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder which is globally responsible for millions of fatalities per year. Management of T2DM typically involves orally administered anti-hyperglycaemic drugs in conjunction with dietary interventions. However, the current conventional therapy seems to be largely ineffective as patients continue to develop complications such as cardiovascular diseases, blindness and kidney failure. Existing alternative treatment entails the administration of organic therapeutic pharmaceuticals, but these drugs have various side effects such as nausea, headaches, weight gain, respiratory and liver damage. Transition metal complexes have shown promise as anti-diabetic agents owing to their diverse mechanisms of activity. In particular, selected ruthenium compounds have exhibited intriguing biological behaviours as Protein Tyrosine Phosphatase (PTP) 1B and Glycogen Synthase Kinase 3 (GSK-3) inhibitors, as well as aggregation suppressants for the human islet amyloid polypeptide (hIAPP). This focussed review serves as a survey on studies pertaining to ruthenium compounds as metallo-drugs for T2DM. Herein, we also provide perspectives on directions to fully elucidate in vivo functions of this class of potential metallopharmaceuticals. More specifically, there is still a need to investigate the pharmacokinetics of ruthenium drugs in order to establish their biodistribution patterns which will affirm whether these metal complexes are substitutionally inert or serve as pro-drugs. In addition, embedding oral-administered ruthenium complexes into bio-compatible polymers can be a prospective means of enhancing stability during drug delivery.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Daniel Makayane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Zhang S, Yan L, Kim SM. Vanadium-protein complex inhibits human adipocyte differentiation through the activation of β-catenin and LKB1/AMPK signaling pathway. PLoS One 2020; 15:e0239547. [PMID: 32970728 PMCID: PMC7514027 DOI: 10.1371/journal.pone.0239547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/09/2020] [Indexed: 01/03/2023] Open
Abstract
Obesity is a common disease over the world and is tightly associated with diabetes mellitus, cardiovascular and cancer disease. Although our previous study showed that the synthetic vanadium-protein (V-P) complex had a better effect on antioxidant and antidiabetic, the relative molecular mechanisms are still entirely unknown. Hence, we investigated the effect of the synthetic V-P complex on adipocyte differentiation (adipogenesis) using human preadipocytes to clarify its molecular mechanisms of action. The primary human preadipocytes were cultured with and without V-P complex during adipocyte differentiation. The cell proliferation, lipid accumulation, and the protein expression of transcription factors and related enzymes were determined for the differentiated human preadipocytes. In this study, the 20 μg/mL of V-P complex reduced the lipid and triglyceride (TG) content by 74.47 and 57.39% (p < 0.05), respectively, and down-regulated the protein expressions of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1) and fatty acid synthase (FAS). Additionally, the V-P complex significantly up-regulated the protein levels of total β-catenin (t-β-catenin), nuclear β-catenin (n-β-catenin), phosphorylated adenosine monophosphate-activated protein kinase alpha (p-AMPKα) and liver kinase B1 (p-LKB1). These showed that the inhibitory effect of V-P complex on human adipogenesis was mediated by activating Wnt/β-catenin and LKB1/AMPK-dependent signaling pathway. Therefore, the synthetic V-P complex could be considered as a candidate for prevention and treatment of obesity.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People’s Republic of China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People’s Republic of China
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Aziz SG, Elroby SA, Jedidi A, Babgi BA, Alshehri NS, Hussien MA. Synthesis, characterization, computational study, DNA binding and molecular docking studies of chromium (III) drug-based complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Levina A, Pires Vieira A, Wijetunga A, Kaur R, Koehn JT, Crans DC, Lay PA. A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew Chem Int Ed Engl 2020; 59:15834-15838. [PMID: 32598089 DOI: 10.1002/anie.202005458] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The chemistry and short lifetimes of metal-based anti-cancer drugs can be turned into an advantage for direct injections into tumors, which then allow the use of highly cytotoxic drugs. The release of their less toxic decomposition products into the blood will lead to decreased toxicity and can even have beneficial effects. We present a ternary VV complex, 1 ([VOL1 L2 ], where L1 is N-(salicylideneaminato)-N'-(2-hydroxyethyl)ethane-1,2-diamine and L2 is 3,5-di-tert-butylcatechol), which enters cells intact to induce high cytotoxicity in a range of human cancer cells, including T98g (glioma multiforme), while its decomposition products in cell culture medium were ≈8-fold less toxic. 1 was 12-fold more toxic than cisplatin in T98g cells and 6-fold more toxic in T98g cells than in a non-cancer human cell line, HFF-1. Its high toxicity in T98g cells was retained in the presence of physiological concentrations of the two main metal-binding serum proteins, albumin and transferrin. These properties favor further development of 1 for brain cancer treatment by intratumoral injections.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Adriana Pires Vieira
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Asanka Wijetunga
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ravinder Kaur
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jordan T Koehn
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Debbie C Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Peter A Lay
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Levina A, Pires Vieira A, Wijetunga A, Kaur R, Koehn JT, Crans DC, Lay PA. A Short‐Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Adriana Pires Vieira
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Asanka Wijetunga
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Ravinder Kaur
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Jordan T. Koehn
- Department of Chemistry and the Cell and Molecular Biology Program Colorado State University Fort Collins CO 80523 USA
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program Colorado State University Fort Collins CO 80523 USA
| | - Peter A. Lay
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
19
|
Levina A, Lay PA. Vanadium(V/IV)–Transferrin Binding Disrupts the Transferrin Cycle and Reduces Vanadium Uptake and Antiproliferative Activity in Human Lung Cancer Cells. Inorg Chem 2020; 59:16143-16153. [DOI: 10.1021/acs.inorgchem.0c00926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Villamizar-Delgado S, Porras-Osorio LM, Piñeros O, Ellena J, Balcazar N, Varela-Miranda RE, D'Vries RF. Biguanide-transition metals complexes as potential drug for hyperglycemia treatment. RSC Adv 2020; 10:22856-22863. [PMID: 35514600 PMCID: PMC9054726 DOI: 10.1039/d0ra04059b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023] Open
Abstract
Coordination compounds of Cu(ii), Ni(ii), Co(ii), and Zn(ii) with a type of biguanide (known commercially as metformin) have been synthesized and characterized using spectroscopic techniques (FT-IR, UV/VIS), X-ray diffraction techniques and thermal analysis. For all compounds, single crystals were obtained for single-crystal X-ray diffraction. For the first time, an octahedral cobalt compound with the formula [Co(C4H11N5)3]Cl2·2H2O that crystallizes in the monoclinic space group C2/c with one molecule in the asymmetric unit has been obtained. Also, a novel nickel compound with the formula [Ni(C4H11N5) (C4H10N5)]Cl·H2O that crystallizes in the monoclinic space group P21/c with two molecules in the asymmetric unit was obtained. Finally, we obtained copper and zinc compounds that crystallize in the monoclinic space groups P21/n and P21/c with the general formula [Cu(C4H11N5)2]Cl2·H2O and [Zn(C4H12N5)Cl3], respectively. A structural and supramolecular analysis was developed for all compounds using Hirshfeld surface analysis and electrostatic potential maps. The cell viability of the obtained compounds was evaluated in C2C12 (ATCCCRL-1772™) mouse muscle cells and HepG2 (ATCC HB-8065™) human liver carcinoma cells by the MTT assay to determine the potential of the compounds as new safe drugs. The results demonstrate that the compounds exhibit low cytotoxicity at doses less than 250 μg mL−1 with a cell viability greater than 80%. Coordination compounds of Cu(ii), Ni(ii), Co(ii), and Zn(ii) with a type of biguanide were obtained and structurally characterized. The new metal-drugs present biological applications as potential drugs for diabetes and metabolic syndrome.![]()
Collapse
Affiliation(s)
- Stephanny Villamizar-Delgado
- Facultad de Ciencias Básicas, Universidad Santiago de Cali Calle 5 #62-00 Cali Colombia .,São Carlos Institute of Chemistry, University of São Paulo CEP 13.566-590 São Carlos SP Brazil
| | - Laura M Porras-Osorio
- Facultad de Ciencias Básicas, Universidad Santiago de Cali Calle 5 #62-00 Cali Colombia
| | - Octavio Piñeros
- Facultad de Ciencias Básicas, Universidad Santiago de Cali Calle 5 #62-00 Cali Colombia
| | - Javier Ellena
- São Carlos Institute of Physics, University of São Paulo CEP 13.566-590 São Carlos SP Brazil
| | - Norman Balcazar
- Molecular Genetics Group, Universidad de Antioquia Calle 70, No 52-21, A. A. 1226 Medellin Colombia.,Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia Calle 70, No 52-21, A. A. 1226 Medellin Colombia
| | | | - Richard F D'Vries
- Facultad de Ciencias Básicas, Universidad Santiago de Cali Calle 5 #62-00 Cali Colombia
| |
Collapse
|
21
|
Chen K, Jia H, Liu Y, Yin P, Wei Y. Insulin‐Sensitizing Activity of Sub‐Nanoscaled Polyalkoxyvanadate Clusters. ADVANCED BIOSYSTEMS 2020; 4. [DOI: 10.1002/adbi.201900281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Indexed: 12/15/2022]
Abstract
AbstractSub‐nanoscaled polyalkoxyvanadates (PAOVs) functionalized with various aliphatic acids are evaluated for their insulin‐sensitizing activity in lowering the blood glucose levels of diabetic mice in typical glucose tolerance tests. All the PAOVs can restore the blood glucose to normal levels after a single oral administration of PAOVs. Among them, the myristic acid‐modified PAOVs enable the response of insulin to the repeated glucose challenges, lasting for up to 13 h. The combined administration of PAOVs exerts better glucose control over insulin alone, while the capric acid‐ and myristic acid‐modified ones can enhance the responsiveness of insulin to glucose challenge and is comparable to a clinical‐used derivative of insulin. Interestingly, continuous glucose monitoring shows that myristic acid‐modified PAOV derivatives sensitize the responsiveness of insulin, almost matching with that of a healthy pancreas. These discoveries open up new opportunities for the application of PAOVs to promote glucose‐responsive and long‐lasting activity of insulin, which are expected to aid the accurate blood glucose control in insulin therapy while reducing the number of insulin administrations.
Collapse
Affiliation(s)
- Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology Guangzhou 510641 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hongli Jia
- Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology Guangzhou 510641 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology Guangzhou 510641 China
| | - Yongge Wei
- Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| |
Collapse
|
22
|
He Z, Wang M, Zhao Q, Li X, Liu P, Ren B, Wu C, Du X, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) mitigates neuronal apoptosis resulted from amyloid-beta induced endoplasmic reticulum stress through activating peroxisome proliferator-activated receptor γ. J Inorg Biochem 2020; 208:111073. [PMID: 32466853 DOI: 10.1016/j.jinorgbio.2020.111073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
Abstract
Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Collapse
Affiliation(s)
- Zhijun He
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; College of optoelectronic engineering, Shenzhen university, Shenzhen, Guangdong 518060, China
| | - Menghuan Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qionghui Zhao
- Shenzhen Food Inspection Center of CIQ, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Pengan Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Bingyu Ren
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Chong Wu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Nan Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| |
Collapse
|
23
|
Raydan D, Rivas-Lacre IJ, Lubes V, Landaeta V, Hernández L. Ternary complex formation of the copper (II)-2,2′-Bipyridine system with some amino acids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Synthesis, spectroscopic characterization, and theoretical studies on the substitution reaction of chromium(III) picolinate. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Dario BS, Fernandes Neto F, Portes MC, Boni Fazzi R, Rodrigues da Silva D, Peterson EJ, Farrell NP, Castelli S, Desideri A, Petersen PAD, Petrilli HM, Da Costa Ferreira AM. DNA binding, cytotoxic effects and probable targets of an oxindolimine–vanadyl complex as an antitumor agent. NEW J CHEM 2019. [DOI: 10.1039/c9nj02480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vanadyl–oxindolimine complex as an antitumor agent.
Collapse
Affiliation(s)
- Bruno Soares Dario
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Francisco Fernandes Neto
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Marcelo Cecconi Portes
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | - Rodrigo Boni Fazzi
- Instituto de Química
- Universidade de São Paulo
- Av. Prof. Lineu Prestes
- 748 – São Paulo 05508-000
- Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Crans DC, Koehn JT, Petry SM, Glover CM, Wijetunga A, Kaur R, Levina A, Lay PA. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. Dalton Trans 2019; 48:6383-6395. [PMID: 30941380 DOI: 10.1039/c9dt00601j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anti-cancer activities of vanadium compounds have generated recent interest because of a combination of desirable properties for chemotherapy, i.e., strong cytotoxicities, anti-metastatic activities and relatively low systemic toxicities. Certain hydrophobic vanadium(v) Schiff base/catecholate compounds, which as shown herein, have increased stability in aqueous media and affinity for membrane interfaces. Depending on their hydrophobicity, they may be able to enter cells intact. In this manuscript, two hydrophobic V(v) catecholate substituted analogues, [VO(Hshed)(cat)] and [VO(Hshed)(dtb)], (Hshed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, cat = pyrocatechol, and dtb = 3,5-di(tert-butyl)catechol and the vanadium(v) precursor [V(O)2(Hshed)]) were synthesized for their ability to interact with membranes and their anti-cancer effects. Using 51V and 1H NMR spectroscopy, the presence and location of the free ligand, H2shed, and the three V(v) complexes were examined in a model membrane microemulsion system. The stability of the three complexes was measured in aqueous solution, cell media and an inhomogeneous microemulsion system. Our results demonstrated that free ligand H2shed and the intact V(v) complexes associated with the interface but that the V-complexes hydrolyzed to some extent because oxovanadates were observed by 51V NMR spectroscopy and decreasing complex by absorption spectroscopy in cell media. When determining the effects of V(v) catecholate complexes on bone cancer cells, the strongest effects were observed with the more stable hydrophobic complex [VO(Hshed)(dtb)] that was able to best associate and penetrate the model membrane system intact. These studies are consistent with the membrane permeability studies being a good predictor for in vitro cytotoxicity assays because [VO(Hshed)(dtb)] can pass through the cellular membrane intact, which may enhance its anti-cancer activities.
Collapse
Affiliation(s)
- Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Palmajumder E, Dash SR, Mitra J, Mukherjea KK. A Multifunctional Biomimicking Oxidovanadium(V) Complex: Synthesis, DFT Calculations, Bromo‐peroxidation and DNA Nuclease Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201800817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Soumya Ranjan Dash
- CSIR - Central Salt & Marine Chemicals Research InstituteGijubhaiBadheka Marg Bhavnagar - 364002, Gujarat India
| | - Joyee Mitra
- CSIR - Central Salt & Marine Chemicals Research InstituteGijubhaiBadheka Marg Bhavnagar - 364002, Gujarat India
| | | |
Collapse
|
28
|
Kurbah SD, Kumar A, Syiemlieh I, Lal RA. Crystal structure and biomimetic activity of homobinuclear dioxidovanadium(V) complexes containing succinoyldihydrazones ligands. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ferreira S, Leite A, Moniz T, Andrade M, Amaral L, de Castro B, Rangel M. EPR and 51V NMR studies of prospective anti-diabetic bis(3-hydroxy-4-pyridinonato)oxidovanadium(iv) complexes in aqueous solution and liposome suspensions. NEW J CHEM 2018. [DOI: 10.1039/c7nj04678b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EPR/51V-NMR parallel studies of [VO(3,4-HPO)2] complexes in MOPS buffer and POPC liposome suspensions provide information regarding solvents for oral administration.
Collapse
Affiliation(s)
- S. Ferreira
- REQUIMTE-LAQV
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
- Portugal
| | - A. Leite
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - T. Moniz
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - M. Andrade
- CEMUP
- Centro de Materiais da Universidade do Porto
- 4169-007 Porto
- Portugal
| | - L. Amaral
- REQUIMTE-UCIBIO
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - B. de Castro
- REQUIMTE-LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 40169-007 Porto
| | - M. Rangel
- REQUIMTE-LAQV
- Instituto de Ciências Biomédicas de Abel Salazar
- Universidade do Porto
- 4050-313 Porto
- Portugal
| |
Collapse
|
30
|
Koleša-Dobravc T, Maejima K, Yoshikawa Y, Meden A, Yasui H, Perdih F. Bis(picolinato) complexes of vanadium and zinc as potential antidiabetic agents: synthesis, structural elucidation and in vitro insulin-mimetic activity study. NEW J CHEM 2018. [DOI: 10.1039/c7nj04189f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The studied vanadium(iv), vanadium(v) and zinc(ii) complexes show inhibition of the free fatty acid release from rat adipocytes.
Collapse
Affiliation(s)
- Tanja Koleša-Dobravc
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Keiichi Maejima
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition
- Faculty of Health and Welfare
- Kobe Women's University
- Kobe
- Japan
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology
- University of Ljubljana
- Večna pot 113
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
31
|
Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J Biol Chem 2017; 293:1517-1525. [PMID: 29217773 DOI: 10.1074/jbc.c117.819110] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes.
Collapse
Affiliation(s)
- Navasona Krishnan
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Konstantis F Konidaris
- the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and
| | - Gilles Gasser
- ChimieParisTech, PSL Research University, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Nicholas K Tonks
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
32
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
33
|
Levina A, Lay PA. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species? Chem Asian J 2017; 12:1692-1699. [PMID: 28401668 DOI: 10.1002/asia.201700463] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H2 VO4- ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to VV and/or VIV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
34
|
Ibrahim MM, Mersal GA, Ramadan AMM, Shaban SY, Mohamed MA, Al-Juaid S. Synthesis, characterization and antioxidant/cytotoxic activity of oxovanadium(IV) complexes of methyliminodiacetic acid and ethylenediaminetetracetic acid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Munekane M, Ueda M, Motomura S, Kamino S, Haba H, Yoshikawa Y, Yasui H, Enomoto S. Investigation of Biodistribution and Speciation Changes of Orally Administered Dual Radiolabeled Complex, Bis(5-chloro-7-[ 131I]iodo-8-quinolinolato)[ 65Zn]zinc. Biol Pharm Bull 2017; 40:510-515. [PMID: 28381805 DOI: 10.1248/bpb.b16-00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many zinc (Zn) complexes have been developed as promising oral antidiabetic agents. In vitro assays using adipocytes have demonstrated that the coordination structures of Zn complexes affect the uptake of Zn into cells and have insulinomimetic activities, for which moderate stability of Zn complexes is vital. The complexation of Zn plays a major role improving its bioavailability. However, investigation of the speciation changes of Zn complexes after oral administration is lacking. A dual radiolabeling approach was applied in order to investigate the speciation of bis(5-chloro-7-iodo-8-quinolinolato)zinc complex [Zn(Cq)2], which exhibits the antidiabetic activity in diabetic mice. In the present study, 65Zn- and 131I-labeled [Zn(Cq)2] were synthesized, and their biodistribution were analyzed after an oral administration using both invasive conventional assays and noninvasive gamma-ray emission imaging (GREI), a novel nuclear medicine imaging modality that enables analysis of multiple radionuclides simultaneously. The GREI experiments visualized the behavior of 65Zn and [131I]Cq from the stomach to large intestine and through the small intestine; most of the administered Zn was transported together with clioquinol (5-chloro-7-iodo-8-quinolinol) (Cq). Higher accumulation of 65Zn for [Zn(Cq)2] than ZnCl2 suggests that the Zn associated with Cq was highly absorbed by the intestinal tract. In particular, the molar ratio of administered iodine to Zn decreased during the distribution processes, indicating the dissociation of most [Zn(Cq)2] complexes. In conclusion, the present study successfully evaluated the speciation changes of orally administered [Zn(Cq)2] using the dual radiolabeling method.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tesmar A, Wyrzykowski D, Kruszyński R, Niska K, Inkielewicz-Stępniak I, Drzeżdżon J, Jacewicz D, Chmurzyński L. Characterization and cytotoxic effect of aqua-(2,2',2''-nitrilotriacetato)-oxo-vanadium salts on human osteosarcoma cells. Biometals 2017; 30:261-275. [PMID: 28204978 PMCID: PMC5352783 DOI: 10.1007/s10534-017-0001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
The use of protonated N-heterocyclic compound, i.e. 2,2'-bipyridinium cation, [bpyH+], enabled to obtain the new nitrilotriacetate oxidovanadium(IV) salt of the stoichiometry [bpyH][VO(nta)(H2O)]H2O. The X-ray measurements have revealed that the compound comprises the discrete mononuclear [VO(nta)(H2O)]- coordination ion that can be rarely found among other known compounds containing nitrilotriacetate oxidovanadium(IV) moieties. The antitumor activity of [bpyH][VO(nta)(H2O)]H2O and its phenanthroline analogue, [phenH][VO(nta)(H2O)](H2O)0.5, towards human osteosarcoma cell lines (MG-63 and HOS) has been assessed (the LDH and BrdU tests) and referred to cis-Pt(NH3)2Cl2 (used as a positive control). The compounds exert a stronger cytotoxic effect on MG-63 and HOS cells than in untransformed human osteoblast cell line. Thus, the [VO(nta)(H2O)]- containing coordination compounds can be considered as possible antitumor agents in the osteosarcoma model of bone-related cells in culture.
Collapse
Affiliation(s)
- Aleksandra Tesmar
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Rafał Kruszyński
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924, Łódź, Poland
| | - Karolina Niska
- Department of Medical Chemistry, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | | | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
37
|
Tesmar A, Wyrzykowski D, Kazimierczuk K, Kłak J, Kowalski S, Inkielewicz-Stępniak I, Drzeżdżon J, Jacewicz D, Chmurzyński L. Structure, Physicochemical and Biological Properties of an Aqua (2,2′,2′′-Nitrilotriacetato)-oxidovanadium(IV) Salt with 4-Methylpyridinium Cation. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Katarzyna Kazimierczuk
- Department of Inorganic Chemistry; Gdańsk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Julia Kłak
- Faculty of Chemistry; Wrocław University; 14 F. Joliot-Curie St. 50-383 Wroclaw Poland
| | - Szymon Kowalski
- Department of Medical Chemistry; Medical University of Gdańsk; Dębinki 1 80-211 Gdańsk Poland
| | | | | | | | | |
Collapse
|
38
|
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice. PLoS One 2017; 12:e0169809. [PMID: 28072841 PMCID: PMC5224995 DOI: 10.1371/journal.pone.0169809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Mrittika Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Sahid Hussain
- Department of Chemical Sciences, Tezpur University, Assam, India
| | | | | | - Abul Usmani
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Bhola S Pradhan
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial (IPGME&R−SSKM) Hospital, Kolkata, West Bengal, India
| | | | - Mihir K. Chaudhuri
- Department of Chemical Sciences, Tezpur University, Assam, India
- * E-mail: (SB); (MKC)
| | - Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
- * E-mail: (SB); (MKC)
| |
Collapse
|
39
|
Interactions between proteins and Ru compounds of medicinal interest: A structural perspective. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Pranczk J, Tesmar A, Wyrzykowski D, Inkielewicz-Stępniak I, Jacewicz D, Chmurzyński L. Influence of Primary Ligands (ODA, TDA) on Physicochemical and Biological Properties of Oxidovanadium (IV) Complexes with Bipy and Phen as Auxiliary Ligands. Biol Trace Elem Res 2016; 174:251-258. [PMID: 27048276 DOI: 10.1007/s12011-016-0687-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 02/01/2023]
Abstract
The influence of the oxydiacetate (ODA) and thiodiacetate (TDA) ligands on the physicochemical and biological properties of the oxidovanadium(IV) ternary complexes of the VO(L)(B) type, where L denotes ODA or TDA and B denotes 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen), has been investigated. The stability of the complexes in aqueous solutions, assessed based on the potentiometric titration method, increases in the following direction: VO(TDA)(bipy) < VO(ODA)(bipy) < VO(TDA)(phen) < VO(ODA)(phen). Furthermore, the influence of the TDA and ODA ligands on the antioxidant activity of the oxidovanadium(IV) complexes toward superoxide free radical (O2•-), 2,2'-azinobis(3-ethylbenzothiazoline-6 sulfonic acid) cation radical (ABTS+•) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) has been examined and discussed. The reactivity of the complexes toward O2•- increases in the following direction: VO(TDA)(phen) < VO(TDA)(bipy) ≈ VO(ODA)(bipy) < VO(ODA)(phen). The antioxidant activity against ABTS+• and DPPH• free radicals is higher for phen complexes, whereas the thiodiacetate complexes are more reactive than are the corresponding oxydiacetate ones. Finally, herein, the cytoprotective activity of the complexes against the oxidative damage generated exogenously by hydrogen peroxide in the hippocampal neuronal HT22 cell line (the MTT and LDH tests) is reported. In a low concentration (1 μM), the cytoprotective action of thiodiacetate complexes is much higher than that of the corresponding oxydiacetate complexes. However, in the higher concentration range (10 and 100 μM), the antioxidant activity of the complexes is overcompensated by their cytotoxic effect.
Collapse
Affiliation(s)
- Joanna Pranczk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Aleksandra Tesmar
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | | | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
41
|
Doucette KA, Hassell KN, Crans DC. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. J Inorg Biochem 2016; 165:56-70. [PMID: 27751591 DOI: 10.1016/j.jinorgbio.2016.09.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs.
Collapse
Affiliation(s)
- Kaitlin A Doucette
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kelly N Hassell
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; Dept. Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
42
|
Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of Chromium(III) triglycine, tetraglycine and pentaglycine complexes. J Inorg Biochem 2016; 162:227-237. [DOI: 10.1016/j.jinorgbio.2016.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
|
43
|
Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V). J Inorg Biochem 2016; 162:207-215. [DOI: 10.1016/j.jinorgbio.2015.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
|
44
|
Van Doorslaer S, Beirinckx Q, Nys K, Mangiameli MF, Cuypers B, Callens F, Vrielinck H, González JC. EPR and DFT analysis of biologically relevant chromium(V) complexes with d-glucitol and d-glucose. J Inorg Biochem 2016; 162:216-226. [PMID: 27460210 DOI: 10.1016/j.jinorgbio.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
1,2-diolato ligands, such as carbohydrates and glycoproteins, tend to stabilize chromium(V), thus forming important intermediates that have been implicated in the genotoxicity of Cr(VI). Since many years, room-temperature continuous-wave electron paramagnetic resonance (EPR) at X-band microwave frequencies has been used as a standard characterization tool to study chromium(V) intermediates formed during the reduction of Cr(VI) in the presence of biomolecules. In this work, the added value is tested of using a combination of pulsed and high-field EPR techniques with density functional theory computations to unravel the nature of Cr(V) complexes with biologically relevant chelators, such as carbohydrates. The study focuses on the oxidochromium(V) complexes formed during reduction of potassium dichromate with glutathione in the presence of the monosaccharide d-glucose or the polyalcohol d-glucitol. It is shown that although the presence of a multitude of Cr(V) intermediates may hamper a complete structural determination, the combined EPR and DFT approach reveals unambiguously the effect of freezing on the location of the counterions, the gradual replacement of water ligands by the diols, and the preference of Cr(V) to bind certain conformers.
Collapse
Affiliation(s)
- Sabine Van Doorslaer
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Quinten Beirinckx
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Kevin Nys
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - María Florencia Mangiameli
- Universidad National de Rosario, Departamento de Químico Física - Área Química General, Facultad de Ciencias Bioquímicas y Farmacéuticas, IQUIR-CONICET, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Bert Cuypers
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Freddy Callens
- Ghent University, Dept. of Solid State Sciences, Krijgslaan 281-S1, B-9000 Ghent, Belgium.
| | - Henk Vrielinck
- Ghent University, Dept. of Solid State Sciences, Krijgslaan 281-S1, B-9000 Ghent, Belgium.
| | - Juan Carlos González
- University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Antwerp, Belgium; Universidad National de Rosario, Departamento de Químico Física - Área Química General, Facultad de Ciencias Bioquímicas y Farmacéuticas, IQUIR-CONICET, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
45
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
46
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016; 55:8104-7. [DOI: 10.1002/anie.201602996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
47
|
Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate. Biometals 2016; 29:527-34. [PMID: 27013333 DOI: 10.1007/s10534-016-9928-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.
Collapse
|
48
|
Dadfarnia S, Haji Shabani AM, Dehghanpoor Frashah S. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry. J Sep Sci 2016; 39:1509-17. [DOI: 10.1002/jssc.201501301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 11/07/2022]
|
49
|
Wu LE, Levina A, Harris HH, Cai Z, Lai B, Vogt S, James DE, Lay PA. Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes. Angew Chem Int Ed Engl 2015; 55:1742-5. [PMID: 26696553 DOI: 10.1002/anie.201509065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Indexed: 12/31/2022]
Abstract
Chromium(III) nutritional supplements are widely consumed for their purported antidiabetic activities. X-ray fluorescence microscopy (XFM) and X-ray absorption near-edge structure (XANES) studies have now shown that non-toxic doses of [Cr3 O(OCOEt)6 (OH2 )3 ](+) (A), a prospective antidiabetic drug that undergoes similar H2 O2 induced oxidation reactions in the blood as other Cr supplements, was also oxidized to carcinogenic Cr(VI) and Cr(V) in living cells. Single adipocytes treated with A had approximately 1 μm large Cr hotspots containing Cr(III) , Cr(V) , and Cr(VI) (primarily Cr(VI) thiolates) species. These results strongly support the hypothesis that the antidiabetic activity of Cr(III) and the carcinogenicity of Cr(VI) compounds arise from similar mechanisms involving highly reactive Cr(VI) and Cr(V) intermediates, and highlight concerns over the safety of Cr(III) nutritional supplements.
Collapse
Affiliation(s)
- Lindsay E Wu
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,School of Medical Sciences, UNSW Australia, NSW, 2052, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Hugh H Harris
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.,School of Chemistry and Physics, The University of Adelaide, SA, 5005, Australia
| | - Zhonghou Cai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - David E James
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,Charles Perkins Centre, The University of Sydney, NSW, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
50
|
Wu LE, Levina A, Harris HH, Cai Z, Lai B, Vogt S, James DE, Lay PA. Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lindsay E. Wu
- School of Chemistry; The University of Sydney; NSW 2006 Australia
- Garvan Institute of Medical Research; 384 Victoria St Darlinghurst NSW 2010 Australia
- School of Medical Sciences; UNSW Australia; NSW 2052 Australia
| | - Aviva Levina
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| | - Hugh H. Harris
- School of Chemistry; The University of Sydney; NSW 2006 Australia
- School of Chemistry and Physics; The University of Adelaide; SA 5005 Australia
| | - Zhonghou Cai
- Advanced Photon Source; X-ray Science Division; Argonne National Laboratory; Argonne IL 60439 USA
| | - Barry Lai
- Advanced Photon Source; X-ray Science Division; Argonne National Laboratory; Argonne IL 60439 USA
| | - Stefan Vogt
- Advanced Photon Source; X-ray Science Division; Argonne National Laboratory; Argonne IL 60439 USA
| | - David E. James
- Garvan Institute of Medical Research; 384 Victoria St Darlinghurst NSW 2010 Australia
- Charles Perkins Centre; The University of Sydney; NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| |
Collapse
|