1
|
Ma S, Yi S, Zou H, Fan S, Xiao Y. The role of PRMT1 in cellular regulation and disease: Insights into biochemical functions and emerging inhibitors for cancer therapy. Eur J Pharm Sci 2025; 204:106958. [PMID: 39521191 DOI: 10.1016/j.ejps.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Protein Arginine Methyltransferase 1 (PRMT1), a primary protein arginine methyltransferase, plays a pivotal role in cellular regulation, influencing processes such as gene expression, signal transduction, and cell differentiation. Dysregulation of PRMT1 has been linked to the development of various cancers, establishing it as a key target for therapeutic intervention. This review synthesizes the biochemical characteristics, structural domains, and functional mechanisms of PRMT1, focusing on its involvement in tumorigenesis. Additionally, the development and efficacy of emerging PRMT1 inhibitors as potential cancer therapies are examined. By employing molecular modeling and insights from existing literature, this review posits that targeting PRMT1's methyltransferase activity could disrupt cancer progression, providing valuable insights for future drug development.
Collapse
Affiliation(s)
- Shiyao Ma
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Shanhui Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Shasha Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China; Oncology Department, The first-affiliated hospital of Hunan normal university, Hunan Provincial People's Hospital, Changsha 410002, PR China.
| | - Yin Xiao
- Department of Pharmacy, Haikou People's Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, PR China.
| |
Collapse
|
2
|
Wu J, Li D, Wang L. Overview of PRMT1 modulators: Inhibitors and degraders. Eur J Med Chem 2024; 279:116887. [PMID: 39316844 DOI: 10.1016/j.ejmech.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is pivotal in executing normal cellular functions through its catalytic action on the methylation of arginine side chains on protein substrates. Emerging research has revealed a correlation between the dysregulation of PRMT1 expression and the initiation and progression of tumors, significantly influence on patient prognostication, attributed to the essential role played by PRMT1 in a number of biological processes, including transcriptional regulation, signal transduction or DNA repair. Therefore, PRMT1 emerged as a promising therapeutic target for anticancer drug discovery in the past decade. In this review, we first summarize the structure and biological functions of PRMT1 and its association with cancer. Next, we focus on the recent advances in the design and development of PRMT1 modulators, including isoform-selective PRMT1 inhibitors, pan type I PRMT inhibitors, PRMT1-based dual-target inhibitors, and PRMT1-targeting PROTAC degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for PRMT1-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Junwei Wu
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Lifang Wang
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Zhou S, Zhang Q, Yang H, Zhu Y, Hu X, Wan G, Yu L. Targeting type I PRMTs as promising targets for the treatment of pulmonary disorders: Asthma, COPD, lung cancer, PF, and PH. Life Sci 2024; 342:122538. [PMID: 38428571 DOI: 10.1016/j.lfs.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.
Collapse
Affiliation(s)
- Shuyan Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Honglin Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
5
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
6
|
Ahmed‐Belkacem R, Debart F, Vasseur J. Bisubstrate Strategies to Target Methyltransferases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Iyamu ID, Al-Hamashi AA, Huang R. A Pan-Inhibitor for Protein Arginine Methyltransferase Family Enzymes. Biomolecules 2021; 11:854. [PMID: 34201091 PMCID: PMC8230315 DOI: 10.3390/biom11060854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, which can serve as a general probe for PRMTs and a lead for further optimization to increase the selectivity for individual PRMT.
Collapse
Affiliation(s)
- Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| | - Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad 10047, Iraq
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| |
Collapse
|
8
|
Structural and biochemical evaluation of bisubstrate inhibitors of protein arginine N-methyltransferases PRMT1 and CARM1 (PRMT4). Biochem J 2020; 477:787-800. [PMID: 32011657 PMCID: PMC7054760 DOI: 10.1042/bcj20190826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
Attenuating the function of protein arginine methyltransferases (PRMTs) is an objective for the investigation and treatment of several diseases including cardiovascular disease and cancer. Bisubstrate inhibitors that simultaneously target binding sites for arginine substrate and the cofactor (S-adenosylmethionine (SAM)) have potential utility, but structural information on their binding is required for their development. Evaluation of bisubstrate inhibitors featuring an isosteric guanidine replacement with two prominent enzymes PRMT1 and CARM1 (PRMT4) by isothermal titration calorimetry (ITC), activity assays and crystallography are reported. Key findings are that 2-aminopyridine is a viable replacement for guanidine, providing an inhibitor that binds more strongly to CARM1 than PRMT1. Moreover, a residue around the active site that differs between CARM1 (Asn-265) and PRMT1 (Tyr-160) is identified that affects the side chain conformation of the catalytically important neighbouring glutamate in the crystal structures. Mutagenesis data supports its contribution to the difference in binding observed for this inhibitor. Structures of CARM1 in complex with a range of seven inhibitors reveal the binding modes and show that inhibitors with an amino acid terminus adopt a single conformation whereas the electron density for equivalent amine-bearing inhibitors is consistent with preferential binding in two conformations. These findings inform the molecular basis of CARM1 ligand binding and identify differences between CARM1 and PRMT1 that can inform drug discovery efforts.
Collapse
|
9
|
Atdjian C, Iannazzo L, Braud E, Ethève-Quelquejeu M. Synthesis of SAM-Adenosine Conjugates for the Study of m 6
A-RNA Methyltransferases. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Colette Atdjian
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| |
Collapse
|
10
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
11
|
Abstract
S-Adenosyl-L-methionine (SAM) is a sulfonium molecule with a structural hybrid of methionine and adenosine. As the second largest cofactor in the human body, its major function is to serve as methyl donor for SAM-dependent methyltransferases (MTases). The resultant transmethylation of biomolecules constitutes a significant biochemical mechanism in epigenetic regulation, cellular signaling, and metabolite degradation. Recently, numerous SAM analogs have been developed as synthetic cofactors to transfer the activated groups on MTase substrates for downstream ligation and identification. Meanwhile, new compounds built upon or derived from the SAM scaffold have been designed and tested as selective inhibitors for important MTase targets. Here, we summarized the recent development and application of SAM analogs as chemical biology tools for MTases.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
13
|
Zhang G, Huang R. Facile synthesis of SAM-peptide conjugates through alkyl linkers targeting protein N-terminal methyltransferase 1. RSC Adv 2016; 6:6768-6771. [PMID: 27588169 DOI: 10.1039/c5ra20625a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the first chemical synthesis of SAM-peptide conjugates through alkyl linkers to prepare bisubstrate analogs for protein methyltransferases. We demonstrate its application by developing a series of bisubstrate inhibitors for protein N-terminal methyltransferase 1 and the most potent one exhibits a Ki value of 310 ± 55 nM.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery & Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
14
|
Cai XC, Kapilashrami K, Luo M. Synthesis and Assays of Inhibitors of Methyltransferases. Methods Enzymol 2016; 574:245-308. [DOI: 10.1016/bs.mie.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhou R, Xie Y, Hu H, Hu G, Patel VS, Zhang J, Yu K, Huang Y, Jiang H, Liang Z, Zheng YG, Luo C. Molecular Mechanism underlying PRMT1 Dimerization for SAM Binding and Methylase Activity. J Chem Inf Model 2015; 55:2623-32. [PMID: 26562720 DOI: 10.1021/acs.jcim.5b00454] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine, which is important in a range of biological processes, including epigenetic regulation, signal transduction, and cancer progression. Although previous studies of PRMT1 mutants suggest that the dimerization arm and the N-terminal region of PRMT1 are important for activity, the contributions of these regions to the structural architecture of the protein and its catalytic methylation activity remain elusive. Molecular dynamics (MD) simulations performed in this study showed that both the dimerization arm and the N-terminal region undergo conformational changes upon dimerization. Because a correlation was found between the two regions despite their physical distance, an allosteric pathway mechanism was proposed based on a network topological analysis. The mutation of residues along the allosteric pathways markedly reduced the methylation activity of PRMT1, which may be attributable to the destruction of dimer formation and accordingly reduced S-adenosyl-L-methionine (SAM) binding. This study provides the first demonstration of the use of a combination of MD simulations, network topological analysis, and biochemical assays for the exploration of allosteric regulation upon PRMT1 dimerization. These findings illuminate the results of mechanistic studies of PRMT1, which have revealed that dimer formation facilitates SAM binding and catalytic methylation, and provided direction for further allosteric studies of the PRMT family.
Collapse
Affiliation(s)
- Ran Zhou
- Center for Systems Biology, Soochow University , Jiangsu 215006, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yiqian Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hao Hu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Guang Hu
- Center for Systems Biology, Soochow University , Jiangsu 215006, China
| | - Viral Sanjay Patel
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 201203, China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University , Jiangsu 215006, China
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
16
|
van Haren M, van Ufford LQ, Moret EE, Martin NI. Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites. Org Biomol Chem 2015; 13:549-60. [PMID: 25380215 DOI: 10.1039/c4ob01734j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The protein arginine N-methyltransferases (PRMTs) are a family of enzymes that function by specifically transferring a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) to the guanidine group of arginine residues in target proteins. The most notable is the PRMT-mediated methylation of arginine residues that are present in histone proteins which can lead to chromatin remodelling and influence gene transcription. A growing body of evidence now implicates dysregulated PRMT activity in a number of diseases including various forms of cancer. The development of PRMT inhibitors may therefore hold potential as a means of developing new therapeutics. We here report the synthesis and evaluation of a series of small molecule PRMT inhibitors designed to simultaneously occupy the binding sites of both the guanidino substrate and AdoMet cofactor. Potent inhibition and surprising selectivity were observed when testing these compounds against a panel of methyltransferases.
Collapse
Affiliation(s)
- Matthijs van Haren
- Medicinal Chemistry & Chemical Biology Group, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Franek M, Legartová S, Suchánková J, Milite C, Castellano S, Sbardella G, Kozubek S, Bártová E. CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli. Physiol Res 2015; 64:769-82. [PMID: 26047373 DOI: 10.33549/physiolres.932952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.
Collapse
Affiliation(s)
- M Franek
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015; 11:432-7. [PMID: 25915199 DOI: 10.1038/nchembio.1810] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/01/2015] [Indexed: 12/25/2022]
Abstract
Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.
Collapse
|
19
|
Hu H, Owens EA, Su H, Yan L, Levitz A, Zhao X, Henary M, Zheng YG. Exploration of cyanine compounds as selective inhibitors of protein arginine methyltransferases: synthesis and biological evaluation. J Med Chem 2015; 58:1228-43. [PMID: 25559100 PMCID: PMC4610307 DOI: 10.1021/jm501452j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Protein arginine methyltransferase
1 (PRMT1) is involved in many biological activities, such as gene
transcription, signal transduction, and RNA processing. Overexpression
of PRMT1 is related to cardiovascular diseases, kidney diseases, and
cancers; therefore, selective PRMT1 inhibitors serve as chemical probes
to investigate the biological function of PRMT1 and drug candidates
for disease treatment. Our previous work found trimethine cyanine
compounds that effectively inhibit PRMT1 activity. In our present
study, we systematically investigated the structure–activity
relationship of cyanine structures. A pentamethine compound, E-84
(compound 50), showed inhibition on PRMT1 at the micromolar
level and 6- to 25-fold selectivity over CARM1, PRMT5, and PRMT8.
The cellular activity suggests that compound 50 permeated
the cellular membrane, inhibited cellular PRMT1 activity, and blocked
leukemia cell proliferation. Additionally, our molecular docking study
suggested compound 50 might act by occupying the cofactor
binding site, which provided a roadmap to guide further optimization
of this lead compound.
Collapse
Affiliation(s)
- Hao Hu
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
21
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
22
|
Xie Y, Zhou R, Lian F, Liu Y, Chen L, Shi Z, Zhang N, Zheng M, Shen B, Jiang H, Liang Z, Luo C. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem 2014; 12:9665-73. [PMID: 25348815 DOI: 10.1039/c4ob01591f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein arginine methylation is a common post-translational modification which is crucial for a variety of biological processes. Dysregulation of protein arginine methyltransferases (PRMTs) activity has been implicated in cancer and other serious diseases. Thus, small molecule inhibitors against PRMT have great potential for therapeutic development. Herein, through the combination of virtual screening and bioassays, six small molecular compounds were identified as PRMT1 inhibitors. Amongst them, the binding affinity of compounds DCLX069 and DCLX078 with PRMT1 was further validated by T1ρ and saturation transfer difference (STD) NMR experiments. Most important of all, both compounds effectively blocked cell proliferation in breast cancer, liver cancer and acute myeloid leukemia cell lines. The binding mode analysis from molecular docking simulations theoretically indicated that both inhibitors occupied the SAM binding pocket to exert the inhibitory effect. Taken together, our compounds enriched the structural scaffolds as PRMT1 inhibitors and afforded clues for further optimization.
Collapse
Affiliation(s)
- Yiqian Xie
- Center for Systems Biology, Soochow University, Jiangsu 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hong W, Li J, Laughton CA, Yap LF, Paterson IC, Wang H. Investigating the binding preferences of small molecule inhibitors of human protein arginine methyltransferase 1 using molecular modelling. J Mol Graph Model 2014; 51:193-202. [PMID: 24937176 DOI: 10.1016/j.jmgm.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/12/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyse the methylation of arginine residues of target proteins. PRMTs utilise S-adenosyl methionine (SAM) as the methyl group donor, leading to S-adenosyl homocysteine (SAH) and monomethylarginine (mMA). A combination of homology modelling, molecular docking, Active Site Pressurisation, molecular dynamic simulations and MM-PBSA free energy calculations is used to investigate the binding poses of three PRMT1 inhibitors (ligands 1-3), which target both SAM and substrate arginine binding sites by containing a guanidine group joined by short linkers with the SAM derivative. It was assumed initially that the adenine moieties of the inhibitors would bind in sub-site 1 (PHE44, GLU137, VAL136 and GLU108), the guanidine side chain would occupy sub-site 2 (GLU 161, TYR160, TYR156 and TRP302), with the amino acid side chain occupying sub-site 3 (GLU152, ARG62, GLY86 and ASP84; pose 1). However, the SAH homocysteine moiety does not fully occupy sub-site 3, suggesting another binding pose may exist (pose 2), whereby the adenine moiety binds in sub-site 1, the guanidine side chain occupies sub-site 3, and the amino acid side chain occupies sub-site 2. Our results indicate that ligand 1 (pose 1 or 2), ligand 2 (pose 2) and ligand 3 (pose 1) are the predominant binding poses and we demonstrate for the first time that sub-site 3 contains a large space that could be exploited in the future to develop novel inhibitors with higher binding affinities.
Collapse
Affiliation(s)
- Wei Hong
- School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan, PR China; Department of Oral Biology and Biomedical Sciences, and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jingyang Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Charles A Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences, and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences, and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hao Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, PR China.
| |
Collapse
|
24
|
Yan L, Yan C, Qian K, Su H, Kofsky-Wofford SA, Lee WC, Zhao X, Ho MC, Ivanov I, Zheng YG. Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 2014; 57:2611-22. [PMID: 24564570 PMCID: PMC3983339 DOI: 10.1021/jm401884z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions.
Collapse
Affiliation(s)
- Leilei Yan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen Q, Liu C, Shulyak TS, Schneller SW. The metathesis reaction for side chain construction in carbocyclic sinefungin analogue synthesis. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Targeting protein arginine N-methyltransferases with peptide-based inhibitors: opportunities and challenges. Future Med Chem 2013; 5:2199-206. [DOI: 10.4155/fmc.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently peptide-based inhibitors have been used to selectively inhibit a family of epigenetic enzymes called protein arginine N-methyltransferases (PRMTs), which has been implicated in different physiological processes and human diseases, such as heart disease and cancer. The diverse efforts to tease out subtle structural differences among PRMT enzymes in order to generate selective inhibitors as well as existing challenges in the field will be examined. The acquisition of PRMT substrate sequence preferences and structural information obtained from small-molecule inhibitors have helped in developing different peptide-based inhibitors that show great promise not only as inhibitors, but also as molecular probes to characterize PRMTs.
Collapse
|
27
|
Davies CC, Chakraborty A, Diefenbacher ME, Skehel M, Behrens A. Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. EMBO J 2013; 32:1556-67. [PMID: 23624934 PMCID: PMC3671261 DOI: 10.1038/emboj.2013.98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022] Open
Abstract
c-Jun, the major component of the AP-1 transcription factor complex, has important functions in cellular proliferation and oncogenic transformation. The RING domain-containing protein RACO-1 functions as a c-Jun coactivator that molecularly links growth factor signalling to AP-1 transactivation. Here we demonstrate that RACO-1 is present as a nuclear dimer and that c-Jun specifically interacts with dimeric RACO-1. Moreover, RACO-1 is identified as a substrate of the arginine methyltransferase PRMT1, which methylates RACO-1 on two arginine residues. Arginine methylation of RACO-1 promotes a conformational change that stabilises RACO-1 by facilitating K63-linked ubiquitin chain formation, and enables RACO-1 dimerisation and c-Jun interaction. Abrogation of PRMT1 function impairs AP-1 activity and results in decreased expression of a large percentage of c-Jun target genes. These results demonstrate that arginine methylation of RACO-1 is required for efficient transcriptional activation by c-Jun/AP-1 and thus identify PRMT1 as an important regulator of c-Jun/AP-1 function.
Collapse
Affiliation(s)
- Clare C Davies
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, London, UK
| | - Atanu Chakraborty
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, London, UK
| | - Markus E Diefenbacher
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, London, UK
| | - Mark Skehel
- Protein Analysis and Proteomics Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, London, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, London, UK
| |
Collapse
|
28
|
Moukha-chafiq O, Reynolds RC. Parallel solution-phase synthesis of an adenosine antibiotic analog library. ACS COMBINATORIAL SCIENCE 2013; 15:147-52. [PMID: 23398694 DOI: 10.1021/co300127z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A library of eighty one adenosine antibiotic analogs was prepared under the Pilot Scale Library Program of the NIH Roadmap initiative from 5'-amino-5'-deoxy-2',3'-O-isopropylidene-adenosine 3. Diverse aldehyde, sulfonyl chloride and carboxylic acid reactant sets were condensed to 3, in solution-phase fashion, leading after acid-mediated hydrolysis to the targeted compounds in good yields and high purity. No marked antituberculosis or anticancer activity was noted on preliminary cellular testing, but these nucleoside analogs should be useful candidates for other types of biological activity.
Collapse
Affiliation(s)
- Omar Moukha-chafiq
- Southern Research Institute, Drug Discovery Division,
Birmingham, Al 35205
| | - Robert C. Reynolds
- Southern Research Institute, Drug Discovery Division,
Birmingham, Al 35205
| |
Collapse
|
29
|
Fontán N, García-Domínguez P, Álvarez R, de Lera ÁR. Novel symmetrical ureas as modulators of protein arginine methyl transferases. Bioorg Med Chem 2013; 21:2056-67. [PMID: 23395110 DOI: 10.1016/j.bmc.2013.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/02/2013] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
Methylation of histone arginine residues is an epigenetic mark related to gene expression that is implicated in a variety of biological processes and can be reversed by small-molecule modulators of protein arginine methyltransferases (PRMTs). A series of symmetrical ureas, designed as analogues of the known PRMT1 inhibitor AMI-1 have been synthesized using Pd-catalyzed Ar-N amide bond formation processes or carbonylation reactions as key steps. Their inhibitory profile has been characterized. The enzymatic assays showed a weak effect on PRMT1 and PRMT5 activity for most of the compounds. The acyclic urea that exhibited the strongest effect on the inhibition of the PRMT1 activity also showed the greatest effect on the expression of some androgen receptor target genes (TMPRSS2 and FKBP5), which may be related with its enzymatic activity. Surprisingly, AMI-1 behaved as an activator of PRMT5 activity, a result not reported so far.
Collapse
Affiliation(s)
- Noelia Fontán
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | |
Collapse
|
30
|
Gui S, Wooderchak-Donahue WL, Zang T, Chen D, Daly MP, Zhou ZS, Hevel JM. Substrate-Induced Control of Product Formation by Protein Arginine Methyltransferase 1. Biochemistry 2012; 52:199-209. [DOI: 10.1021/bi301283t] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shanying Gui
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| | | | - Tianzhu Zang
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Dong Chen
- Synthetic Bio-manufacturing Institute, Utah State University, 620 East 1600 North, Suite 226,
Logan, Utah 84341, United States
| | - Michael P. Daly
- Waters Corporation, 100 Cummings Center,
Suite 407N, Beverly, Massachusetts 01915,
United States
| | - Zhaohui Sunny Zhou
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Joan M. Hevel
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| |
Collapse
|
31
|
Castellano S, Spannhoff A, Milite C, Dal Piaz F, Cheng D, Tosco A, Viviano M, Yamani A, Cianciulli A, Sala M, Cura V, Cavarelli J, Novellino E, Mai A, Bedford MT, Sbardella G. Identification of small-molecule enhancers of arginine methylation catalyzed by coactivator-associated arginine methyltransferase 1. J Med Chem 2012; 55:9875-90. [PMID: 23095008 PMCID: PMC3508294 DOI: 10.1021/jm301097p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets, but their role in physiological and pathological pathways is far from being clear due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed "uracandolates"), able to increase the methylation of histone (H3) or nonhistone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Astrid Spannhoff
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Ciro Milite
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Donghang Cheng
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Alessandra Tosco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Monica Viviano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Abdellah Yamani
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Agostino Cianciulli
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Marina Sala
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonello Mai
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Mark T. Bedford
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Gianluca Sbardella
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| |
Collapse
|
32
|
Sinha SH, Owens EA, Feng Y, Yang Y, Xie Y, Tu Y, Henary M, Zheng YG. Synthesis and evaluation of carbocyanine dyes as PRMT inhibitors and imaging agents. Eur J Med Chem 2012; 54:647-59. [PMID: 22749641 DOI: 10.1016/j.ejmech.2012.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/04/2012] [Accepted: 06/09/2012] [Indexed: 11/25/2022]
Abstract
Protein arginine methylation regulates multiple biological processes. Deregulation of protein arginine methyltransferase (PRMT) activities has been observed in many disease phenotypes. Small molecule probes that target PRMTs with strong affinity and selectivity can be used as valuable tools to dissect biological mechanisms of arginine methylation and establish the role of PRMT proteins in a disease process. In this work, we report synthesis and evaluation of a class of carbocyanine compounds containing indolium, benz[e]indolium or benz[c,d]indolium heterocyclic moieties that bind to the predominant arginine methyltransferase PRMT1 and inhibit its methyltransferase activity at low micromolar potencies. In particular, the developed molecules have long wavelength colorimetric and fluorometric photoactivities, which can be used for optical and near-infrared fluorescence imaging in cells or biological tissues. Together, these new chemical probes have potential application in PRMT studies both as enzyme inhibitors and as fluorescent dyes for microscope imaging.
Collapse
|
33
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|