1
|
Vangala VNP, Uversky VN. Intrinsic disorder in protein interaction networks linking cancer with metabolic diseases. Comput Biol Chem 2025; 118:108493. [PMID: 40319601 DOI: 10.1016/j.compbiolchem.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Complex diseases are usually driven by numerous proteins that operate as intricate network systems. Deciphering of their signals is required for more advanced level understanding of the cellular processes driven by protein interactions. Therefore, placing diseases into a framework, where they can be viewed together, represents an important and fruitful approach. The goal of this study was to assess the intrinsic disorder present in the proteins forming PPI networks linking cancer with different human diseases. To this end, we used a set of bioinformatics tools to explore intrinsic disorder and liquid-liquid phase separation predispositions of 340 proteins reported earlier by Hirsch et al. (Cancer Cell (2010) 17(4), 348-361; doi: 10.1016/j.ccr.2010.01.022) as differently expressed in common chronic diseases, such as cancer, obesity, diabetes, and cardiovascular diseases. We further examined selected proteins from this set for their interactability and intrinsic disorder-based functionality. Our analyses demonstrated that intrinsically disordered proteins and proteins with intrinsically disordered regions may act as active network promoters and operate as highly connected hubs, which further enables them to play key roles in the disease pathways. The study also indicated that differently expressed proteins involved in disease progression could be characterized by diverse degrees of intrinsic disorder and LLPS propensity. We hope that our findings in combination with the outputs of the proteomic and functional genomic analyses contain essential clues that can be used in further medical research leading to the design of better therapies.
Collapse
Affiliation(s)
- Veda Naga Priya Vangala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Padi SKR, Godek RJ, Peti W, Page R. Cryo-EM structures of PP2A:B55 with p107 and Eya3 define substrate recruitment. Nat Struct Mol Biol 2025:10.1038/s41594-025-01535-3. [PMID: 40247147 DOI: 10.1038/s41594-025-01535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/13/2025] [Indexed: 04/19/2025]
Abstract
Phosphoprotein phosphatases (PPPs) achieve specificity by binding substrates and regulators using PPP-specific short motifs. Protein phosphatase 2A (PP2A) is a highly conserved phosphatase that regulates cell signaling and is a tumor suppressor. Here, we use cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy to investigate the mechanisms of human p107 substrate and Eya3 regulator recruitment to the PP2A:B55 holoenzyme. We show that, while they associate with B55 using a common set of interaction pockets, the mechanism of substrate and regulator binding differs and is distinct from that observed for PP2A:B56 and other PPPs. We also identify the core B55 recruitment motif in Eya3 proteins, a sequence conserved amongst the Eya family. Lastly, using NMR-based dephosphorylation assays, we demonstrate how B55 recruitment directs PP2A:B55 fidelity through the selective dephosphorylation of specific phosphosites. As PP2A:B55 orchestrates mitosis and DNA damage repair, these data provide a roadmap for pursuing new avenues to therapeutically target this complex by individually blocking a subset of regulators that use different B55 interaction sites.
Collapse
Affiliation(s)
- Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Rachel J Godek
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
3
|
Uversky VN. Functional diversity of intrinsically disordered proteins and their structural heterogeneity: Protein structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:1-15. [PMID: 39947745 DOI: 10.1016/bs.pmbts.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The fact that protein universe is enriched in intrinsic disorder is an accepted truism now. It is also recognized that the phenomenon of protein intrinsic disorder contains keys to answer numerous questions that do not have obvious solutions within the classic "lock-and-key"-based structure-function paradigm. In fact, reality is much more complex than the traditional "one-gene - one-protein - one-function" model, as many (if not most) proteins are multifunctional. This multifunctionality is commonly rooted in the presence of the intrinsically disordered or structurally flexible regions in a protein. Here, in addition to various events at the DNA (genetic variations), mRNA (alternative splicing, alternative promoter usage, alternative initiation of translation, and mRNA editing), and protein levels (post-translational modifications), intrinsic disorder and protein functionality are crucial for generation of proteoforms, which are functionally and structurally different protein forms produced from a single gene. Therefore, since a given protein exists as a dynamic conformational ensemble containing multiple proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials, "protein structure-function continuum" model represents a more realistic way to correlate protein structure and function.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
4
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
5
|
García Juárez AM, Carrillo González NJ, Campos-Ordoñez T, Gasca Martínez Y, Gudiño-Cabrera G. Neuronal splicing regulator RBFOX3 (NeuN) distribution and organization are modified in response to monosodium glutamate in rat brain at postnatal day 14. Acta Histochem 2024; 126:152207. [PMID: 39427608 DOI: 10.1016/j.acthis.2024.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Neuronal splicing regulator RNA binding protein, fox-1 homolog 3 (NeuN/RbFox3), is expressed in postmitotic neurons and distributed heterogeneously in the cell. During excitotoxicity events caused by the excess glutamate, several alterations that culminate in neuronal death have been described. However, NeuN/RbFox3 organization and distribution are still unknown. Therefore, our objective was to analyze the nucleocytoplasmic distribution and organization of NeuN/RbFox3 in hippocampal and cortical neurons using an excitotoxicity model with monosodium glutamate salt (MSG). We used neonatal Wistar rats administered subcutaneously with 4 MSG mg/kg during the postnatal day (PND) 1, 3, 5, and 7. The control group was rats without MSG administration. On 14 PND, the brain was removed, and coronal sections were used for immunodetection with the antibody NeuN, DAPI, and the propidium iodide staining for histological evaluation. The results indicate that in the control group, NeuN/RbFox3 was organized into macromolecular condensates inside and outside the nucleus, forming defined nuclear compartments. Additionally, NeuN/RbFox3 was distributed proximal to the nucleus in the cytoplasm. In contrast, in the group treated with MSG, the distribution was diffuse and dispersed in the nucleus and cytoplasm without the formation of compartments in the nucleus. Our findings, which highlight the significant impact of MSG administration in the neonatal period on the distribution and organization of NeuN/RbFox3 of neurons in the hippocampus and cerebral cortex, offer a new perspective to investigate MSG alterations in the developmental brain.
Collapse
Affiliation(s)
- Anaís Monzerrat García Juárez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Yadira Gasca Martínez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| |
Collapse
|
6
|
Rojewski A, Schweiger M, Sgouralis I, Comstock M, Pressé S. An accurate probabilistic step finder for time-series analysis. Biophys J 2024; 123:2749-2764. [PMID: 38204166 PMCID: PMC11393690 DOI: 10.1016/j.bpj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Noisy time-series data-from various experiments, including Förster resonance energy transfer, patch clamp, and force spectroscopy, among others-are commonly analyzed with either hidden Markov models or step-finding algorithms, both of which detect discrete transitions. Hidden Markov models, including their extensions to infinite state spaces, inherently assume exponential-or technically geometric-holding time distributions, biasing step locations toward steps with geometric holding times, especially in sparse and/or noisy data. In contrast, existing step-finding algorithms, while free of this restraint, often rely on ad hoc metrics to penalize steps recovered in time traces (by using various information criteria) and otherwise rely on approximate greedy algorithms to identify putative global optima. Here, instead, we devise a robust and general probabilistic (Bayesian) step-finding tool that neither relies on ad hoc metrics to penalize step numbers nor assumes geometric holding times in each state. As the number of steps themselves in a time-series are a priori unknown, we treat these within a Bayesian nonparametric (BNP) paradigm. We find that the method developed, BNP Step (BNP-Step), accurately determines the number and location of transitions between discrete states without any assumed kinetic model and learns the emission distribution characteristic of each state. In doing so, we verify that BNP-Step can analyze sparser data sets containing higher noise and more closely spaced states than otherwise resolved by current state-of-the-art methods. What is more, BNP-Step rigorously propagates measurement uncertainty into uncertainty over state transition locations, numbers, and emission levels as characterized by the posterior. We demonstrate the performance of BNP-Step on both synthetic data as well as data drawn from force spectroscopy experiments.
Collapse
Affiliation(s)
- Alex Rojewski
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Max Schweiger
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Matthew Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
7
|
Ashraf HN, Uversky VN. Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles. Viruses 2024; 16:916. [PMID: 38932209 PMCID: PMC11209445 DOI: 10.3390/v16060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Hafiza Nimra Ashraf
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
9
|
Martinho M, Allegro D, Etienne E, Lohberger C, Bonucci A, Belle V, Barbier P. Structural Flexibility of Tau in Its Interaction with Microtubules as Viewed by Site-Directed Spin Labeling EPR Spectroscopy. Methods Mol Biol 2024; 2754:55-75. [PMID: 38512660 DOI: 10.1007/978-1-0716-3629-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a "fuzzy" complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or "spy spins" of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5-8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes.
Collapse
Affiliation(s)
| | - Diane Allegro
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Cynthia Lohberger
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Pascale Barbier
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
10
|
Yuce-Erarslan E, Domb AAJ, Kasem H, Uversky VN, Coskuner-Weber O. Intrinsically Disordered Synthetic Polymers in Biomedical Applications. Polymers (Basel) 2023; 15:polym15102406. [PMID: 37242981 DOI: 10.3390/polym15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/29/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In biology and medicine, intrinsically disordered synthetic polymers bio-mimicking intrinsically disordered proteins, which lack stable three-dimensional structures, possess high structural/conformational flexibility. They are prone to self-organization and can be extremely useful in various biomedical applications. Among such applications, intrinsically disordered synthetic polymers can have potential usage in drug delivery, organ transplantation, artificial organ design, and immune compatibility. The designing of new syntheses and characterization mechanisms is currently required to provide the lacking intrinsically disordered synthetic polymers for biomedical applications bio-mimicked using intrinsically disordered proteins. Here, we present our strategies for designing intrinsically disordered synthetic polymers for biomedical applications based on bio-mimicking intrinsically disordered proteins.
Collapse
Affiliation(s)
- Elif Yuce-Erarslan
- Chemical Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey
| | - Abraham Avi J Domb
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Haytam Kasem
- Azrieli College of Engineering, 26 Ya'akov Schreiboim Street, Jerusalem 9103501, Israel
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| |
Collapse
|
11
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
12
|
Jaipuria G, Shet D, Malik S, Swain M, Atreya HS, Galea CA, Slomiany MG, Rosenzweig SA, Forbes BE, Norton RS, Mondal S. IGF-dependent dynamic modulation of a protease cleavage site in the intrinsically disordered linker domain of human IGFBP2. Proteins 2022; 90:1732-1743. [PMID: 35443068 PMCID: PMC9357107 DOI: 10.1002/prot.26350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Divya Shet
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Nanobiophysics lab, Raman Research Institute, Sadashivnagar, Bangalore-80, India
| | - Shahid Malik
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Frederick National Laboratory for Cancer Research, Maryland-21701, USA
| | | | - Charles A. Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Mark G. Slomiany
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, SA 5042, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,ARC Centre for Fragment-Based Design, Monash University, Parkville 3052, Australia
| | - Somnath Mondal
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Univ. Bordeaux, Institut Européen de Chimie et Biologie and INSERM U1212, ARNA Laboratory, 2 rue Robert Escarpit, 33607 Pessac Cedex, Bordeaux, France
| |
Collapse
|
13
|
Chaudhary A, Chaurasia PK, Kushwaha S, Chauhan P, Chawade A, Mani A. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. Int J Biol Macromol 2022; 220:743-753. [PMID: 35987358 DOI: 10.1016/j.ijbiomac.2022.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay
| | - Pankaj Kumar Chaurasia
- PG Department of Chemistry, L.S. College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
14
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Wang X, Chong B, Sun Z, Ruan H, Yang Y, Song P, Liu Z. More is simpler: Decomposition of ligand-binding affinity for proteins being disordered. Protein Sci 2022; 31:e4375. [PMID: 35762723 PMCID: PMC9214758 DOI: 10.1002/pro.4375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
In statistical mechanics, it is well known that the huge number of degrees of freedom does not complicate the problem as it seems, but actually greatly simplifies the analysis (e.g., to give a Boltzmann distribution). Here, we reveal that the ensemble averaging from the vast conformations of intrinsically disordered proteins (IDPs) greatly simplifies the nature of binding affinity, which can be reliably decomposed into a sum of the ligandability of IDP and the capacity of ligand. Such an unexpected regularity is applied to facilitate the virtual screening upon IDPs. It also provides essential insight in understanding the specificity difference between IDPs and conventional ordered proteins since the specificity is caused by deviation from the baseline behavior of protein-ligand binding.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina
| | - Bin Chong
- School of Economics and ManagementTsinghua UniversityBeijingChina
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina
| | - Hao Ruan
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina
| | - Yingguang Yang
- School of CyberscienceUniversity of Science and Technology of ChinaHefeiChina
| | - Pengbo Song
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS)Peking UniversityBeijingChina
| |
Collapse
|
16
|
Elkhaligy H, Balbin CA, Siltberg-Liberles J. Comparative Analysis of Structural Features in SLiMs from Eukaryotes, Bacteria, and Viruses with Importance for Host-Pathogen Interactions. Pathogens 2022; 11:pathogens11050583. [PMID: 35631103 PMCID: PMC9147284 DOI: 10.3390/pathogens11050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions drive functions in eukaryotes that can be described by short linear motifs (SLiMs). Conservation of SLiMs help illuminate functional SLiMs in eukaryotic protein families. However, the simplicity of eukaryotic SLiMs makes them appear by chance due to mutational processes not only in eukaryotes but also in pathogenic bacteria and viruses. Further, functional eukaryotic SLiMs are often found in disordered regions. Although proteomes from pathogenic bacteria and viruses have less disorder than eukaryotic proteomes, their proteins can successfully mimic eukaryotic SLiMs and disrupt host cellular function. Identifying important SLiMs in pathogens is difficult but essential for understanding potential host-pathogen interactions. We performed a comparative analysis of structural features for experimentally verified SLiMs from the Eukaryotic Linear Motif (ELM) database across viruses, bacteria, and eukaryotes. Our results revealed that many viral SLiMs and specific motifs found across viruses and eukaryotes, such as some glycosylation motifs, have less disorder. Analyzing the disorder and coil properties of equivalent SLiMs from pathogens and eukaryotes revealed that some motifs are more structured in pathogens than their eukaryotic counterparts and vice versa. These results support a varying mechanism of interaction between pathogens and their eukaryotic hosts for some of the same motifs.
Collapse
|
17
|
Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN, Turoverov KK. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 2022; 79:251. [PMID: 35445278 PMCID: PMC11073196 DOI: 10.1007/s00018-022-04276-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
At the turn of the twenty-first century, fundamental changes took place in the understanding of the structure and function of proteins and then in the appreciation of the intracellular space organization. A rather mechanistic model of the organization of living matter, where the function of proteins is determined by their rigid globular structure, and the intracellular processes occur in rigidly determined compartments, was replaced by an idea that highly dynamic and multifunctional "soft matter" lies at the heart of all living things. According this "new view", the most important role in the spatio-temporal organization of the intracellular space is played by liquid-liquid phase transitions of biopolymers. These self-organizing cellular compartments are open dynamic systems existing at the edge of chaos. They are characterized by the exceptional structural and compositional dynamics, and their multicomponent nature and polyfunctionality provide means for the finely tuned regulation of various intracellular processes. Changes in the external conditions can cause a disruption of the biogenesis of these cellular bodies leading to the irreversible aggregation of their constituent proteins, followed by the transition to a gel-like state and the emergence of amyloid fibrils. This work represents a historical overview of changes in our understanding of the intracellular space compartmentalization. It also reflects methodological breakthroughs that led to a change in paradigms in this area of science and discusses modern ideas about the organization of the intracellular space. It is emphasized here that the membrane-less organelles have to combine a certain resistance to the changes in their environment and, at the same time, show high sensitivity to the external signals, which ensures the normal functioning of the cell.
Collapse
Affiliation(s)
- Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Anna S Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
18
|
Wang D, Wu S, Wang D, Song X, Yang M, Zhang W, Huang S, Weng J, Liu Z, Wang W. The importance of the compact disordered state in the fuzzy interactions between intrinsically disordered proteins. Chem Sci 2022; 13:2363-2377. [PMID: 35310482 PMCID: PMC8864705 DOI: 10.1039/d1sc06825c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsically disordered C-terminal domain (CTD) of protein 4.1G is able to specifically bind a 26-residue intrinsically disordered region of NuMA, forming a dynamic fuzzy complex. As one of a few cases of extremely fuzzy interactions between two intrinsically disordered proteins/regions (IDPs/IDRs) without induced folding, the principle of the binding is unknown. Here, we combined experimental and computational methods to explore the detailed mechanism of the interaction between 4.1G-CTD and NuMA. MD simulations suggest that the kinetic hub states in the structure ensemble of 4.1G-CTD are favorable in the fuzzy complex. The feature of these hub states is that the binding 'hot spot' motifs βA and βB exhibit β strand propensities and are well packed to each other. The binding between 4.1G-CTD and NuMA is disrupted at low pH, which changes the intramolecular packing of 4.1G-CTD and weakens the packing between βA and βB motifs. Low pH conditions also lead to increased hydrodynamic radius and acceleration of backbone dynamics of 4.1G-CTD. All these results underscore the importance of tertiary structural arrangements and overall compactness of 4.1G-CTD in its binding to NuMA, i.e. the compact disordered state of 4.1G-CTD is crucial for binding. Different from the short linear motifs (SLiMs) that are often found to mediate IDP interactions, 4.1G-CTD functions as an intrinsically disordered domain (IDD), which is a functional and structural unit similar to conventional protein domains. This work sheds light on the molecular recognition mechanism of IDPs/IDRs and expands the conventional structure-function paradigm in protein biochemistry.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University Shanghai 200438 China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 Guangdong China
| | | | - Xingyu Song
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University Shanghai 200438 China
| | - Maohua Yang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University Shanghai 200438 China
| | - Wolun Zhang
- LightEdge Technologies Limited Zhongshan 528403 China
| | - Shaohui Huang
- Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Science Beijing 101408 China
| | - Jingwei Weng
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University Shanghai 200438 China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University Shanghai 200438 China
| |
Collapse
|
19
|
Aponte E, Lafitte M, Sirvent A, Simon V, Barbery M, Fourgous E, Boublik Y, Maffei M, Armand F, Hamelin R, Pannequin J, Fort P, Pons M, Roche S. Regulation of Src tumor activity by its N-terminal intrinsically disordered region. Oncogene 2022; 41:960-970. [PMID: 34999732 PMCID: PMC8837538 DOI: 10.1038/s41388-021-02092-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
The membrane-anchored Src tyrosine kinase is involved in numerous pathways and its deregulation is involved in human cancer. Our knowledge on Src regulation relies on crystallography, which revealed intramolecular interactions to control active Src conformations. However, Src contains a N-terminal intrinsically disordered unique domain (UD) whose function remains unclear. Using NMR, we reported that UD forms an intramolecular fuzzy complex involving a conserved region with lipid-binding capacity named Unique Lipid-Binding Region (ULBR), which could modulate Src membrane anchoring. Here we show that the ULBR is essential for Src's oncogenic capacity. ULBR inactive mutations inhibited Src transforming activity in NIH3T3 cells and in human colon cancer cells. It also reduced Src-induced tumor development in nude mice. An intact ULBR was required for MAPK signaling without affecting Src kinase activity nor sub-cellular localization. Phospho-proteomic analyses revealed that, while not impacting on the global tyrosine phospho-proteome in colon cancer cells, this region modulates phosphorylation of specific membrane-localized tyrosine kinases needed for Src oncogenic signaling, including EPHA2 and Fyn. Collectively, this study reveals an important role of this intrinsically disordered region in malignant cell transformation and suggests a novel layer of Src regulation by this unique region via membrane substrate phosphorylation.
Collapse
Affiliation(s)
- Emilie Aponte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Marie Lafitte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Maud Barbery
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Elise Fourgous
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Yvan Boublik
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Mariano Maffei
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Evvivax srl-Via di Castel Romano, 100 - 00128, Rome, Italy
| | - Florence Armand
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | - Philippe Fort
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- IGF, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
| |
Collapse
|
20
|
Su BG, Henley MJ. Drugging Fuzzy Complexes in Transcription. Front Mol Biosci 2022; 8:795743. [PMID: 34993233 PMCID: PMC8724552 DOI: 10.3389/fmolb.2021.795743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) are one of the most promising but underutilized classes of drug targets. The high degree of intrinsic disorder in both the structure and the interactions (i.e., “fuzziness”) of TFs is one of the most important challenges to be addressed in this context. Here, we discuss the impacts of fuzziness on transcription factor drug discovery, describing how disorder poses fundamental problems to the typical drug design, and screening approaches used for other classes of proteins such as receptors or enzymes. We then speculate on ways modern biophysical and chemical biology approaches could synergize to overcome many of these challenges by directly addressing the challenges imposed by TF disorder and fuzziness.
Collapse
Affiliation(s)
- Bonnie G Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
21
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
22
|
Hatos A, Monzon AM, Tosatto SCE, Piovesan D, Fuxreiter M. FuzDB: a new phase in understanding fuzzy interactions. Nucleic Acids Res 2021; 50:D509-D517. [PMID: 34791357 PMCID: PMC8728163 DOI: 10.1093/nar/gkab1060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
Fuzzy interactions are specific, variable contacts between proteins and other biomolecules (proteins, DNA, RNA, small molecules) formed in accord to the cellular context. Fuzzy interactions have recently been demonstrated to regulate biomolecular condensates generated by liquid-liquid phase separation. The FuzDB v4.0 database (https://fuzdb.org) assembles experimentally identified examples of fuzzy interactions, where disordered regions mediate functionally important, context-dependent contacts between the partners in stoichiometric and higher-order assemblies. The new version of FuzDB establishes cross-links with databases on structure (PDB, BMRB, PED), function (ELM, UniProt) and biomolecular condensates (PhaSepDB, PhaSePro, LLPSDB). FuzDB v4.0 is a source to decipher molecular basis of complex cellular interaction behaviors, including those in protein droplets.
Collapse
Affiliation(s)
- Andras Hatos
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alexander Miguel Monzon
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.,Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt 98, 4010 Debrecen, Hungary
| |
Collapse
|
23
|
Per aspera ad chaos: a personal journey to the wonderland of intrinsic disorder. Biochem J 2021; 478:3015-3024. [PMID: 34375385 DOI: 10.1042/bcj20210146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
This perspective article describes some of the key points of my personal journey through the intriguing world of intrinsically disordered proteins (IDPs). It also shows the evolution of my perception of functional proteins from a standard lock-and-key theory, where a unique function is defined by a unique 3D structure, to the structure-function continuum model, where the structural heterogeneity and conformational plasticity of IDPs define their remarkable multifunctionality and binding promiscuity. These personal accounts of the difficult and lengthy transition from order to disorder paralleled the uneasy and challenging transition in the mind of the scientific community from disbelief in intrinsic disorder to acceptance of IDPs as real entities that play critical biological roles. I hope that this perspective will be of interest to the readers of this journal.
Collapse
|
24
|
Del Amo-Maestro L, Sagar A, Pompach P, Goulas T, Scavenius C, Ferrero DS, Castrillo-Briceño M, Taulés M, Enghild JJ, Bernadó P, Gomis-Rüth FX. An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. J Mol Biol 2021; 433:166954. [PMID: 33771572 DOI: 10.1016/j.jmb.2021.166954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.
Collapse
Affiliation(s)
- Laura Del Amo-Maestro
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France
| | - Petr Pompach
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia; Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Diego S Ferrero
- Laboratory for Viruses and Large Biological Complexes, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Mariana Castrillo-Briceño
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Marta Taulés
- Scientific and Technological Centers (CCiTUB), University of Barcelona, Lluís Solé i Sabaris, 1-3, 08028 Barcelona, Catalonia, Spain
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France.
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Chong B, Yang Y, Wang ZL, Xing H, Liu Z. Reinforcement learning to boost molecular docking upon protein conformational ensemble. Phys Chem Chem Phys 2021; 23:6800-6806. [PMID: 33724276 DOI: 10.1039/d0cp06378a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are widely involved in human diseases and thus are attractive therapeutic targets. In practice, however, it is computationally prohibitive to dock large ligand libraries to thousands and tens of thousands of conformations. Here, we propose a reversible upper confidence bound (UCB) algorithm for the virtual screening of IDPs to address the influence of the conformation ensemble. The docking process is dynamically arranged so that attempts are focused near the boundary to separate top ligands from the bulk accurately. It is demonstrated in the example of transcription factor c-Myc that the average docking number per ligand can be greatly reduced while the performance is merely slightly affected. This study suggests that reinforcement learning is highly efficient in solving the bottleneck of virtual screening due to the conformation ensemble in the rational drug design of IDPs.
Collapse
Affiliation(s)
- Bin Chong
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
26
|
Uversky VN. Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder-Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid-Liquid Phase Transitions. Annu Rev Biophys 2021; 50:135-156. [PMID: 33503380 DOI: 10.1146/annurev-biophys-062920-063704] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals with two important concepts-protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder-based biological liquid-liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA; .,Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
27
|
Palopoli N, Marchetti J, Monzon AM, Zea DJ, Tosatto SCE, Fornasari MS, Parisi G. Intrinsically Disordered Protein Ensembles Shape Evolutionary Rates Revealing Conformational Patterns. J Mol Biol 2020; 433:166751. [PMID: 33310020 DOI: 10.1016/j.jmb.2020.166751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structure under physiological conditions. The unique composition and complex dynamical behaviour of IDPs make them a challenge for structural biology and molecular evolution studies. Using NMR ensembles, we found that IDPs evolve under a strong site-specific evolutionary rate heterogeneity, mainly originated by different constraints derived from their inter-residue contacts. Evolutionary rate profiles correlate with the experimentally observed conformational diversity of the protein, allowing the description of different conformational patterns possibly related to their structure-function relationships. The correlation between evolutionary rates and contact information improves when structural information is taken not from any individual conformer or the whole ensemble, but from combining a limited number of conformers. Our results suggest that residue contacts in disordered regions constrain evolutionary rates to conserve the dynamic behaviour of the ensemble and that evolutionary rates can be used as a proxy for the conformational diversity of IDPs.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - Diego J Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | | | - Maria S Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Elrashdy F, Redwan EM, Uversky VN. Intrinsic disorder perspective of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104510. [PMID: 32853823 PMCID: PMC7444473 DOI: 10.1016/j.meegid.2020.104510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The novel severe acute respiratory syndrome (SARS) coronavirus SARS-CoV-2 walks the planet causing the rapid spread of the CoV disease 2019 (COVID-19) that has especially deleterious consequences for the patients with underlying cardiovascular diseases (CVDs). Entry of the SARS-CoV-2 into the host cell involves interaction of the virus (via the receptor-binding domain (RBD) of its spike glycoprotein) with the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) followed by the virus-ACE2 complex internalization by the cell. Since ACE2 is expressed in various tissues, such as brain, gut, heart, kidney, and lung, and since these organs represent obvious targets for the SARS-CoV-2 infection, therapeutic approaches were developed to either inhibit ACE2 or reduce its expression as a means of prevention of the virus entry into the corresponding host cells. The problem here is that in addition to be a receptor for the SARS-CoV-2 entry into the host cells, ACE2 acts as a key component of the renin-angiotensin-aldosterone system (RAAS) aimed at the generation of a cascade of vasoactive peptides coordinating several physiological processes. In RAAS, ACE2 degrades angiotensin II, which is a multifunctional CVD-promoting peptide hormone and converts it to a heptapeptide angiotensin-(1-7) acting as the angiotensin II antagonist. As protein multifunctionality is commonly associated with the presence of flexible or disordered regions, we analyze here the intrinsic disorder predisposition of major players related to the SARS-CoV-2 - RAAS axis. We show that all considered proteins contain intrinsically disordered regions that might have specific functions. Since intrinsic disorder might play a role in the functionality of query proteins and be related to the COVID-19 pathogenesis, this work represents an important disorder-based outlook of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. It also suggests that consideration of the intrinsic disorder phenomenon should be added to the modern arsenal of means for drug development.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
29
|
Chong B, Yang Y, Zhou C, Huang Q, Liu Z. Ensemble-Based Thermodynamics of the Fuzzy Binding between Intrinsically Disordered Proteins and Small-Molecule Ligands. J Chem Inf Model 2020; 60:4967-4974. [PMID: 33054197 DOI: 10.1021/acs.jcim.0c00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In contrast to the "lock-and-key" model underlying the long-term success of structural biology and rational drug design, intrinsically disordered proteins (IDPs) exist in an ensemble of highly heterogeneous conformations even after binding with small-molecule ligands. It remains controversial how to characterize the thermodynamics of such fuzzy interactions. Here, we derive an ensemble-based thermodynamic framework to analyze the apparent affinity between IDPs and ligands. It is shown that the apparent affinity is related to the interaction free energy between the individual conformation and ligand in a way similar to Jarzynski's equality in nonequilibrium statistics. The oncoprotein c-Myc is adopted as an example to demonstrate the related properties, for example, the distribution of conformation-ligand interaction free energy, the entropic contribution from the ensemble, the conformation shift under ligand binding, and how to control the error under a limited number of sampled conformations.
Collapse
Affiliation(s)
- Bin Chong
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| | - Yingguang Yang
- School of Cyberscience, University of Science and Technology of China, Hefei 230026, China
| | - Chenguang Zhou
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| | - Qiaojing Huang
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Van Bibber NW, Haerle C, Khalife R, Dayhoff GW, Uversky VN. Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families. J Phys Chem B 2020; 124:8050-8070. [PMID: 32880174 DOI: 10.1021/acs.jpcb.0c07676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Segmental duplications (i.e., highly homologous DNA fragments greater than 1 kb in length that are present within a genome at more than one site) are typically found in genome regions that are prone to rearrangements. A noticeable fraction of the human genome (∼5%) includes segmental duplications (or duplicons) that are assumed to play a number of vital roles in human evolution, human-specific adaptation, and genomic instability. Despite their importance for crucial events such as synaptogenesis, neuronal migration, and neocortical expansion, these segmental duplications continue to be rather poorly characterized. Of particular interest are the core duplicon gene (CDG) families, which are replicates sharing common "core" DNA among the randomly attached pieces and which expand along single chromosomes and might harbor newly acquired protein domains. Another important feature of proteins encoded by CDG families is their multifunctionality. Although it seems that these proteins might possess many characteristic features of intrinsically disordered proteins, to the best of our knowledge, a systematic investigation of the intrinsic disorder predisposition of the proteins encoded by core duplicon gene families has not been conducted yet. To fill this gap and to determine the degree to which these proteins might be affected by intrinsic disorder, we analyzed a set of human proteins encoded by the members of 10 core duplicon gene families, such as NBPF, RGPD, GUSBP, PMS2P, SPATA31, TRIM51, GOLGA8, NPIP, TBC1D3, and LRRC37. Our analysis revealed that the vast majority of these proteins are highly disordered, with their disordered regions often being utilized as means for the protein-protein interactions and/or targeted for numerous posttranslational modifications of different nature.
Collapse
Affiliation(s)
- Nathan W Van Bibber
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cornelia Haerle
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Roy Khalife
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 4 Institutskaya St., Pushchino, 142290, Moscow Region, Russia
| |
Collapse
|
31
|
Predicting Secondary Structure Propensities in IDPs Using Simple Statistics from Three-Residue Fragments. J Mol Biol 2020; 432:5447-5459. [DOI: 10.1016/j.jmb.2020.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
|
32
|
Weng J, Wang W. Dynamic multivalent interactions of intrinsically disordered proteins. Curr Opin Struct Biol 2020; 62:9-13. [DOI: 10.1016/j.sbi.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
|
33
|
Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. Sequence-based prediction of protein binding mode landscapes. PLoS Comput Biol 2020; 16:e1007864. [PMID: 32453748 PMCID: PMC7304629 DOI: 10.1371/journal.pcbi.1007864] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 04/09/2020] [Indexed: 02/04/2023] Open
Abstract
Interactions between disordered proteins involve a wide range of changes in the structure and dynamics of the partners involved. These changes can be classified in terms of binding modes, which include disorder-to-order (DO) transitions, when proteins fold upon binding, as well as disorder-to-disorder (DD) transitions, when the conformational heterogeneity is maintained in the bound states. Furthermore, systematic studies of these interactions are revealing that proteins may exhibit different binding modes with different partners. Proteins that exhibit this context-dependent binding can be referred to as fuzzy proteins. Here we investigate amino acid code for fuzzy binding in terms of the entropy of the probability distribution of transitions towards decreasing order. We implement these entropy calculations into the FuzPred (http://protdyn-fuzpred.org) algorithm to predict the range of context-dependent binding modes of proteins from their amino acid sequences. As we illustrate through a variety of examples, this method identifies those binding sites that are sensitive to the cellular context or post-translational modifications, and may serve as regulatory points of cellular pathways. Great advances have been made in the last several decades in deciphering how the behavior of proteins is encoded in their amino acid sequences. A variety of sequence-based prediction methods have been developed to estimate a wide range of properties of proteins, including secondary structure propensity, native state structures, preference for being disordered and tendency to aggregate. Much less is known, however, about the rules that regulate the conformational changes of proteins upon binding. In particular, many proteins change their binding modes upon interacting with different partners, or as a consequence of post-translational modifications or changes in the cellular milieu. Here we address the problem of how amino acid sequences can encode different binding modes depending on their binding partners, and describe the FuzPred method of predicting context-dependent binding modes.
Collapse
Affiliation(s)
- Attila Horvath
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marton Miskei
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (MV); (MF)
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- * E-mail: (MV); (MF)
| |
Collapse
|
34
|
Intrinsic Disorder in Tetratricopeptide Repeat Proteins. Int J Mol Sci 2020; 21:ijms21103709. [PMID: 32466138 PMCID: PMC7279152 DOI: 10.3390/ijms21103709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Among the realm of repeat containing proteins that commonly serve as “scaffolds” promoting protein-protein interactions, there is a family of proteins containing between 2 and 20 tetratricopeptide repeats (TPRs), which are functional motifs consisting of 34 amino acids. The most distinguishing feature of TPR domains is their ability to stack continuously one upon the other, with these stacked repeats being able to affect interaction with binding partners either sequentially or in combination. It is known that many repeat-containing proteins are characterized by high levels of intrinsic disorder, and that many protein tandem repeats can be intrinsically disordered. Furthermore, it seems that TPR-containing proteins share many characteristics with hybrid proteins containing ordered domains and intrinsically disordered protein regions. However, there has not been a systematic analysis of the intrinsic disorder status of TPR proteins. To fill this gap, we analyzed 166 human TPR proteins to determine the degree to which proteins containing TPR motifs are affected by intrinsic disorder. Our analysis revealed that these proteins are characterized by different levels of intrinsic disorder and contain functional disordered regions that are utilized for protein-protein interactions and often serve as targets of various posttranslational modifications.
Collapse
|
35
|
Goutham S, Kumari I, Pally D, Singh A, Ghosh S, Akhter Y, Bhat R. Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins. Sci Rep 2020; 10:6040. [PMID: 32269229 PMCID: PMC7142085 DOI: 10.1038/s41598-020-61427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
Several post-translational protein modifications lie predominantly within regions of disorder: the biased localization has been proposed to expand the binding versatility of disordered regions. However, investigating a representative dataset of 500 human N-glycoproteins, we observed the sites of N-linked glycosylations or N-glycosites, to be predominantly present in the regions of predicted order. When compared with disordered stretches, ordered regions were not found to be enriched for asparagines, serines and threonines, residues that constitute the sequon signature for conjugation of N-glycans. We then investigated the basis of mutual exclusivity between disorder and N-glycosites on the basis of amino acid distribution: when compared with control ordered residue stretches without any N-glycosites, residue neighborhoods surrounding N-glycosites showed a depletion of bulky, hydrophobic and disorder-promoting amino acids and an enrichment for flexible and accessible residues that are frequently found in coiled structures. When compared with control disordered residue stretches without any N-glycosites, N-glycosite neighborhoods were depleted of charged, polar, hydrophobic and flexible residues and enriched for aromatic, accessible and order-promoting residues with a tendency to be part of coiled and β structures. N-glycosite neighborhoods also showed greater phylogenetic conservation among amniotes, compared with control ordered regions, which in turn were more conserved than disordered control regions. Our results lead us to propose that unique primary structural compositions and differential propensities for evolvability allowed for the mutual spatial exclusion of N-glycosite neighborhoods and disordered stretches.
Collapse
Affiliation(s)
- Shyamili Goutham
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Alvina Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Sujasha Ghosh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.
| |
Collapse
|
36
|
Probing Surfaces in Dynamic Protein Interactions. J Mol Biol 2020; 432:2949-2972. [DOI: 10.1016/j.jmb.2020.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
|
37
|
Sequence-Based Prediction of Fuzzy Protein Interactions. J Mol Biol 2020; 432:2289-2303. [DOI: 10.1016/j.jmb.2020.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
|
38
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Misiura MM, Kolomeisky AB. Role of Intrinsically Disordered Regions in Acceleration of Protein–Protein Association. J Phys Chem B 2019; 124:20-27. [DOI: 10.1021/acs.jpcb.9b08793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Roche J, Potoyan DA. Disorder Mediated Oligomerization of DISC1 Proteins Revealed by Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2019; 123:9567-9575. [PMID: 31614085 DOI: 10.1021/acs.jpcb.9b07467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is a scaffold protein of significant importance for neuro-development and a prominent candidate protein in the etiology of mental disorders. In this work, we investigate the role of conformational heterogeneity and local structural disorder in the oligomerization pathway of the full-length DISC1 and of two truncation variants. Through extensive coarse-grained molecular dynamics simulations with a predictive energy landscape-based model, we shed light on the interplay of local and global disorder which lead to different oligomerization pathways. We found that both global conformational heterogeneity and local structural disorder play an important role in shaping distinct oligomerization trends of DISC1. This study also sheds light on the differences in oligomerization pathways of the full-length protein compared to the truncated variants produced by a chromosomal translocation associated with schizophrenia. We report that oligomerization of full-length DISC1 sequence works in a nonadditive manner with respect to truncated fragments that do not mirror the conformational landscape or binding affinities of the full-length unit.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Davit A Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States.,Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States.,Bioinformatics and Computational Biology Program , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
41
|
Zhao C, Somiya T, Takai S, Ueki S, Arata T. Structural Dynamics of the N-Extension of Cardiac Troponin I Complexed with Troponin C by Site-Directed Spin Labeling Electron Paramagnetic Resonance. Sci Rep 2019; 9:15259. [PMID: 31649274 PMCID: PMC6813352 DOI: 10.1038/s41598-019-51740-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/07/2019] [Indexed: 11/29/2022] Open
Abstract
The secondary structure of the N-extension of cardiac troponin I (cTnI) was determined by measuring the distance distribution between spin labels attached to the i and i + 4 residues: 15/19, 23/27, 27/31, 35/39, and 43/47. All of the EPR spectra of these regions in the monomeric state were broadened and had a amplitude that was reduced by two-thirds of that of the single spin-labeled spectra and was fit by two residual distance distributions, with a major distribution one spreading over the range from 1 to 2.5 nm and the other minor peak at 0.9 nm. Only slight or no obvious changes were observed when the extension was bound to cTnC in the cTnI-cTnC complex at 0.2 M KCl. However, at 0.1 M KCl, residues 43/47, located at the PKC phosphorylation sites Ser42/44 on the boundary of the extension, exclusively exhibited a 0.9 nm peak, as expected from α-helix in the crystal structure, in the complex. Furthermore, 23/27, which is located on the PKA phosphorylation sites Ser23/24, showed that the major distribution was markedly narrowed, centered at 1.4 nm and 0.5 nm wide, accompanying the spin label immobilization of residue 27. Residues 35 and 69 at site 1 and 2 of cTnC exhibited partial immobilization of the attached spin labels upon complex formation. The results show that the extension exhibited a primarily partially folded or unfolded structure equilibrated with a transiently formed α-helix-like short structure over the length. We hypothesize that the structure binds at least near sites 1 and 2 of cTnC and that the specific secondary structure of the extension on cTnC becomes uncovered when decreasing the ionic strength demonstrating that only the phosphorylation regions of cTnI interact stereospecifically with cTnC.
Collapse
Affiliation(s)
- Chenchao Zhao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Takayasu Somiya
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Shinji Takai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Shoji Ueki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Samuki, Kagawa, 769-2193, Japan
| | - Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan. .,Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan. .,Department of Biology, Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Osaka, Osaka, 558-8585, Japan.
| |
Collapse
|
42
|
Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid-Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules 2019; 24:molecules24183265. [PMID: 31500307 PMCID: PMC6767272 DOI: 10.3390/molecules24183265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.
Collapse
|
43
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
44
|
Neira JL, Palomino-Schätzlein M, Ricci C, Ortore MG, Rizzuti B, Iovanna JL. Dynamics of the intrinsically disordered protein NUPR1 in isolation and in its fuzzy complexes with DNA and prothymosin α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140252. [PMID: 31325636 DOI: 10.1016/j.bbapap.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) explore diverse conformations in their free states and, a few of them, also in their molecular complexes. This functional plasticity is essential for the function of IDPs, although their dynamics in both free and bound states is poorly understood. NUPR1 is a protumoral multifunctional IDP, activated during the acute phases of pancreatitis. It interacts with DNA and other IDPs, such as prothymosin α (ProTα), with dissociation constants of ~0.5 μM, and a 1:1 stoichiometry. We studied the structure and picosecond-to-nanosecond (ps-ns) dynamics by using both NMR and SAXS in: (i) isolated NUPR1; (ii) the NUPR1/ProTα complex; and (iii) the NUPR1/double stranded (ds) GGGCGCGCCC complex. Our SAXS findings show that NUPR1 remained disordered when bound to either partner, adopting a worm-like conformation; the fuzziness of bound NUPR1 was also pinpointed by NMR. Residues with the largest values of the relaxation rates (R1, R1ρ, R2 and ηxy), in the free and bound species, were mainly clustered around the 30s region of the sequence, which agree with one of the protein hot-spots already identified by site-directed mutagenesis. Not only residues in this region had larger relaxation rates, but they also moved slower than the rest of the molecule, as indicated by the reduced spectral density approach (RSDA). Upon binding, the energy landscape of NUPR1 was not funneled down to a specific, well-folded conformation, but rather its backbone flexibility was kept, with distinct motions occurring at the hot-spot region.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.
| | | | - Caterina Ricci
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
45
|
Is the cell really a machine? J Theor Biol 2019; 477:108-126. [PMID: 31173758 DOI: 10.1016/j.jtbi.2019.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.
Collapse
|
46
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
47
|
Perez-Borrajero C, Lin CSH, Okon M, Scheu K, Graves BJ, Murphy ME, McIntosh LP. The Biophysical Basis for Phosphorylation-Enhanced DNA-Binding Autoinhibition of the ETS1 Transcription Factor. J Mol Biol 2019; 431:593-614. [DOI: 10.1016/j.jmb.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
48
|
Bignon C, Troilo F, Gianni S, Longhi S. Modulation of Measles Virus N TAIL Interactions through Fuzziness and Sequence Features of Disordered Binding Sites. Biomolecules 2018; 9:biom9010008. [PMID: 30591682 PMCID: PMC6359293 DOI: 10.3390/biom9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
In this paper we review our recent findings on the different interaction mechanisms of the C-terminal domain of the nucleoprotein (N) of measles virus (MeV) NTAIL, a model viral intrinsically disordered protein (IDP), with two of its known binding partners, i.e., the C-terminal X domain of the phosphoprotein of MeV XD (a globular viral protein) and the heat-shock protein 70 hsp70 (a globular cellular protein). The NTAIL binds both XD and hsp70 via a molecular recognition element (MoRE) that is flanked by two fuzzy regions. The long (85 residues) N-terminal fuzzy region is a natural dampener of the interaction with both XD and hsp70. In the case of binding to XD, the N-terminal fuzzy appendage of NTAIL reduces the rate of α-helical folding of the MoRE. The dampening effect of the fuzzy appendage on XD and hsp70 binding depends on the length and fuzziness of the N-terminal region. Despite this similarity, NTAIL binding to XD and hsp70 appears to rely on completely different requirements. Almost any mutation within the MoRE decreases XD binding, whereas many of them increase the binding to hsp70. In addition, XD binding is very sensitive to the α-helical state of the MoRE, whereas hsp70 is not. Thus, contrary to hsp70, XD binding appears to be strictly dependent on the wild-type primary and secondary structure of the MoRE.
Collapse
Affiliation(s)
- Christophe Bignon
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
| | - Francesca Troilo
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
| |
Collapse
|
49
|
Schneider R, Blackledge M, Jensen MR. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Curr Opin Struct Biol 2018; 54:10-18. [PMID: 30316104 DOI: 10.1016/j.sbi.2018.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 01/10/2023]
Abstract
Advances in characterizing complexes of intrinsically disordered proteins (IDPs) have led to the discovery of a remarkably diverse interaction landscape that includes folding-upon-binding, highly dynamic complexes, multivalent interactions as well as regulatory switches controlled by post-translational modifications. Nuclear magnetic resonance (NMR) spectroscopy has in recent years made significant contributions to this field by describing the binding mechanisms and mapping conformational dynamics on multiple time scales. Importantly, this progress has been associated with specific methodological developments in NMR, for example in exchange techniques, allowing challenging biological systems to be studied at atomic resolution. In general, the level of dynamics observed in IDP complexes does not correlate with binding affinities, demonstrating the intricate relationship between conformational dynamics and IDP regulatory function.
Collapse
Affiliation(s)
- Robert Schneider
- Univ. Lille, CNRS, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | | | | |
Collapse
|
50
|
Pallarès I, de Groot NS, Iglesias V, Sant'Anna R, Biosca A, Fernàndez-Busquets X, Ventura S. Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Front Microbiol 2018; 9:1737. [PMID: 30131778 PMCID: PMC6090025 DOI: 10.3389/fmicb.2018.01737] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Prions are a singular subset of proteins able to switch between a soluble conformation and a self-perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to transit between conformations is encoded in the so-called prion domains, long disordered regions usually enriched in glutamine/asparagine residues. Interestingly, Plasmodium falciparum, the parasite that causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. falciparum. Our data indicate that ∼10% of P. falciparum protein sequences have prionic signatures, and that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding proteins. Furthermore, we experimentally demonstrate for several of the identified PrLDs that, despite their disordered nature, they contain inner short sequences able to spontaneously self-assemble into amyloid-like structures. Although the ability of these sequences to nucleate the conformational conversion of the respective full-length proteins should still be demonstrated, our analysis suggests that, as previously described for other organisms, prion-like proteins might also play a functional role in P. falciparum.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia S de Groot
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|