1
|
Santiago T, Konstantinovsky D, Tremblay M, Perets EA, Hammes-Schiffer S, Yan ECY. Drug binding disrupts chiral water structures in the DNA first hydration shell. Chem Sci 2025; 16:6853-6861. [PMID: 40110517 PMCID: PMC11917447 DOI: 10.1039/d4sc08372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Knowledge of how intermolecular interactions change hydration structures surrounding DNA will heighten understanding of DNA biology and advance drug development. However, probing changes in DNA hydration structures in response to molecular interactions and drug binding in situ under ambient conditions has remained challenging. Here, we apply a combined experimental and computational approach of chiral-selective vibrational sum frequency generation spectroscopy (chiral SFG) to probe changes of DNA hydration structures when a small-molecule drug, netropsin, binds the minor groove of DNA. Our results show that chiral SFG can detect water being displaced from the minor groove of DNA due to netropsin binding. Additionally, we observe that chiral SFG distinguishes between weakly and strongly hydrogen-bonded water hydrating DNA. Chiral SFG spectra show that netropsin binding, instead of displacing weakly hydrogen-bonded water, preferentially displaces water molecules strongly hydrogen-bonded to thymine carbonyl groups in the DNA minor groove, revealing the roles of water in modulating site-specificity of netropsin binding to duplex DNA rich in adenine-thymine sequences. The results convey the promise of chiral SFG to offer mechanistic insights into roles of water in drug development targeting DNA.
Collapse
Affiliation(s)
- Ty Santiago
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven CT 06520 USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Ethan A Perets
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University New Haven CT 06520 USA
| |
Collapse
|
2
|
Asnaashari M, Kenari RE, Taghdisi SM, Abnous K, Farahmandfar R. A Novel Fluorescent DNA Sensor for Acrylamide Detection in Food Samples Based on Single-Stranded DNA and GelRed. J Fluoresc 2024; 34:2845-2860. [PMID: 37930599 DOI: 10.1007/s10895-023-03479-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The presence of acylamide (AA) in large group of food products and its health hazards have been confirmed by scientists. In this study, a simple and innovative biosensor for AA determination was designed based on single-stranded DNA (ssDNA) with partial guanine and GelRed. The idea of this biosensor is based on the formation of AA-ssDNA adduct through the strong binding interaction between AA and guanine base of ssDNA, which subsequently inhibits the interaction of ssDNA and GelRed, leading to a weak fluorescence intensity. The binding interaction between AA and ssDNA was confirmed by UV-Vis absorption spectrometry and fluorescence intensity. Under optimum conditions, the designed biosensor exhibited excellent linear response in range of 0.01-95 mM, moreover it showed high selectivity toward AA. The limit of detection was 0.003 mM. This biosensor was successfully applied for the determination of AA in water extract of potato fries and coffee in the range of 0.05-100 mM with LOD of 0.01 mM and 0.05-95 mM with LOD of 0.004 mM, respectively.
Collapse
Affiliation(s)
- Maryam Asnaashari
- Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farahmandfar
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
3
|
Liu L, Deng K, Zeng Z, Zou D, Xu Y, Liu Y, Guo B, Li Y, Xu X. Interrupting Antibiotic Resistance Transmission via Natural Product-Embedded Lipopeptide–Polymeric Nanoblockers. ACS MATERIALS LETTERS 2024; 6:4461-4471. [DOI: 10.1021/acsmaterialslett.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Liguo Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Kefurong Deng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dongzhe Zou
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yiming Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Beiling Guo
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Raj A, Thomas RK, Vidya L, Neelima S, Aparna VM, Sudarsanakumar C. A Minor Groove Binder with Significant Cytotoxicity on Human Lung Cancer Cells: The Potential of Hesperetin Functionalised Silver Nanoparticles. J Fluoresc 2024; 34:2179-2196. [PMID: 37721707 DOI: 10.1007/s10895-023-03409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Natural drug functionalised silver (Ag) nanoparticles (NPs) have gained significant interest in pharmacology related applications due to their therapeutic efficiency. We have synthesised silver nanoparticle using hesperetin as a reducing and capping agent. This work aims to discuss the relevance of the hesperetin functionalised silver nanoparticles (H-AgNPs) in the field of nano-medicine. The article primarily investigates the anticancer activity of H-AgNPs and then their interactions with calf thymus DNA (ctDNA) through spectroscopic and thermodynamic techniques. The green synthesised H-AgNPs are stable, spherical in shape and size of 10 ± 3 nm average diameter. The complex formation of H-AgNPs with ctDNA was established by UV-Visible absorption, fluorescent dye displacement assay, isothermal calorimetry and viscosity measurements. The binding constants obtained from these experiments were consistently in the order of 104 Mol-1. The melting temperature analysis and FTIR measurements confirmed that the structural alterations of ctDNA by the presence of H-AgNPs are minimal. All the thermodynamic variables and the endothermic binding nature were acquired from ITC experiments. All these experimental outcomes reveal the formation of H-AgNPs-ctDNA complex, and the results consistently verify the minor groove binding mode of H-AgNPs. The binding constant and limit of detection of 1.8 μM found from the interaction studies imply the DNA detection efficiency of H-AgNPs. The cytotoxicity of H-AgNPs against A549 and L929 cell lines were determined by in vitro MTT cell viability assay and lactate dehydrogenase (LDH) assay. The cell viability and LDH enzyme release are confirmed that the H-AgNPs has high anticancer activity. Moreover, the calculated LD50 value for H-AgNPs against lung cancer cells is 118.49 µl/ml, which is a low value comparing with the value for fibroblast cells (269.35 µl/ml). In short, the results of in vitro cytotoxicity assays revealed that the synthesised nanoparticles can be considered in applications related to cancer treatments. Also, we have found that, H-AgNPs is a minor groove binder, and having high DNA detection efficiency.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
5
|
Alniss HY, Al-Jubeh HM, Msallam YA, Siddiqui R, Makhlouf Z, Ravi A, Hamdy R, Soliman SSM, Khan NA. Structure-based drug design of DNA minor groove binders and evaluation of their antibacterial and anticancer properties. Eur J Med Chem 2024; 271:116440. [PMID: 38678825 DOI: 10.1016/j.ejmech.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Antimicrobial and chemotherapy resistance are escalating medical problem of paramount importance. Yet, research for novel antimicrobial and anticancer agents remains lagging behind. With their reported medical applications, DNA minor groove binders (MGBs) are worthy of exploration. In this study, the approach of structure-based drug design was implemented to generate 11 MGB compounds including a novel class of bioactive alkyne-linked MGBs. The NCI screening protocol was utilized to evaluate the antitumor activity of the target MGBs. Furthermore, a variety of bactericidal, cytopathogenicity, MIC90, and cytotoxicity assays were carried out using these MGBs against 6 medically relevant bacteria: Salmonella enterica, Escherichia coli, Serratia marcescens, Bacillus cereus, Streptococcus pneumoniae and Streptococcus pyogenes. Moreover, molecular docking, molecular dynamic simulations, DNA melting, and isothermal titration calorimetry (ITC) analyses were utilized to explore the binding mode and interactions between the most potent MGBs and the DNA duplex d(CGACTAGTCG)2. NCI results showed that alkyne-linked MGBs (26 & 28) displayed the most significant growth inhibition among the NCI-60 panel. In addition, compounds MGB3, MGB4, MGB28, and MGB32 showed significant bactericidal effects, inhibited B. cereus and S. enterica-mediated cytopathogenicity, and exhibited low cytotoxicity. MGB28 and MGB32 demonstrated significant inhibition of S. pyogenes, whereas MGB28 notably inhibited S. marcescens and all four minor groove binders significantly inhibited B. cereus. The ability of these compounds to bind with DNA and distort its groove dimensions provides the molecular basis for the allosteric perturbation of proteins-DNA interactions by MGBs. This study shed light on the mechanism of action of MGBs and revealed the important structural features for their antitumor and antibacterial activities, which are important to guide future development of MGB derivatives as novel antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Zinb Makhlouf
- College of Medicine, Department of Clinical Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Naveed A Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
6
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
7
|
Yin J, Wu S, Yang Y, Wang D, Ma Y, Zhao Y, Sheth S, Huang H, Song B, Chen Z. In Addition to Damaging the Plasma Membrane, Phenolic Monoterpenoid Carvacrol Can Bind to the Minor Groove of DNA of Phytopathogenic Fungi to Potentially Control Tea Leaf Spot Caused by Lasiodiplodia theobromae. PHYTOPATHOLOGY 2024; 114:700-716. [PMID: 37856707 DOI: 10.1094/phyto-07-23-0263-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carvacrol expresses a wide range of biological activities, but the studies of its mechanisms focused on bacteria, mainly involving the destruction of the plasma membrane. In this study, carvacrol exhibited strong activities against several phytopathogenic fungi and demonstrated a novel antifungal mechanism against Lasiodiplodia theobromae. RNA sequencing indicated that many genes of L. theobromae hyphae were predominately induced by carvacrol, particularly those involved in replication and transcription. Hyperchromic, hypsochromic, and bathochromic effects in the UV-visible absorption spectrum were observed following titration of calf thymus DNA (ctDNA) and carvacrol, which indicated the formation of a DNA-carvacrol complex. Circular dichroism (CD) spectroscopy indicated that the response of DNA to carvacrol was similar to that of 4',6-diamidino-2-phenylindole (DAPI) but different from that of ethidium bromide (EB), implying the ionic bonds between carvacrol and ctDNA. Fluorescence spectrum (FS) analysis indicated that carvacrol quenched the fluorescence of double-stranded DNA (dsDNA) more than single-stranded DNA, indicating that carvacrol mainly bound to dsDNA. A displacement assay showed that carvacrol reduced the fluorescence intensity of the DNA-DAPI complex through competition with DAPI, but this did not occur for DNA-EB. The FS assay revealed that carvacrol bound to the AAA sequence on the minor groove of ds-oligonucleotides. The hydroxyl of carvacrol was verified to bind to ctDNA through a comparative test in which structural analogs of carvacrol, including thymol and 4-ethyl-1,2-dimethyl, were analyzed. The current study indicated carvacrol can destruct plasma membranes and bind to the minor groove of DNA, inhibiting fungal proliferation by disturbing the stability of dsDNA.
Collapse
Affiliation(s)
- Jiayu Yin
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuang Wu
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yongli Yang
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yue Ma
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
| | - Yongtian Zhao
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, Guizhou, China
| | - Sujitraj Sheth
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
| | - Honglin Huang
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
8
|
Mirzakhanian A, Khoury M, Trujillo DE, Kim B, Ca D, Minehan T. DNA major versus minor groove occupancy of monomeric and dimeric crystal violet derivatives. Toward structural correlations. Bioorg Med Chem 2023; 94:117438. [PMID: 37757605 DOI: 10.1016/j.bmc.2023.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Six monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis. The data indicate that major groove ligands may be optimally constructed from dye units containing a sterically bulky 3,5-dimethyl-N,N-dimethylaniline group; furthermore, the groove-selectivity of olefin-tethered dimer 2d suggests that stereoelectronic interactions (n → π*) between the ligand and DNA are also an important design consideration in the crafting of major-groove binding ligands.
Collapse
Affiliation(s)
- Aren Mirzakhanian
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Michael Khoury
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donald E Trujillo
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Byoula Kim
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donnie Ca
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
9
|
Raj A, Thomas RK, Vidya L, Aparna VM, Neelima S, Sudarsanakumar C. Exploring the cytotoxicity on human lung cancer cells and DNA binding stratagem of camptothecin functionalised silver nanoparticles through multi-spectroscopic, and calorimetric approach. Sci Rep 2023; 13:9045. [PMID: 37270606 DOI: 10.1038/s41598-023-34997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/11/2023] [Indexed: 06/05/2023] Open
Abstract
The influence of nanoparticles inside the human body and their interactions with biological macromolecules need to be explored/studied prior to specific applications. The objective of this study is to find the potential of camptothecin functionalised silver nanoparticles (CMT-AgNPs) in biomedical applications. This article primarily investigates the binding stratagem of CMT-AgNPs with calf thymus DNA (ctDNA) through a series of spectroscopic and calorimetric methods and then analyses the anticancer activity and cytotoxicity of CMT-AgNPs. The nanoparticles were synthesized using a simple one pot method and characterized using UV-Visible, fourier transform infrared (FTIR) spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The average size of CMT-AgNPs is 10 ± 2 nm. A group of experimental techniques such as UV-Visible spectrophotometry, fluorescence dye displacement assay, circular dichroism (CD) and viscosity analysis unravelled the typical groove binding mode of CMT-AgNPs with ctDNA. The CD measurement evidenced the minor conformational alterations of double helical structure of ctDNA in the presence of CMT-AgNPs. The information deduced from the isothermal titration calorimetry (ITC) experiment is that the binding was exothermic and spontaneous in nature. Moreover, all the thermodynamic binding parameters were extracted from the ITC data. The binding constants obtained from UV absorption experiments, fluorescence dye displacement studies and ITC were consistently in the order of 104 Mol-1. All these results validated the formation of CMT-AgNPs-ctDNA complex and the results unambiguously confirm the typical groove binding mode of CMT-AgNPs. An exhaustive in vitro MTT assay by CMT-AgNPs and CMT against A549, HT29, HeLa and L929 cell lines revealed the capability of CMT-AgNPs as a potential anticancer agent.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
10
|
Paul A, Nanjunda R, Wilson WD. Binding to the DNA Minor Groove by Heterocyclic Dications: from AT Specific to GC Recognition Compounds. Curr Protoc 2023; 3:e729. [PMID: 37071034 DOI: 10.1002/cpz1.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, have found extensive uses in biotechnology, and are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds show that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, compounds can be designed to recognize GC and mixed AT/GC base pair sequences, and stacked dimers can form to recognize specific sequences. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, Georgia
- Current Address: Biologics Drug Product Development and Delivery, Janssen Research and Development, Malvern, Pennsylvania
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Han H, Alsayed AMM, Wang Y, Yan Q, Shen A, Zhang J, Ye Y, Liu Z, Wang K, Zheng X. Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway. Bioorg Chem 2023; 132:106358. [PMID: 36642021 DOI: 10.1016/j.bioorg.2023.106358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high recurrence and mortality rate. In this study, a series of β-cyclocitral-derived mono-carbonyl curcumin analogs were synthesized and their anticancer properties were evaluated. Among the series, A19 exhibited the strongest cytotoxic activity by inhibiting cell viability and colony formation, inducing cell cycle G2/M phase arrest and cell apoptosis of HCC HepG2 and Huh-7 cells, while having almost no cytotoxicity on normal liver MIHA cells. Mechanistically, our results demonstrated that A19 triggered intense DNA damage via suppression of the ERK/JNK/p38 MAPK signaling pathway. Additionally, a combination of A19 with sorafenib significantly induced synergistic cytotoxicity in HCC cells. Overall, our results indicate the potential of A19 as a novel chemotherapeutic drug administered either separately or in combined therapy for HCC treatment.
Collapse
Affiliation(s)
- Haoyi Han
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ali Mohammed Mohammed Alsayed
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Qi Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ancheng Shen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianxia Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yanfei Ye
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
12
|
Li J, Wan L, Wang Y, Chen Y, Lee HK, Lam SL, Guo P. Solution Nuclear Magnetic Resonance Structures of ATTTT and ATTTC Pentanucleotide Repeats Associated with SCA37 and FAMEs. ACS Chem Neurosci 2023; 14:289-299. [PMID: 36580663 DOI: 10.1021/acschemneuro.2c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expansions of ATTTT and ATTTC pentanucleotide repeats in the human genome are recently found to be associated with at least seven neurodegenerative diseases, including spinocerebellar ataxia type 37 (SCA37) and familial adult myoclonic epilepsy (FAME) types 1, 2, 3, 4, 6, and 7. The formation of non-B DNA structures during some biological processes is thought as a causative factor for repeat expansions. Yet, the structural basis for these pyrimidine-rich ATTTT and ATTTC repeat expansions remains elusive. In this study, we investigated the solution structures of ATTTT and ATTTC repeats using nuclear magnetic resonance spectroscopy. Here, we reveal that ATTTT and ATTTC repeats can form a highly compact minidumbbell structure at the 5'-end using their first two repeats. The high-resolution structure of two ATTTT repeats was determined, showing a regular TTTTA pentaloop and a quasi TTTT/A pentaloop. Furthermore, the minidumbbell structure could escape from proofreading by the Klenow fragment of DNA polymerase I when it was located at five or more base pairs away from the priming site, leading to a small-scale repeat expansion. Results of this work improve our understanding of ATTTT and ATTTC repeat expansions in SCA37 and FAMEs, and provide high-resolution structural information for rational drug design.
Collapse
Affiliation(s)
- Jinxia Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yawen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pei Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
13
|
Rakheja I, Ansari AH, Ray A, Chandra Joshi D, Maiti S. Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:241-256. [PMID: 36284512 PMCID: PMC9576543 DOI: 10.1016/j.omtn.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The triple-helix structure at the 3' end of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA, has been considered to be a target for modulating the oncogenic functions of MALAT1. This study examines the binding of quercetin-a known triplex binding molecule-to the MALAT1 triplex. By employing UV-visible spectroscopy, circular dichroism spectroscopy, and isothermal titration calorimetry, we observed that quercetin binds to the MALAT1 triplex with a stoichiometry of 1:1 and K d of 495 ± 61 nM, along with a negative change in free energy, indicating a spontaneous interaction. Employing real-time PCR measurements, we observed around 50% downregulation of MALAT1 transcript levels in MCF7 cells, and fluorescence in situ hybridization (FISH) experiments showed concomitantly reduced levels of MALAT1 in nuclear speckles. This interaction is likely a result of a direct interaction between the molecule and the RNA, as indicated by a transcription-stop experiment. Further, transcriptome-wide analysis of alternative splicing changes induced by quercetin revealed modulation of MALAT1 downstream genes. Collectively, our study shows that quercetin strongly binds to the MALAT1 triplex and modulates its functions. It can thus be used as a scaffold for further development of therapeutics or as a chemical tool to understand MALAT1 functions.
Collapse
Affiliation(s)
- Isha Rakheja
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Asgar Hussain Ansari
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Dheeraj Chandra Joshi
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Souvik Maiti
- Chemical and Systems Biology Unit, Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
14
|
Yuan F, Liu X, Tan L. Binding and stabilization effect of arene ruthenium(Ⅱ) polypyridyl complexes toward the triple-helical RNA poly(U)•poly(A)⁎poly(U). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kognole AA, Hazel A, MacKerell AD. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. J Chem Theory Comput 2022; 18:5672-5691. [PMID: 35913731 PMCID: PMC9474704 DOI: 10.1021/acs.jctc.2c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA. Extensions to the method include an enhanced oscillating excess chemical potential protocol for the grand canonical Monte Carlo calculations and individual simulations of the neutral and charged solutes from which the SILCS functional group affinity maps (FragMaps) are calculated for subsequent binding site identification and docking calculations. The method is developed and evaluated against seven RNA targets and their reported small molecule ligands. SILCS-RNA provides a detailed characterization of the functional group affinity pattern in the small molecule binding sites, recapitulating the types of functional groups present in the ligands. The developed method is also shown to be useful for identification of new potential binding sites and identifying ligand moieties that contribute to binding, granular information that can facilitate ligand design. However, limitations in the method are evident including the ability to map the regions of binding sites occupied by ligand phosphate moieties and to fully account for the wide range of conformational heterogeneity in RNA associated with binding of different small molecules, emphasizing inherent challenges associated with applying computer-aided drug design methods to RNA. While limitations are present, the current study indicates how the SILCS-RNA approach may enhance drug discovery efforts targeting RNAs with small molecules.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The insertion of a molecule between the bases of DNA is known as intercalation. A molecule is able to interact with DNA in different ways. DNA intercalators are generally aromatic, planar, and polycyclic. In chemotherapeutic treatment, to suppress DNA replication in cancer cells, intercalators are used. In this article, we discuss the anticancer activity of 10 intensively studied DNA intercalators as drugs. The list includes proflavine, ethidium bromide, doxorubicin, dactinomycin, bleomycin, epirubicin, mitoxantrone, ellipticine, elinafide, and echinomycin. Considerable structural diversities are seen in these molecules. Besides, some examples of the metallo-intercalators are presented at the end of the chapter. These molecules have other crucial properties that are also useful in the treatment of cancers. The successes and limitations of these molecules are also presented.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Ortiz de Luzuriaga I, Elleuchi S, Jarraya K, Artacho E, Lopez X, Gil A. Semi-empirical and Linear-Scaling DFT Methods to Characterize duplex DNA and G-quadruplexes in Presence of Interacting Small Molecules. Phys Chem Chem Phys 2022; 24:11510-11519. [DOI: 10.1039/d2cp00214k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The computational study of DNA and its interaction with ligands is a highly relevant area of research, with significant consequences for developing new therapeutic strategies. However, the computational description of...
Collapse
|
19
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
20
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
21
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
22
|
Boshaala A, Said MA, Assirey EA, Alborki ZS, AlObaid AA, Zarrouk A, Warad I. Crystal structure, MEP/DFT/XRD, thione ⇔ thiol tautomerization, thermal, docking, and optical/TD-DFT studies of (E)-methyl 2-(1-phenylethylidene)-hydrazinecarbodithioate ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Tripathi M, Syed R, Stalin A, Malik A, Pande R, Asatkar AK. In vitro investigation of biophysical interactions between Ag(I) complexes of bis(methyl)(thia/selena)salen and ct-DNA via multi-spectroscopic, physicochemical and molecular docking methods along with cytotoxicity study. LUMINESCENCE 2021; 36:1277-1284. [PMID: 33834603 DOI: 10.1002/bio.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022]
Abstract
Four silver(I) (Ag(I)) complexes: 1.PF6 , 2.PF6 , 1.ClO4 and 2.ClO4 of bis(methyl)thia salen (1) and bis (methyl)selena salen (2) with two different counter anions (PF6 - and ClO4 - ) have been investigated for DNA binding properties. In vitro interactional association between the Ag(I) complexes and ct-DNA has been examined by performing spectroscopic titrations on absorption spectrophotometer and fluorescence spectrophotometer. A competitive binding study has also been done using a fluorescence spectrophotometer with ethidium bromide as a classical intercalator. The spectroscopic methods revealed a major groove. Viscometry and agarose gel electrophoresis experiments have also been performed as physicochemical methods to confirm the binding of complex molecules with DNA. Molecular docking analysis has been executed to obtain the theoretical insight into the mode of binding. The docking study demonstrated the major groove binding of all four complexes to the DNA with electrostatic metal-phosphate interactions (between the metal and the backbone of DNA) and hydrophobic interactions. Cytotoxicity of the complexes has been studied on the Human Fibroblast foreskin (HFF) cell line. The cytotoxicity results showed positive gesture for moving ahead to the next level of screening; the values were above 10 μM which are appreciated for the normal cell lines.
Collapse
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Rabbani Syed
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Abdul Malik
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Ashish K Asatkar
- Department of Chemistry, Government Gundadhur P.G. College, Kondagaon, Chhattisgarh, India
| |
Collapse
|
24
|
Sharma V, Gupta M, Kumar P, Sharma A. A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents. Curr Pharm Des 2021; 27:15-42. [PMID: 33213325 DOI: 10.2174/1381612826666201118113311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/02/2020] [Indexed: 12/09/2022]
Abstract
Since the discovery of DNA intercalating agents (by Lerman, 1961), a growing number of organic, inorganic, and metallic compounds have been developed to treat life-threatening microbial infections and cancers. Fused-heterocycles are amongst the most important group of compounds that have the ability to interact with DNA. DNA intercalators possess a planar aromatic ring structure that inserts itself between the base pairs of nucleic acids. Once inserted, the aromatic structure makes van der Waals interactions and hydrogen-bonding interactions with the base pairs. The DNA intercalator may also contain an ionizable group that can form ionic interactions with the negatively charged phosphate backbone. After the intercalation, other cellular processes could take place, leading ultimately to cell death. The heterocyclic nucleus present in the DNA intercalators can be considered as a pharmacophore that plays an instrumental role in dictating the affinity and selectivity exhibited by these compounds. In this work, we have carried out a revision of small organic molecules that bind to the DNA molecule via intercalation and cleaving and exert their antitumor activity. A general overview of the most recent results in this area, paying particular attention to compounds that are currently under clinical trials, is provided. Advancement in spectroscopic techniques studying DNA interaction can be examined in-depth, yielding important information on structure-activity relationships. In this comprehensive review, we have focused on the introduction to fused heterocyclic agents with DNA interacting features, from medicinal point of view. The structure-activity relationships points, cytotoxicity data, and binding data and future perspectives of medicinal compounds have been discussed in detail.
Collapse
Affiliation(s)
- Vikas Sharma
- IIMT College of Pharmacy, Knowledge Park III, Greater Noida, Uttar Pradesh-201308, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, 2730 South Moody Avenue, Portland, OR 97201, United States
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Atul Sharma
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
25
|
Rodríguez MR, Lavecchia MJ, Parajón-Costa BS, González-Baró AC, González-Baró MR, Cattáneo ER. DNA cleavage mechanism by metal complexes of Cu(II), Zn(II) and VO(IV) with a schiff-base ligand. Biochimie 2021; 186:43-50. [PMID: 33865903 DOI: 10.1016/j.biochi.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Metal ions and metal complexes are important components of nucleic acid biochemistry, participating both in regulation of gene expression and as therapeutic agents. Three new transition metal complexes of copper(II), zinc(II) and oxidovanadium(IV) with a ligand derived from o-vanillin and thiophene were previously synthesized and their antitumor properties were studied in our laboratory. To elucidate some molecular mechanisms tending to explain the cytotoxic effects observed over tumor cells, we investigated the interaction of these complexes with DNA by gel electrophoresis, UV-Vis spectroscopy, docking studies and molecular dynamics simulations. Our spectroscopy and computational results have shown that all of them were able to bind to DNA, Cu(II) complex is located in the minor groove while Zn(II) and oxidovanadium(IV) complexes act as major groove binding molecules. Interestingly, only the Cu(II) complex caused double-strand DNA nicks, consistent with its higher cytotoxic activities previously observed in tumor cell lines. We propose that the DNA-complex interaction destabilize the molecule either disrupting the phosphodiester bonds or impairing DNA replication, giving those complexes strong antitumor potential.
Collapse
Affiliation(s)
- María R Rodríguez
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Martín J Lavecchia
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Ana C González-Baró
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - María R González-Baró
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata 60 y 120 S/N, La Plata, Buenos Aires, Argentina
| | - Elizabeth R Cattáneo
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata 60 y 120 S/N, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Exo⇔ Endo Isomerism, MEP/DFT, XRD/HSA-Interactions of 2,5-Dimethoxybenzaldehyde: Thermal, 1BNA-Docking, Optical, and TD-DFT Studies. Molecules 2020; 25:molecules25245970. [PMID: 33339423 PMCID: PMC7767059 DOI: 10.3390/molecules25245970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.
Collapse
|
27
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
29
|
Mbaba M, Dingle LMK, Swart T, Cash D, Laming D, de la Mare JA, Taylor D, Hoppe HC, Biot C, Edkins AL, Khanye SD. The in Vitro Antiplasmodial and Antiproliferative Activity of New Ferrocene-Based α-Aminocresols Targeting Hemozoin Inhibition and DNA Interaction. Chembiochem 2020; 21:2643-2658. [PMID: 32307798 DOI: 10.1002/cbic.202000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 01/30/2023]
Abstract
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Faculty of Medicine, Division of Clinical Pharmacology, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576 UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
30
|
Kolchina N, Khavinson V, Linkova N, Yakimov A, Baitin D, Afanasyeva A, Petukhov M. Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Res 2020; 47:10553-10563. [PMID: 31598715 PMCID: PMC6847403 DOI: 10.1093/nar/gkz850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/17/2019] [Accepted: 09/29/2019] [Indexed: 01/06/2023] Open
Abstract
A large variety of short biologically active peptides possesses antioxidant, antibacterial, antitumour, anti-ageing and anti-inflammatory activity, involved in the regulation of neuro-immuno-endocrine system functions, cell apoptosis, proliferation and differentiation. Therefore, the mechanisms of their biological activity are attracting increasing attention not only in modern molecular biology, biochemistry and biophysics, but also in pharmacology and medicine. In this work, we systematically analysed the ability of dipeptides (all possible combinations of the 20 standard amino acids) to bind all possible combinations of tetra-nucleotides in the central part of dsDNA in the classic B-form using molecular docking and molecular dynamics. The vast majority of the dipeptides were found to be unable to bind dsDNA. However, we were able to identify 57 low-energy dipeptide complexes with peptide-dsDNA possessing high selectivity for DNA binding. The analysis of the dsDNA complexes with dipeptides with free and blocked N- and C-terminus showed that selective peptide binding to dsDNA can increase dramatically with the peptide length.
Collapse
Affiliation(s)
- Nina Kolchina
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies named after A.M. Granov, St. Petersburg, Russia
| | - Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia.,Pavlov Institute of Physiology of RAS, St. Petersburg, Russia.,North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia.,Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Moscow, Russia
| | - Alexander Yakimov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Dmitry Baitin
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Arina Afanasyeva
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies named after A.M. Granov, St. Petersburg, Russia
| |
Collapse
|
31
|
Dan VM, Varghese TS, Viswanathan G, Baby S. Ellipticine, its Derivatives: Re-evaluation of Clinical Suitability with the Aid of Drug Delivery Systems. Curr Cancer Drug Targets 2019; 20:33-46. [PMID: 31560288 DOI: 10.2174/1568009619666190927150131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
Targeted drug delivery systems gave newer dimensions for safer and more effective use of therapeutic drugs, thus helping in circumventing the issues of toxicity and unintended drug accumulation. These ongoing developments in delivery systems can, in turn, bring back drugs that suffered various limitations, Ellipticine (EPT) being a candidate. EPT derivatives witnessed entry into clinical settings but failed to survive in clinics citing various toxic side effects. A large body of preclinical data deliberates the potency of drug delivery systems in increasing the efficiency of EPT/derivatives while decreasing their toxic side effects. Recent developments in drug delivery systems provide a platform to explore EPT and its derivatives as good clinical candidates in treating tumors. The present review deals with delivery mechanisms of EPT/EPT derivatives as antitumor drugs, in vitro and in vivo, and evaluates the suitability of EPT-carriers in clinical settings.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Thania Sara Varghese
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
32
|
Sustained Release of Minor-Groove-Binding Antibiotic Netropsin from Calcium-Coated Groove-Rich DNA Particles. Pharmaceutics 2019; 11:pharmaceutics11080387. [PMID: 31382405 PMCID: PMC6724015 DOI: 10.3390/pharmaceutics11080387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 12/02/2022] Open
Abstract
Control of the release properties of drugs has been considered a key factor in the development of drug delivery systems (DDSs). However, drug delivery has limitations including cytotoxicity, low loading efficiency, and burst release. To overcome these challenges, nano or micro-particles have been suggested as carrier systems to deliver chemical drugs. Herein, nano-sized DNA particles (DNAp) were manufactured to deliver netropsin, which is known to bind to DNA minor grooves. The rationally designed particles with exposed rich minor grooves were prepared by DNAp synthesis via rolling circle amplification (RCA). DNAp could load large quantities of netropsin in its minor grooves. An analytical method was also developed for the quantification of netropsin binding to DNAp by UV–visible spectrometry. Moreover, controlled release of netropsin was achieved by forming a layer of Ca2+ on the DNAp (CaDNAp). As a proof of concept, the sustained release of netropsin by CaDNAp highlights the potential of the DNAp-based delivery approach.
Collapse
|
33
|
Issa S, Prandina A, Bedel N, Rongved P, Yous S, Le Borgne M, Bouaziz Z. Carbazole scaffolds in cancer therapy: a review from 2012 to 2018. J Enzyme Inhib Med Chem 2019; 34:1321-1346. [PMID: 31328585 PMCID: PMC6691762 DOI: 10.1080/14756366.2019.1640692] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
For over half a century, the carbazole skeleton has been the key structural motif of many biologically active compounds including natural and synthetic products. Carbazoles have taken an important part in all the existing anti-cancer drugs because of their discovery from a large variety of organisms, including bacteria, fungi, plants, and animals. In this article, we specifically explored the literature from 2012 to 2018 on the anti-tumour activities reported to carbazole derivatives and we have critically collected the most significant data. The most described carbazole anti-tumour agents were classified according to their structure, starting from the tricyclic–carbazole motif to fused tetra-, penta-, hexa- and heptacyclic carbazoles. To date, three derivatives are available on the market and approved in cancer therapy.
Collapse
Affiliation(s)
- Samar Issa
- a Ecole de Biologie Industrielle, EBInnov , Cergy-Pontoise , France
| | - Anthony Prandina
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France.,c Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Oslo , Norway
| | - Nicolas Bedel
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Pål Rongved
- c Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo , Oslo , Norway
| | - Saïd Yous
- d Université Lille, Inserm, CHU Lille, UMR-S 1172 JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer , Lille , France
| | - Marc Le Borgne
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Zouhair Bouaziz
- b Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| |
Collapse
|
34
|
Charak S, Shandilya M, Mehrotra R. RNA targeting by an anthracycline drug: spectroscopic and in silico evaluation of epirubicin interaction with tRNA. J Biomol Struct Dyn 2019; 38:1761-1771. [PMID: 31084352 DOI: 10.1080/07391102.2019.1617786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracyclines are putative anticancer agents used to treat a wide range of cancers. Among these anthracyclines, epirubicin is derived from the doxorubicin by the subtle difference in the orientation of C4-hydroxyl group at sugar molecule. Epirubicin has great significance as it has propitious anticancer potential with lesser cardiotoxicity and faster elimination from the body. The present study is done to understand the molecular aspect of epirubicin binding to tRNA. We have used various spectroscopic techniques like Fourier transform infrared spectroscopy (FTIR), absorption spectroscopy and circular dichroism to illustrate the binding sites, the extent of binding and conformational changes associated with tRNA after interacting with epirubicin. From infrared studies, we infer that epirubicin interacts with guanine and uracil bases of tRNA. Results obtained from infrared and CD studies suggest that epirubicin complexation with tRNA does not result in any conformational change in tRNA structure. Binding constant (2.1 × 103 M-1) calculated from the absorbance data illustrates that epirubicin has a weak interaction with tRNA molecule. These spectroscopic results like the binding site of epirubicin and binding energy of epirubicin-tRNA complex were also verified by the molecular docking. Results of the present study provide information that aids in the development of efficient RNA targeted drugs from the existing drugs by certain chemical modification in their structure resulting in lesser side effects and better efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonika Charak
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Manish Shandilya
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
35
|
Tartakoff SS, Finan JM, Curtis EJ, Anchukaitis HM, Couture DJ, Glazier S. Investigations into the DNA-binding mode of doxorubicinone. Org Biomol Chem 2019; 17:1992-1998. [PMID: 30406253 DOI: 10.1039/c8ob02344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer treatment is one of the major challenges facing the modern biomedical profession. Development of new small-molecule chemotherapeutics requires an understanding of the mechanism of action for these treatments, as well as the structure-activity relationship. Study of the well-known DNA-intercalating agent, doxorubicin, and its aglycone, doxorubicinone, was undertaken using a variety of spectroscopic and calorimetric techniques. It was found that, despite conservation of the planar, aromatic portion of doxorubicin, the agylcone does not intercalate; it instead likely binds to the DNA minor-groove.
Collapse
|
36
|
Hassan AA, Aly AA, Mohamed NK, El Shaieb KM, Makhlouf MM, Abdelhafez ESMN, Bräse S, Nieger M, Dalby KN, Kaoud TS. Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorg Chem 2019; 85:585-599. [PMID: 30878891 PMCID: PMC6543821 DOI: 10.1016/j.bioorg.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydro-1H-2-ylidene)propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.
Collapse
Affiliation(s)
- Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nasr K Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Kamal M El Shaieb
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Maysa M Makhlouf
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio I, Helsinki 00014, Finland
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt; Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
37
|
Nuñez O, Chavez B, Shaktah R, Garcia PP, Minehan T. Synthesis and DNA binding profile of monomeric, dimeric, and trimeric derivatives of crystal violet. Bioorg Chem 2019; 83:297-302. [PMID: 30396114 PMCID: PMC6391077 DOI: 10.1016/j.bioorg.2018.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 11/27/2022]
Abstract
Monomeric, dimeric, and trimeric derivatives of the triphenylmethane dye crystal violet (1a-1f) have been synthesized for the purpose of evaluating their affinity and sequence selectivity for duplex DNA. Competitive ethidum displacement assays indicate that 1a-1f have apparent association constants for CT DNA in the range of 1.80-16.2 × 107 M-1 and binding site sizes of 10-14 bp. Viscosity experiments performed on ligand 1f confirmed that these dyes associate with duplex DNA by a non-intercalative mode of binding. Circular dichroism and competition binding studies of the tightest binding ligand 1e with known major and minor groove binding molecules suggest that these dye derivatives likely occupy the major groove of DNA. Data from the binding of 1e to polynucleotides indicate close to an order of magnitude preference for associating with AT rich homopolymers over GC rich homopolymers, suggesting a shape-selective match of the sterically bulky ligand with DNA containing a wider major groove.
Collapse
Affiliation(s)
- Omar Nuñez
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Bianca Chavez
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Ryan Shaktah
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Paola Pereda Garcia
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
38
|
Zanoza SO, Klimenko KO, Maltzev GV, Bykova TI, Levandovskiy IA, Lyakhov SA, Andronati SA, Bondarev ML. Aminoalkoxyfluorenones and aminoalkoxybiphenyls: DNA binding modes. Bioorg Chem 2019; 86:52-60. [PMID: 30685644 DOI: 10.1016/j.bioorg.2019.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
Abstract
Many evidences suggest that DNA-drug interaction in the minor groove and the intercalation of drugs into DNA may play critical roles in antiviral, antimicrobial, and antitumor activities. As a continuous effort to develop novel antiviral agents, the series of planar fluorenone (3a-7d) were synthesized and used along with nonplanar biphenyls (11a-d) for the comparative analysis of their interaction with DNA. The chemical structure of new compounds was confirmed by 1H NMR, 13C NMR and mass spectra as well as elemental analysis. DNA affinity of 3a-7d and 11a-d was evaluated by ethidium bromide displacement assay. Affinity constant (lgKa) of 3a-7d was found to be approximately two orders of magnitude higher than constants of corresponding 11a-d. The molecular docking of aminoalkoxybiphenyls (11a-d) into minor grove of five different nucleotide sequences (d(CCIICICCII), d(CGCGTTAACGCG), d(CGCGATATCGCG), d(GGCCAATTGG), d(GGATATATCC)) demonstrated their binding capacity to the specific DNA site. The linear least squares fitting technique was successfully applied to derive an equation describing the relationship between lgKa and SF.
Collapse
Affiliation(s)
- Svitlana O Zanoza
- A. V. Bogatsky Physico-Chemical Institute of the National Academy of Science of Ukraine, 86 Lyustdorfskaya doroga, Odessa 65080, Ukraine
| | - Kyrylo O Klimenko
- A. V. Bogatsky Physico-Chemical Institute of the National Academy of Science of Ukraine, 86 Lyustdorfskaya doroga, Odessa 65080, Ukraine; Laboratoire de Chemoinformatique, (UMR 7140 CNRS/UniStra) Université de Strasbourg, 1, rue B. Pascal, Strasbourg 67000, France
| | - George V Maltzev
- A. V. Bogatsky Physico-Chemical Institute of the National Academy of Science of Ukraine, 86 Lyustdorfskaya doroga, Odessa 65080, Ukraine
| | - Tetiana I Bykova
- I. I. Mechnikov National University, Department of Chemistry, 2 Dvoryanskaya, Odessa 65026, Ukraine
| | - Igor A Levandovskiy
- Department of Organic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Pr. Pobedy, Kyiv, Ukraine
| | - Sergiy A Lyakhov
- A. V. Bogatsky Physico-Chemical Institute of the National Academy of Science of Ukraine, 86 Lyustdorfskaya doroga, Odessa 65080, Ukraine
| | - Sergiy A Andronati
- A. V. Bogatsky Physico-Chemical Institute of the National Academy of Science of Ukraine, 86 Lyustdorfskaya doroga, Odessa 65080, Ukraine
| | - Mikhail L Bondarev
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Kittrell Hall, Hampton, VA 23668, USA.
| |
Collapse
|
39
|
W. Gribble G, A. Obaza-Nutaitis J. Synthesis and Cytotoxicity of Novel Bis-Ellipticines and Bis-Isoellipticines. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Watkins D, Maiti K, Arya DP. Aminoglycoside Functionalization as a Tool for Targeting Nucleic Acids. Methods Mol Biol 2019; 1973:147-162. [PMID: 31016700 DOI: 10.1007/978-1-4939-9216-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aminoglycoside functionalization as a tool for targeting natural and unnatural nucleic acids holds great promise in their development as diagnostic probes and medicinally relevant compounds. Simple synthetic procedures designed to easily and quickly manipulate amino sugar (neomycin, kanamycin) to more powerful and selective ligands are presented in this chapter. We describe representative procedures for (a) aminoglycoside conjugation and (b) preliminary screening for their nucleic acid binding and selectivity.
Collapse
Affiliation(s)
- Derrick Watkins
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
41
|
Mukherjee A, Ghosh S, Sarkar R, Samanta S, Ghosh S, Pal M, Majee A, Sen SK, Singh B. Synthesis, characterization and unravelling the molecular interaction of new bioactive 4-hydroxycoumarin derivative with biopolymer: Insights from spectroscopic and theoretical aspect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:124-137. [DOI: 10.1016/j.jphotobiol.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023]
|
42
|
Brissos RF, Korrodi-Gregório L, Pérez-Tomás R, Roubeau O, Gamez P. Antiproliferative properties of iron supramolecular cylinders. ACTA ACUST UNITED AC 2018. [DOI: 10.28954/2018.csq.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of metallohelicates as potential antiproliferative agents is mostly exemplified by one sole family of supramolecular compounds that is based on bis-iminopyridine ligands. In the present investigation, two other types of metallocylinders have been selected and their potential DNA-binding and cytotoxic properties have been investigated. Hence, two new neutral iron(III) metallosupramolecular compounds have been prepared from bis-β-diketone ligands, and a known cationic iron(II) helicate from bis-pyrazole ligands has been used for comparison purposes. DNA-interaction experiments and cell studies reveal remarkable biological properties for one of the neutral iron cylinders and the positively charged, pyrazole-based helicate, as illustrated by their antiproliferative behaviours, which are far better than those of two well-known compounds, i.e. the most studied metallohelicate in the field and cisplatin.
Collapse
|
43
|
Synthesis, antimicrobial activity, attenuation of aminoglycoside resistance in MRSA, and ribosomal A-site binding of pyrene-neomycin conjugates. Eur J Med Chem 2018; 163:381-393. [PMID: 30530174 DOI: 10.1016/j.ejmech.2018.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
The development of new ligands that have comparable or enhanced therapeutic efficacy relative to current drugs is vital to the health of the global community in the short and long term. One strategy to accomplish this goal is to functionalize sites on current antimicrobials to enhance specificity and affinity while abating resistance mechanisms of infectious organisms. Herein, we report the synthesis of a series of pyrene-neomycin B (PYR-NEO) conjugates, their binding affinity to A-site RNA targets, resistance to aminoglycoside-modifying enzymes (AMEs), and antibacterial activity against a wide variety of bacterial strains of clinical relevance. PYR-NEO conjugation significantly alters the affinities of NEO for bacterial A-site targets. The conjugation of PYR to NEO significantly increased the resistance of NEO to AME modification. PYR-NEO conjugates exhibited broad-spectrum activity towards Gram-positive bacteria, including improved activity against NEO-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains.
Collapse
|
44
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
45
|
Balazy M, Fausto A, Voskanian C, Chavez B, Panesar H, Minehan TG. Dimeric and trimeric derivatives of the azinomycin B chromophore show enhanced DNA binding. Org Biomol Chem 2018; 15:4522-4526. [PMID: 28513737 DOI: 10.1039/c7ob00944e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To explore the utility of the azinomycin B chromophore as a platform for the development of major-groove binding small molecules, we have prepared a series of 3-methoxy-5-methylnaphthalene derivatives containing diamine, triamine, and carbohydrate linker moieties. All bis- and tris-azinomycin derivatives are intercalators that display submicromolar binding affinities for calf-thymus DNA, as revealed by viscometry measurements and fluorescent intercalator displacement (FID) assays, respectively. Although the tightest binding ligand 1d (Ka = 2.42 × 107 M-1) has similar affinities for sequence diverse polynucleotides, competition binding studies with methylated phage DNA and known major and minor groove binding small molecules suggest that the tether moiety linking the naphthalene chromophores may occupy the major groove of DNA.
Collapse
Affiliation(s)
- Milena Balazy
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Marques RA, Gomes AO, de Brito MV, dos Santos AL, da Silva GS, de Lima LB, Nunes FM, de Mattos MC, de Oliveira FC, do Ó Pessoa C, de Moraes MO, de Fátima Â, Franco LL, Silva MDM, Dantas MDDA, Santos JC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, de Oliveira MC, Leslie Gunatilaka A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:156-166. [DOI: 10.1016/j.jphotobiol.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
|
47
|
Earl DC, Ferrell PB, Leelatian N, Froese JT, Reisman BJ, Irish JM, Bachmann BO. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat Commun 2018; 9:39. [PMID: 29295987 PMCID: PMC5750220 DOI: 10.1038/s41467-017-02470-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
Discovering bioactive metabolites within a metabolome is challenging because there is generally little foreknowledge of metabolite molecular and cell-targeting activities. Here, single-cell response profiles and primary human tissue comprise a response platform used to discover novel microbial metabolites with cell-type-selective effector properties in untargeted metabolomic inventories. Metabolites display diverse effector mechanisms, including targeting protein synthesis, cell cycle status, DNA damage repair, necrosis, apoptosis, or phosphoprotein signaling. Arrayed metabolites are tested against acute myeloid leukemia patient bone marrow and molecules that specifically targeted blast cells or nonleukemic immune cell subsets within the same tissue biopsy are revealed. Cell-targeting polyketides are identified in extracts from biosynthetically prolific bacteria, including a previously unreported leukemia blast-targeting anthracycline and a polyene macrolactam that alternates between targeting blasts or nonmalignant cells by way of light-triggered photochemical isomerization. High-resolution cell profiling with mass cytometry confirms response mechanisms and is used to validate initial observations.
Collapse
Affiliation(s)
- David C Earl
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN, 37232, USA
| | - Nalin Leelatian
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA.
| |
Collapse
|
48
|
Berdnikova DV, Sosnin NI, Fedorova OA, Ihmels H. Governing the DNA-binding mode of styryl dyes by the length of their alkyl substituents – from intercalation to major groove binding. Org Biomol Chem 2018; 16:545-554. [DOI: 10.1039/c7ob02736b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The length of alkyl substituents governs the DNA binding mode of mono- and bis-chromophoric styryl dyes.
Collapse
Affiliation(s)
- Daria V. Berdnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russia
- Department of Chemistry–Biology and Center of Micro and Nanochemistry and Engineering
| | - Nikolai I. Sosnin
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Olga A. Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Heiko Ihmels
- Department of Chemistry–Biology and Center of Micro and Nanochemistry and Engineering
- University of Siegen
- 57068 Siegen
- Germany
| |
Collapse
|
49
|
Mishra A, Pant P, Mrinal N, Jayaram B. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens. Methods 2017; 131:4-9. [PMID: 28733089 DOI: 10.1016/j.ymeth.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
With the rapid emergence of drug resistant pathogens, it has become imperative to develop alternative medications as well as find new drug targets to overcome this crisis. Hence, this has become prime focus of several academic laboratories and pharmaceutical companies. Here, we report a computational protocol for identifying unique DNA sequence(s) in the pathogen which is absent in human and related non-pathogenic strains of the microbe. In order to use the unique sequence as drug target, the protocol, in the second step, uses virtual screening against a million compound library to identify candidate small molecules which can bind to these unique DNA targets in the pathogen only. Theoretically the molecules identified after screening should not bind to human DNA. This methodology is demonstrated on Mycobacterium tuberculosis H37Rv, wherein a new octamer sequence present only in H37Rv has been identified and a few candidate small molecules as potential drug have been proposed. Being fast and cost effective, this protocol could be of importance in generating new potential drug candidates against infectious organisms for further experimental studies. This methodology is freely available at http://www.scfbio-iitd.res.in/PSDDF/.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Pradeep Pant
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Nirotpal Mrinal
- Laboratory of Molecular Biology, South Asian University, New Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India.
| |
Collapse
|
50
|
Blanckenberg A, Aliwaini S, Kimani S, van Niekerk A, Neumann-Mufweba A, Prince S, Mapolie S. Preparation, characterization and evaluation of novel 1,3,5-triaza-7-phosphaadamantane (PTA)-based palladacycles as anti-cancer agents. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|