1
|
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int J Mol Sci 2023; 24:ijms24076618. [PMID: 37047592 PMCID: PMC10095479 DOI: 10.3390/ijms24076618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
2
|
Chenarani N, Emamjomeh A, Allahverdi A, Mirmostafa S, Afsharinia MH, Zahiri J. Bioinformatic tools for DNA methylation and histone modification: A survey. Genomics 2021; 113:1098-1113. [PMID: 33677056 DOI: 10.1016/j.ygeno.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/10/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
Epigenetic inheritance occurs due to different mechanisms such as chromatin and histone modifications, DNA methylation and processes mediated by non-coding RNAs. It leads to changes in gene expressions and the emergence of new traits in different organisms in many diseases such as cancer. Recent advances in experimental methods led to the identification of epigenetic target sites in various organisms. Computational approaches have enabled us to analyze mass data produced by these methods. Next-generation sequencing (NGS) methods have been broadly used to identify these target sites and their patterns. By using these patterns, the emergence of diseases could be prognosticated. In this study, target site prediction tools for two major epigenetic mechanisms comprising histone modification and DNA methylation are reviewed. Publicly accessible databases are reviewed as well. Some suggestions regarding the state-of-the-art methods and databases have been made, including examining patterns of epigenetic changes that are important in epigenotypes detection.
Collapse
Affiliation(s)
- Nasibeh Chenarani
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - SeyedAli Mirmostafa
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Afsharinia
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Neuroscience, University of California, San Diego, USA.
| |
Collapse
|
3
|
Membrane potential manipulation with visible flash lamp illumination of targeted microbeads. Biochem Biophys Res Commun 2019; 517:297-302. [PMID: 31353087 DOI: 10.1016/j.bbrc.2019.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022]
Abstract
The electrical membrane potential (Vm) is a key dynamical variable of excitable membranes. Despite the tremendous success of optogenetic methods to modulate Vm with light, there are some shortcomings, such as the need of genetic manipulation and limited time resolution. Direct optical stimulation of gold nanoparticles targeted to cells is an attractive alternative because the absorbed energy heats the membrane and, thus, generates capacitive current sufficient to trigger action potentials [1, Carvalho-de-Souza et al., 2015]. However, focused laser light is required and precise location and binding of the nanoparticles cannot be assessed with a conventional microscope. We therefore examined a complementary method to manipulate Vm in a spatio-temporal fashion by non-focused visible flashlight stimulation (Xenon discharge lamp, 385-485 nm, ∼500 μs) of superparamagnetic microbeads. Flashlight stimulation of single beads targeted to cells resulted in transient inward currents under whole-cell patch-clamp control. The waveform of the current reflected the first time derivative of the local temperature induced by the absorbed light and subsequent heat dissipation. The maximal peak current as well as the temperature excursion scaled with the proximity to the plasma membrane. Transient illumination of light-absorbing beads, targeted to specific cellular sites via protein-protein interaction or direct micromanipulation, may provide means of rapid and spatially confined heating and electrical cell stimulation.
Collapse
|
4
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
5
|
Zhu Y, Cao Z, Lu C. Microfluidic MeDIP-seq for low-input methylomic analysis of mammary tumorigenesis in mice. Analyst 2019; 144:1904-1915. [PMID: 30631869 DOI: 10.1039/c8an02271b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of dynamic epigenomic changes during tumorigenesis using mice often require profiling epigenomes using a tiny quantity of tissue samples. Conventional epigenomic tests do not support such analysis due to the large amount of materials required by these assays. In this study, we developed an ultrasensitive microfluidics-based methylated DNA immunoprecipitation followed by next-generation sequencing (MeDIP-seq) technology for profiling methylomes using as little as 0.5 ng DNA (or ∼100 cells) with 1.5 h on-chip process for immunoprecipitation. This technology enabled us to examine genome-wide DNA methylation in a C3(1)/SV40 T-antigen transgenic mouse model during different stages of mammary cancer development. Using our data, we identified differentially methylated regions and their associated genes in different periods of cancer development. Our results showed that unique methylomic features were presented in various tumor developmental stages.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
6
|
Dahl JA, Gilfillan GD. How low can you go? Pushing the limits of low-input ChIP-seq. Brief Funct Genomics 2019; 17:89-95. [PMID: 29087438 DOI: 10.1093/bfgp/elx037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past decade, chromatin immunoprecipitation sequencing (ChIP-seq) has emerged as the dominant technique for those wishing to perform genome-wide protein:DNA profiling. Owing to the tissue- and cell-type-specific nature of epigenetic marks, the field has been driven towards obtaining data from ever-lower cell numbers. In this review, we focus on the methodological developments that have lowered input requirements and the biological findings they have enabled, as we strive towards the ultimate goal of robust single-cell ChIP-seq.
Collapse
|
7
|
Bodénès P, Wang HY, Lee TH, Chen HY, Wang CY. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:33. [PMID: 30815031 PMCID: PMC6376642 DOI: 10.1186/s13068-019-1369-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 05/03/2023]
Abstract
This review presents a critical assessment of emerging microfluidic technologies for the application on biological productions of biofuels and other chemicals from microalgae. Comparisons of cell culture designs for the screening of microalgae strains and growth conditions are provided with three categories: mechanical traps, droplets, or microchambers. Emerging technologies for the in situ characterization of microalgae features and metabolites are also presented and evaluated. Biomass and secondary metabolite productivities obtained at microscale are compared with the values obtained at bulk scale to assess the feasibility of optimizing large-scale operations using microfluidic platforms. The recent studies in microsystems for microalgae pretreatment, fractionation and extraction of metabolites are also reviewed. Finally, comments toward future developments (high-pressure/-temperature process; solvent-resistant devices; omics analysis, including genome/epigenome, proteome, and metabolome; biofilm reactors) of microfluidic techniques for microalgae applications are provided.
Collapse
Affiliation(s)
- Pierre Bodénès
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Hua Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yen Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Murphy TW, Hsieh YP, Ma S, Zhu Y, Lu C. Microfluidic Low-Input Fluidized-Bed Enabled ChIP-seq Device for Automated and Parallel Analysis of Histone Modifications. Anal Chem 2018; 90:7666-7674. [PMID: 29842781 PMCID: PMC6019315 DOI: 10.1021/acs.analchem.8b01541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide epigenetic changes, such as histone modifications, form a critical layer of gene regulations and have been implicated in a number of different disorders such as cancer and inflammation. Progress has been made to decrease the input required by gold-standard genome-wide profiling tools like chromatin immunoprecipitation followed by sequencing (i.e., ChIP-seq) to allow scarce primary tissues of a specific type from patients and lab animals to be tested. However, there has been practically no effort to rapidly increase the throughput of these low-input tools. In this report, we demonstrate LIFE-ChIP-seq (low-input fluidized-bed enabled chromatin immunoprecipitation followed by sequencing), an automated and high-throughput microfluidic platform capable of running multiple sets of ChIP assays on multiple histone marks in as little as 1 h with as few as 50 cells per assay. Our technology will enable testing of a large number of samples and replicates with low-abundance primary samples in the context of precision medicine.
Collapse
|
9
|
Ma S, Hsieh YP, Ma J, Lu C. Low-input and multiplexed microfluidic assay reveals epigenomic variation across cerebellum and prefrontal cortex. SCIENCE ADVANCES 2018; 4:eaar8187. [PMID: 29675472 PMCID: PMC5906078 DOI: 10.1126/sciadv.aar8187] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 05/20/2023]
Abstract
Extensive effort is under way to survey the epigenomic landscape of primary ex vivo tissues to establish normal reference data and to discern variation associated with disease. The low abundance of some tissue types and the isolation procedure required to generate a homogenous cell population often yield a small quantity of cells for examination. This difficulty is further compounded by the need to profile a myriad of epigenetic marks. Thus, technologies that permit both ultralow input and high throughput are desired. We demonstrate a simple microfluidic technology, SurfaceChIP-seq, for profiling genome-wide histone modifications using as few as 30 to 100 cells per assay and with up to eight assays running in parallel. We applied the technology to profile epigenomes using nuclei isolated from prefrontal cortex and cerebellum of mouse brain. Our cell type-specific data revealed that neuronal and glial fractions exhibited profound epigenomic differences across the two functionally distinct brain regions.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Corresponding author.
| |
Collapse
|
10
|
Sun C, Lu C. Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells. Anal Chem 2018; 90:3714-3719. [PMID: 29498513 PMCID: PMC5861017 DOI: 10.1021/acs.analchem.8b00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detecting three-dimensional (3D) genome organization in the form of physical interactions between various genomic loci is of great importance for understanding transcriptional regulations and cellular fate. Chromosome Conformation Capture (3C) method is the gold standard for examining chromatin organization, but usually requires a large number of cells (>107). This hinders studies of scarce tissue samples from animals and patients using the method. Here we developed a microfluidics-based approach for examining chromosome conformation by 3C technology. Critical 3C steps, such as digestion and religation of BAC DNA and cross-linked chromatin, were implemented on a microfluidic chip using a low quantity of cells (<104). Using this technology, we analyzed the chromatin looping interactions in the human β-globin. We envision that our method will provide a powerful tool for low-input analysis of chromosome conformation and epigenetic regulations.
Collapse
Affiliation(s)
- Chen Sun
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
11
|
Liu FW, Liao HF, Lin SP, Lu YW. DNA methylation assay using droplet-based DNA melting curve analysis. LAB ON A CHIP 2018; 18:514-521. [PMID: 29327010 DOI: 10.1039/c7lc01240c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation is an epigenetic regulation of gene expression, which has drawn great attention in biomedical research due to its association with various diseases. A robust, inexpensive platform to detect and quantify the methylation status in a specific genomic region is necessary. In this study, an on-chip analytical technique of cytosine methylation with droplets in a microchannel is proposed. Genomic DNA samples are encapsulated into a series of droplets and transported through a detection region, where a stable temperature gradient is created. As the temperature is elevated from 60 °C to 85 °C, the DNA samples denature and the associated fluorescence signals decay, with the relationship being acquired as the melting curve. The droplets serve as discrete reactors for conducting DNA melting curve analysis in the liquid phase, thereby eliminating the need for immobilization of reagents. Due to a high heating rate and greater enhanced thermal stability, this microchip allows larger melting temperature differences for the samples at different percentages of methylated DNA. It has an enhanced discrimination ability and lower volume consumption, compared to the commercial qPCR machine. This chip enables quantification of the methylation levels of the pluripotent stem cell factor Oct-4 in its distal enhancer (DE) region, with a designed probe after bisulfite treatment and asymmetric PCR.
Collapse
Affiliation(s)
- F-W Liu
- Dept. of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | | | |
Collapse
|
12
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
13
|
Teste B, Champ J, Londono-Vallejo A, Descroix S, Malaquin L, Viovy JL, Draskovic I, Mottet G. Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses. LAB ON A CHIP 2017; 17:530-537. [PMID: 28092380 DOI: 10.1039/c6lc01535b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Genetic organization is governed by the interaction of DNA with histone proteins, and differential modifications of these proteins is a fundamental mechanism of gene regulation. Histone modifications are primarily studied through chromatin immunoprecipitation (ChIP) assays, however conventional ChIP procedures are time consuming, laborious and require a large number of cells. Here we report for the first time the development of ChIP in droplets based on a microfluidic platform combining nanoliter droplets, magnetic beads (MB) and magnetic tweezers (MT). The droplet approach enabled compartmentalization and improved mixing, while reducing the consumption of samples and reagents in an integrated workflow. Anti-histone antibodies grafted to MB were used as a solid support to capture and transfer the target chromatin from droplets to droplets in order to perform chromatin immunoprecipitation, washing, elution and purification of DNA. We designed a new ChIP protocol to investigate four different types of modified histones with known roles in gene activation or repression. We evaluated the performances of this new ChIP in droplet assay in comparison with conventional methods. The proposed technology dramatically reduces analytical time from a few days to 7 hours, simplifies the ChIP protocol and decreases the number of cells required by 100 fold while maintaining a high degree of sensitivity and specificity. Therefore this droplet-based ChIP assay represents a new, highly advantageous and convenient approach to epigenetic analyses.
Collapse
Affiliation(s)
- Bruno Teste
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| | - Jerome Champ
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| | - Arturo Londono-Vallejo
- CNRS, UMR 3244, Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, F-75248, Paris, France and CNRS, UMR3244, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Stéphanie Descroix
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| | - Laurent Malaquin
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| | - Jean-Louis Viovy
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| | - Irena Draskovic
- CNRS, UMR 3244, Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, F-75248, Paris, France and CNRS, UMR3244, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Guillaume Mottet
- Institut Curie, PSL Research University, CNRS UMR 168, 6 Rue Calvin, 75005 Paris, France. and Institut Pierre-Gilles de Gennes, MMBM group, 75005 Paris, France
| |
Collapse
|
14
|
Cao Z, Lu C. A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays. Anal Chem 2016; 88:1965-72. [PMID: 26745449 PMCID: PMC4741277 DOI: 10.1021/acs.analchem.5b04707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Epigenetic
studies increasingly require analysis of a small number
of cells that are of one specific type and derived from patients or
animals. In this report, we demonstrate a simple microfluidic device
that integrates sonication and immunoprecipitation (IP) for epigenetic
assays, such as chromatin immunoprecipitation (ChIP) and methylated
DNA immunoprecipitation (MeDIP). By incorporating an ultrasonic transducer
with a microfluidic chamber, we implemented microscale sonication
for both shearing chromatin/DNA and mixing/washing of IP beads. Such
integration allowed highly sensitive tests starting with 100 cross-linked
cells for ChIP or 500 pg of genomic DNA for MeDIP (compared to 106–107 cells for ChIP and 1–10 μg
of DNA for MeDIP in conventional assays). The entire on-chip process
of sonication and IP took only 1 h. Our tool will be useful for highly
sensitive epigenetic studies based on a small quantity of sample.
Collapse
Affiliation(s)
- Zhenning Cao
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Geng T, Bredeweg EL, Szymanski CJ, Liu B, Baker SE, Orr G, Evans JE, Kelly RT. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics. Sci Rep 2015; 5:16111. [PMID: 26530004 PMCID: PMC4632079 DOI: 10.1038/srep16111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/08/2015] [Indexed: 12/01/2022] Open
Abstract
Interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of scientific applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, our microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange. Although the microfluidic device is demonstrated on filamentous fungi, the technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth, with applications ranging from bioenergy production to human health.
Collapse
Affiliation(s)
- Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Erin L Bredeweg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Craig J Szymanski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bingwen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
16
|
Abstract
The sensitivity of chromatin immunoprecipitation (ChIP) assays poses a major obstacle for epigenomic studies of low-abundance cells. Here we present a microfluidics-based ChIP-Seq protocol using as few as 100 cells via drastically improved collection of high-quality ChIP-enriched DNA. Using this technology, we uncovered many novel enhancers and super enhancers in hematopoietic stem and progenitor cells from mouse fetal liver, suggesting that enhancer activity is highly dynamic during early hematopoiesis.
Collapse
|
17
|
Parker SJ, Raedschelders K, Van Eyk JE. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions. Proteomics 2015; 15:1486-502. [PMID: 25545106 DOI: 10.1002/pmic.201400448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling events either drive or compensate for nearly all pathologies. A thorough description and quantification of maladaptive signaling flux in disease is a critical step in drug development, and complex proteomic approaches can provide valuable mechanistic insights. Traditional proteomics-based signaling analyses rely heavily on in vitro cellular monoculture. The characterization of these simplified systems generates a rich understanding of the basic components and complex interactions of many signaling networks, but they cannot capture the full complexity of the microenvironments in which pathologies are ultimately made manifest. Unfortunately, techniques that can directly interrogate signaling in situ often yield mass-limited starting materials that are incompatible with traditional proteomics workflows. This review provides an overview of established and emerging techniques that are applicable to context-dependent proteomics. Analytical approaches are illustrated through recent proteomics-based studies in which selective sample acquisition strategies preserve context-dependent information, and where the challenge of minimal starting material is met by optimized sensitivity and coverage. This review is organized into three major technological themes: (i) LC methods in line with MS; (ii) antibody-based approaches; (iii) MS imaging with a discussion of data integration and systems modeling. Finally, we conclude with future perspectives and implications of context-dependent proteomics.
Collapse
Affiliation(s)
- Sarah J Parker
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Advanced Clinical Biosystems Research Institute, Los Angeles, CA, USA; Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
18
|
Microfluidic bead-based assay for microRNAs using quantum dots as labels and enzymatic amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1372-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Hyun BR, McElwee JL, Soloway PD. Single molecule and single cell epigenomics. Methods 2014; 72:41-50. [PMID: 25204781 DOI: 10.1016/j.ymeth.2014.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023] Open
Abstract
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.
Collapse
Affiliation(s)
- Byung-Ryool Hyun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - John L McElwee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
He S, Yu X, Wang X, Tan J, Yan S, Wang P, Huang BH, Zhang ZL, Li L. Fast magnetic isolation of simple sequence repeat markers in microfluidic channels. LAB ON A CHIP 2014; 14:1410-1414. [PMID: 24615343 DOI: 10.1039/c3lc51371h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Simple sequence repeat (SSR) markers are widely used for genome mapping, genetic diversity characterization and medical diagnosis. The fast isolation by AFLP of sequence containing repeats (FIASCO) is a powerful method for SSR marker isolation, but it is laborious, costly, and time consuming and requires multiple rounds of washing. Here, we report a superparamagnetic bead (SPMB)-based FIASCO method in a magnetic field controllable microfluidic chip (MFCM-Chip). This method dramatically reduces the assay time by 4.25-fold and reduces the quantity of magnetic beads and probes by 10-fold through the magnetic capture of (AG)n-containing fragments from Herba Leonuri, followed by washing and eluting on a microchip. The feasibility of this method was further evaluated by PCR and sequencing, and the results showed that the proportion of fragments containing SSRs was 89%, confirming that this platform is a fast and efficient method for SSR marker isolation. This cost-effective platform will make the powerful FIASCO technique more accessible for routine use with a wide variety of materials.
Collapse
Affiliation(s)
- Shibin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chang HN, Leroueil PR, Selwa K, Gasper CJ, Tsuchida RE, Wang JJ, McHugh WM, Cornell TT, Baker JR, Goonewardena SN. Profiling inflammatory responses with microfluidic immunoblotting. PLoS One 2013; 8:e81889. [PMID: 24312374 PMCID: PMC3842271 DOI: 10.1371/journal.pone.0081889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022] Open
Abstract
Rapid profiling of signaling pathways has been a long sought after goal in biological sciences and clinical medicine. To understand these signaling pathways, their protein components must be profiled. The protein components of signaling pathways are typically profiled with protein immunoblotting. Protein immunoblotting is a powerful technique but has several limitations including the large sample requirements, high amounts of antibody, and limitations in assay throughput. To overcome some of these limitations, we have designed a microfluidic protein immunoblotting device to profile multiple signaling pathways simultaneously. We show the utility of this approach by profiling inflammatory signaling pathways (NFκB, JAK-STAT, and MAPK) in cell models and human samples. The microfluidic immunoblotting device can profile proteins and protein modifications with 5380-fold less antibody compared to traditional protein immunoblotting. Additionally, this microfluidic device interfaces with commonly available immunoblotting equipment, has the ability to multiplex, and is compatible with several protein detection methodologies. We anticipate that this microfluidic device will complement existing techniques and is well suited for life science applications.
Collapse
Affiliation(s)
- Huai-Ning Chang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pascale R. Leroueil
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katherine Selwa
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - C. J. Gasper
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan E. Tsuchida
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jason J. Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Walker M. McHugh
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy T. Cornell
- Division of Pediatric Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sascha N. Goonewardena
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Aguilar CA, Craighead HG. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. NATURE NANOTECHNOLOGY 2013; 8:709-18. [PMID: 24091454 PMCID: PMC4072028 DOI: 10.1038/nnano.2013.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/28/2013] [Indexed: 05/05/2023]
Abstract
Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin - a dynamic complex of nucleic acids and proteins - is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.
Collapse
Affiliation(s)
- Carlos A. Aguilar
- Massachusetts Institute of Technology - Lincoln Laboratory, 244 Wood St., Lexington, MA 02127
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
23
|
Matsuoka T, Choul Kim B, Moraes C, Han M, Takayama S. Micro- and nanofluidic technologies for epigenetic profiling. BIOMICROFLUIDICS 2013; 7:41301. [PMID: 23964309 PMCID: PMC3739826 DOI: 10.1063/1.4816835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/26/2013] [Indexed: 05/10/2023]
Abstract
This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.
Collapse
Affiliation(s)
- Toshiki Matsuoka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
24
|
Geng T, Bao N, Sriranganathanw N, Li L, Lu C. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform. Anal Chem 2012; 84:9632-9. [PMID: 23061629 DOI: 10.1021/ac3026064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vast majority of genetic analysis of cells involves chemical lysis for release of DNA molecules. However, chemical reagents required in the lysis interfere with downstream molecular biology and often require removal after the step. Electrical lysis based on irreversible electroporation is a promising technique to prepare samples for genetic analysis due to its purely physical nature, fast speed, and simple operation. However, there has been no experimental confirmation on whether electrical lysis extracts genomic DNA from cells in a reproducible and efficient fashion in comparison to chemical lysis, especially for eukaryotic cells that have most of the DNA enclosed in the nucleus. In this work, we construct an integrated microfluidic chip that physically traps a low number of cells, lyses the cells using electrical pulses rapidly, then purifies and concentrates genomic DNA. We demonstrate that electrical lysis offers high efficiency for DNA extraction from both eukaryotic cells (up to ∼36% for Chinese hamster ovary cells) and bacterial cells (up to ∼45% for Salmonella typhimurium) that is comparable to the widely used chemical lysis. The DNA extraction efficiency has dependence on both the electric parameters and relative amount of beads used for DNA adsorption. We envision that electroporation-based DNA extraction will find use in ultrasensitive assays that benefit from minimal dilution and simple procedures.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
25
|
Underhill GH. Stem cell bioengineering at the interface of systems-based models and high-throughput platforms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:525-45. [DOI: 10.1002/wsbm.1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc Natl Acad Sci U S A 2012; 109:8477-82. [PMID: 22586076 DOI: 10.1073/pnas.1117549109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modifications, such as DNA and histone methylation, are responsible for regulatory pathways that affect disease. Current epigenetic analyses use bisulfite conversion to identify DNA methylation and chromatin immunoprecipitation to collect molecules bearing a specific histone modification. In this work, we present a proof-of-principle demonstration for a new method using a nanofluidic device that combines real-time detection and automated sorting of individual molecules based on their epigenetic state. This device evaluates the fluorescence from labeled epigenetic modifications to actuate sorting. This technology has demonstrated up to 98% accuracy in molecule sorting and has achieved postsorting sample recovery on femtogram quantities of genetic material. We have applied it to sort methylated DNA molecules using simultaneous, multicolor fluorescence to identify methyl binding domain protein-1 (MBD1) bound to full-duplex DNA. The functionality enabled by this nanofluidic platform now provides a workflow for color-multiplexed detection, sorting, and recovery of single molecules toward subsequent DNA sequencing.
Collapse
|