1
|
Gopika MG, Saraswathyamma B, Govindasamy M. CuSeO 3@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione. Talanta 2025; 287:127621. [PMID: 39879799 DOI: 10.1016/j.talanta.2025.127621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO3) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH). The choice of this material is due to the well-known ability of GSH to form a complex with copper. When a Cu ion enters a healthy cell, it quickly forms a complex with GSH, which then moves to another storage molecule: either a metalloprotein or a chelator. CNF was functionalized using acid to generate functionalized-CNF to enhance biocompatibility and boost conductivity. This was done to provide many active sites for effective integration of CuSeO3 in the nanocomposite preparation. The glassy carbon electrode (GCE) surface was enhanced by introducing CuSeO3@f-CNF nanocomposite, resulting in a significant increase in the current response for GSH in comparison to prior research. CuSeO3@f-CNF/GCE sensor has shown excellent sensing properties, like enhanced stability, selectivity, sensitivity, and reproducibility, for detecting and quantifying GSH. The sensor demonstrated an extensive linear detection range from 62.5 nM to 7785.0 μM, signifying one of the most comprehensive ranges documented to date. It attained a remarkable detection limit (LOD) of 17.6 nM. The sensor's performance was further tested by analyzing genuine biological fluid samples. The nanozyme-modified GCE demonstrated exceptional electrocatalytic efficiency for GSH detection, making it extremely appropriate for real-time monitoring applications.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala, 690525, India.
| | - Mani Govindasamy
- International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
2
|
Scintilla S, Rossetto D, Clémancey M, Rendon J, Ranieri A, Guella G, Assfalg M, Borsari M, Gambarelli S, Blondin G, Mansy SS. Prebiotic synthesis of the major classes of iron-sulfur clusters. Chem Sci 2025; 16:4614-4624. [PMID: 39944125 PMCID: PMC11812447 DOI: 10.1039/d5sc00524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Conditions that led to the synthesis of iron-sulfur clusters coordinated to tripeptides with a single thiolate ligand were investigated by UV-vis, NMR, EPR, and Mössbauer spectroscopies and by electrochemistry. Increasing concentrations of hydrosulfide correlated with the formation of higher nuclearity iron-sulfur clusters from mononuclear to [2Fe-2S] to [4Fe-4S] and finally to a putative, nitrogenase-like [6Fe-9S] complex. Increased nuclearity was also associated with decreased dynamics and increased stability. The synthesis of higher nuclearity iron-sulfur clusters is compatible with shallow, alkaline bodies of water on the surface of the early Earth, although other niche environments are possible. Because of the plasticity of such complexes, the type of iron-sulfur cluster formed on the prebiotic Earth would have been greatly influenced by the chemical environment and the thiolate containing scaffold. The discovery that all the major classes of iron-sulfur clusters easily form under prebiotically reasonable conditions broadens the chemistry accessible to protometabolic systems.
Collapse
Affiliation(s)
- Simone Scintilla
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Hudson River, Department of Biochemistry Nieuwe Kanaal 7V Wageningen PA 6709 Netherlands
| | - Daniele Rossetto
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
| | - Martin Clémancey
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Julia Rendon
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
- University of Grenoble Alpes, CNRS, CEA, INAC-SyMMES Grenoble 38000 France
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Graziano Guella
- Department of Physics, University of Trento Via Sommarive 14 Povo TN 38123 Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Serge Gambarelli
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Sheref S Mansy
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton AB T6G 2G2 Canada
| |
Collapse
|
3
|
Zhang K, Sun H, Wei L, Hu R, Liu H, Lai Y, Li X. Robust and sensitive colorimetric detection of glutathione with double-triggering MOF-Fe(DTNB). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125439. [PMID: 39561532 DOI: 10.1016/j.saa.2024.125439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H2O2). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.
Collapse
Affiliation(s)
- Kaining Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong 250021, PR China
| | - Hao Sun
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China
| | - Long Wei
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China
| | - Rui Hu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Hao Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Yongchao Lai
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Xun Li
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China.
| |
Collapse
|
4
|
Dong H, Chen W, Xu K, Zheng L, Wei B, Liu R, Yang J, Wang T, Zhou Y, Zhang Y, Xu M. High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans. Anal Chem 2025; 97:1318-1328. [PMID: 39783870 DOI: 10.1021/acs.analchem.4c05627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe. A series of "turn-on" electrochemical and fluorescent probes were developed, with resorufin (Re) serving as the reporting unit and featuring specific GSH recognition sites. Among these, the 7-(3,5-dinitrophenoxy)-3H-phenoxazin-3-one (Re-DNP) probe was selected for its high selectivity as both a fluorescent and electrochemical probe. Its response to GSH was superior in comparison to that observed for hydrogen sulfide (H2S) and cysteine (Cys). For electrochemical detection using screen-printed carbon electrode (SPCE)/carbon nanotube (CNT) modified electrodes, the detection limit for GSH was 5 μM, with a linear range of 25-500 μM. In fluorescence detection, the probe produced a 78-fold increase in emission at 630 nm in the presence of GSH, with a strong linear correlation between fluorescence intensity and GSH concentration in the range of 10-700 μM, and a detection limit of 2 μM. When applied to real clinical serum samples, the probe demonstrated significantly lower GSH levels in both PD mice and human patients compared to healthy controls. This dual-mode detection method provides a sensitive and accurate tool for GSH detection, with potential applications in understanding GSH's role in PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Weitian Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zheng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Bingyu Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Ruiyu Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jingru Yang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Tao Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang 453000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Lauwers S, Van Herreweghe M, Foubert K, Theunis M, Breynaert A, Tuenter E, Hermans N. Validation and optimisation of reduced glutathione quantification in erythrocytes by means of a coulometric high-performance liquid chromatography analytical method. Biomed Chromatogr 2024; 38:e6021. [PMID: 39353732 DOI: 10.1002/bmc.6021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Glutathione (GSH), a tripeptide that consists of cysteine, glutamate and glycine, is present in all mammalian tissues in the millimolar range. Besides having numerous cellular functions, GSH is an important antioxidant and is considered a valuable biomarker in evaluating oxidative stress. This paper provides a sensitive analytical method using HPLC-ECD to quantify GSH in erythrocytes, validated using the ICH guidelines for Bioanalytical Method Validation. The sample preparation was optimised using centrifugal filtration and a hypotonic phosphate buffer for extracting GSH from erythrocytes. HPLC-ECD parameters were adjusted to allow a fast, reversed phase, isocratic separation in 10 min. The detector response was linear between 0.3 and 9.5 μg/mL with a satisfactory regression coefficient and a LOQ of 0.11 μg/mL. Intra- and inter-day repeatability ranged between 1.10% and 8.57% with recoveries ranging from 94.3% to 106.0%. Dilution integrity, benchtop, freeze-thaw and long-term stability were investigated. Samples were stable for up to 6 months at -80°C. This method has a good linear response and is repeatable, precise and accurate. It minimises GSH auto-oxidation using a centrifugal filter during sample preparation, instead of acidification. Therefore, this analytical method is suitable for quantifying GSH in erythrocytes as a marker of oxidative stress.
Collapse
Affiliation(s)
- Stef Lauwers
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Maxim Van Herreweghe
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Mart Theunis
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Annelies Breynaert
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Emmy Tuenter
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
8
|
Gopika MG, Gopidas S, Jayan GS, Arathy PS, Saraswathyamma B. Unveiling thiol biomarkers: Glutathione and cysteamine. Clin Chim Acta 2024; 563:119915. [PMID: 39134217 DOI: 10.1016/j.cca.2024.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Surya Gopidas
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Gokul S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - P S Arathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India.
| |
Collapse
|
9
|
Zhu S, Guo Q, Zheng Y, Yuan J, Zuo D, Wang B. Sensitive colorimetric detection of glutathione in human serum based on peroxidase-like activity of chitosan-stabilized gold nanoparticles. Mikrochim Acta 2024; 191:599. [PMID: 39276245 DOI: 10.1007/s00604-024-06656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
A colorimetric sensor for the rapid and sensitive detection of GSH was developed. The hydrothermal method was utilized to synthesize chitosan-stabilized gold nanoparticles (CS-AuNPs). The synthesized CS-AuNPs were characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffractograms (XRD), and Fourier transform infrared spectroscopy (FTIR). The CS-AuNPs are well-dispersed and possess a spherical shape with an average particle size of 10.05 ± 2.26 nm in aqueous solution. They show an intrinsic peroxidase-like activity, which could efficiently catalyze the decomposition of H2O2 to produce •OH radicals. These radicals then oxidized 3, 3´, 5, 5´-tetramethylbenzidine (TMB), resulting in the formation of the blue oxidized product oxTMB, observed a visible color change (from colorless to blue), and oxTMB had an obvious absorption peak at 652 nm. The presence of GSH could inhibit the peroxidase-like activity of CS-AuNPs, thereby reducing the formation of oxTMB. The solution's blue hue underwent a reduction in absorption intensity. Based on this fact, a novel and sensitive colorimetric sensor for detection of GSH was constructed. Under optimal conditions, the results of detection had an excellent linear relationship between the concentration of GSH and ∆A within the range 0.5 ~ 50.0 × 10-6 mol/L. The limit of detection (LOD) for GSH was 2.10 × 10-7 mol/L, which was much lower than those in most previous works. Furthermore, for detection in real human serum samples, the recoveries of GSH and the relative standard deviations (RSD) in the serum were in the range 98.40 ~ 103.32% and 1.85 ~ 3.54%, respectively. Thus, this visual colorimetric method has good precision and can be used for GSH detection in practical applications, promising in the fields of bioanalysis and illness diagnostics.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Qian Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Ying Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jiexuan Yuan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Ding Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Bing Wang
- Center for Disease Control and Prevention, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
10
|
Zhang YX, Wu WR, Zhao N, Song YS, Wang J. S-scheme heterojunction phthalocyanine/TiO 2 photoelectrochemical sensor for innovative glutathione detection. Mikrochim Acta 2024; 191:389. [PMID: 38871997 DOI: 10.1007/s00604-024-06468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wen-Ru Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Ning Zhao
- Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, China.
| | - Yan-Song Song
- China Medical University, Shenyang, 110122, Liaoning, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
11
|
Nagabooshanam S, Kumar A, Ramamoorthy S, Saravanan N, Sundaramurthy A. Rapid and sensitive electrochemical detection of oxidized form of glutathione in whole blood samples using Bi-metallic nanocomposites. CHEMOSPHERE 2024; 346:140517. [PMID: 37879374 DOI: 10.1016/j.chemosphere.2023.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India; Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Akash Kumar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Nishakavya Saravanan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
12
|
Kostenkova K, Levina A, Walters DA, Murakami HA, Lay PA, Crans DC. Vanadium(V) Pyridine-Containing Schiff Base Catecholate Complexes are Lipophilic, Redox-Active and Selectively Cytotoxic in Glioblastoma (T98G) Cells. Chemistry 2023; 29:e202302271. [PMID: 37581946 DOI: 10.1002/chem.202302271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 μM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 μM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.
Collapse
Affiliation(s)
- Kateryna Kostenkova
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Aviva Levina
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Drew A Walters
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Heide A Murakami
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| | - Peter A Lay
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C Crans
- Department of Chemistry and, The Cell and Molecular Biology Program, Colorado State University, 1301 Center Ave Chemistry B101 Campus Delivery 1872, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
13
|
Shen X, Liu R, Wang D. Molecular Electrocatalytic Processes in Carbon Nanopipettes. J Phys Chem Lett 2023; 14:8805-8810. [PMID: 37747996 DOI: 10.1021/acs.jpclett.3c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conductive nanopipettes have been recognized as powerful multifunctional platforms for electrochemical sensing applications in confined spaces. However, the electron-transfer processes of many biological analytes (i.e., enzymes or proteins) are slow and coupled with chemical reactions, which have not been well elucidated in conductive nanopipettes. In this Letter, both experimental and simulation methods are used to study electron-transfer processes coupled to chemical reactions (EC mechanism) in carbon nanopipettes (CNPs). It is demonstrated that the electroactive species can serve as redox mediator to help oxidize and reduce the nonelectroactive analytes of interest in the solution and produce noticeable catalytic current signals. Besides, glutathione was directly measured by using ferrocenemethanol as the redox mediator in the CNPs. The elucidated EC processes in CNPs would offer a new opportunity to measure nonelectroactive analytes in biological fields.
Collapse
Affiliation(s)
- Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Al-Temimi AA, Al-Mossawi AEB, Al-Hilifi SA, Korma SA, Esatbeyoglu T, Rocha JM, Agarwal V. Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review. Metabolites 2023; 13:465. [PMID: 37110125 PMCID: PMC10141022 DOI: 10.3390/metabo13040465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Glutathione is a naturally occurring compound that plays a crucial role in the cellular response to oxidative stress through its ability to quench free radicals, thus mitigating the risk of potential damage, including cell death. While glutathione is endogenously present in different plants and animal cells, their concentration varies considerably. The alteration in glutathione homeostasis can be used as a potential marker for human diseases. In the case of the depletion of endogenous glutathione, exogenous sources can be used to replenish the pool. To this end, both natural and synthetic glutathione can be used. However, the health benefit of glutathione from natural sources derived from fruits and vegetables is still debated. There is increasingly growing evidence of the potential health benefits of glutathione in different diseases; however, the determination and in situ quantification of endogenously produced glutathione remains a major challenge. For this reason, it has been difficult to understand the bioprocessing of exogenously delivered glutathione in vivo. The development of an in situ technique will also aid in the routine monitoring of glutathione as a biomarker for different oxidative stress-mediated diseases. Furthermore, an understanding of the in vivo bioprocessing of exogenously delivered glutathione will also aid the food industry both towards improving the longevity and profile of food products and the development of glutathione delivery products for long-term societal health benefits. In this review, we surveyed the natural plant-derived sources of glutathione, the identification and quantification of extracted glutathione from these sources, and the role of glutathione in the food industry and its effect on human health.
Collapse
Affiliation(s)
- Anfal Alwan Al-Temimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61014, Iraq (S.A.A.-H.)
| | - Aum-El-Bashar Al-Mossawi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61014, Iraq (S.A.A.-H.)
| | - Sawsan A. Al-Hilifi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61014, Iraq (S.A.A.-H.)
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Shimizu M, Koizumi Y, Aikawa S, Fukushima Y. Colorimetric detection of glutathione by an anionic pyridylazo dye-based Cu2+ complex in the presence of a cationic polyelectrolyte. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Jamshidi M, Walcarius A, Thangamuthu M, Mehrgardi M, Ranjbar A. Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress. Mikrochim Acta 2023; 190:117. [PMID: 36879086 DOI: 10.1007/s00604-023-05681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Abstract
This review article comprehensively discusses the various electrochemical approaches for measuring and detecting oxidative stress biomarkers and enzymes, particularly reactive oxygen/nitrogen species, highly reactive chemical molecules, which are the byproducts of normal aerobic metabolism and can oxidize cellular components such as DNA, lipids, and proteins. First, we address the latest research on the electrochemical determination of reactive oxygen species generating enzymes, followed by detection of oxidative stress biomarkers, and final determination of total antioxidant activity (endogenous and exogenous). Most electrochemical sensing platforms exploited the unique properties of micro- and nanomaterials such as carbon nanomaterials, metal or metal oxide nanoparticles (NPs), conductive polymers and metal-nano compounds, which have been mainly used for enhancing the electrocatalytic response of sensors/biosensors. The performance of the electroanalytical devices commonly measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in terms of detection limit, sensitivity, and linear range of detection is also discussed. This article provides a comprehensive review of electrode fabrication, characterization and evaluation of their performances, which are assisting to design and manufacture an appropriate electrochemical (bio)sensor for medical and clinical applications. The key points such as accessibility, affordability, rapidity, low cost, and high sensitivity of the electrochemical sensing devices are also highlighted for the diagnosis of oxidative stress. Overall, this review brings a timely discussion on past and current approaches for developing electrochemical sensors and biosensors mainly based on micro and nanomaterials for the diagnosis of oxidative stress.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alain Walcarius
- Laboratory of Physical Chemistry and Microbiology for Materials and the Environment, Université de Lorraine, CNRS, LCPME, Nancy, France
| | - Madasamy Thangamuthu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Masoud Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Selective Determination of Glutathione Using a Highly Emissive Fluorescent Probe Based on a Pyrrolidine-Fused Chlorin. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020568. [PMID: 36677627 PMCID: PMC9862258 DOI: 10.3390/molecules28020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
We report the use of a carboxylated pyrrolidine-fused chlorin (TCPC) as a fluorescent probe for the determination of glutathione (GSH) in 7.4 pH phosphate buffer. TCPC is a very stable, highly emissive molecule that has been easily obtained from meso-tetrakis(4-methoxycarbonylphenyl) porphyrin (TCPP) through a 1,3-dipolar cycloaddition approach. First, we describe the coordination of TCPC with Hg(II) ions and the corresponding spectral changes, mainly characterized by a strong quenching of the chlorin emission band. Then, the TCPC-Hg2+ complex exhibits a significant fluorescence turn-on in the presence of low concentrations of the target analyte GSH. The efficacy of the sensing molecule was tested by using different TCPC:Hg2+ concentration ratios (1:2, 1:5 and 1:10) that gave rise to sigmoidal response curves in all cases with modulating detection limits, being the lowest 40 nM. The experiments were carried out under physiological conditions and the selectivity of the system was demonstrated against a number of potential interferents, including cysteine. Furthermore, the TCPC macrocycle did not showed a significant fluorescent quenching in the presence of other metal ions.
Collapse
|
18
|
Carboxymethyl-Cellulose-Containing Ag Nanoparticles as an Electrochemical Working Electrode for Fast Hydroxymethyl-Furfural Sensing in Date Molasses. Polymers (Basel) 2022; 15:polym15010079. [PMID: 36616432 PMCID: PMC9824777 DOI: 10.3390/polym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel biosensors based on carboxymethyl cellulose extract from date palm fronds containing Ag nanoparticles as an electrochemical working electrode for fast hydroxymethylfurfural (HMF) sensing in date molasses were prepared. The morphological, structural, and crystallinity characteristics of the prepared Ag@CMC were described via SEM, DLS, TEM, and XRD. In addition, Raman spectroscopy and UV-VIS spectroscopy were performed, and thermal stability was studied. The investigated techniques indicated the successful incorporation of AgNPs into the CMC polymer. The sensing behavior of the prepared AgNPs@CMC electrode was studied in terms of cyclic voltammetry and linear scan voltammetry at different HMF concentrations. The results indicated high performance of the designed AgNPs@CMC, which was confirmed by the linear behavior of the relationship between the cathodic current and HMF content. Besides, real commercial samples were investigated using the novel AgNPs@CMC electrode.
Collapse
|
19
|
Xu C, Li G, Gan L, Yuan B. In Situ Electrochemical Formation of Oxo-Functionalized Graphene on Glassy Carbon Electrode with Chemical Fouling Recovery and Antibiofouling Properties for Electrochemical Sensing of Reduced Glutathione. Antioxidants (Basel) 2022; 12:antiox12010008. [PMID: 36670870 PMCID: PMC9854563 DOI: 10.3390/antiox12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Electrochemical detection can be used to achieve intracellular or in vivo analysis of reduced glutathione (GSH) in tissues such as brain by using a microelectrode, which can help to better understand the complex biochemical processes of this molecule in the human body. The main challenges associated with electrochemical GSH detection are the chemical fouling of electrodes, caused by the oxidation product of GSSG, and biofouling due to the non-specific absorption of biological macromolecules. Oxo-functionalized graphene was generated in situ on the surface of a glassy carbon electrode using a green electrochemical method without using any other modifiers or materials in a mild water solution. The fabricated oxo-functionalized graphene interface was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, electrochemistry, electrochemical impedance spectroscopy, and contact angle measurements. The interface showed high electrocatalytic activity towards the oxidation of GSH, and a simple and efficient GSH sensor was developed. Interestingly, the electrode is reusable and could be recovered from the chemical fouling via electrochemical oxidation and reduction treatment. The electrode also exhibited good antibiofouling properties. The presented method could be a promising method used to treat carbon materials, especially carbon-based microelectrodes for electrochemical monitoring of intracellular glutathione or in vivo analysis.
Collapse
|
20
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
21
|
Saini AK, Sahoo SK. A copper(II) displacement approach for fluorescent turn-on sensing of glutathione using salicylaldehyde modified polydopamine nanoparticles. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Li G, Yuan B, Chen S, Gan L, Xu C. Covalent Organic Frameworks-TpPa-1 as an Emerging Platform for Electrochemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172953. [PMID: 36079991 PMCID: PMC9457582 DOI: 10.3390/nano12172953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/07/2023]
Abstract
Covalent organic frameworks (COFs) are a new type of metal-free porous architecture with a well-designed pore structure and high stability. Here an efficient electrochemical sensing platform was demonstrated based on COFs TpPa-1 constructed by 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1), which possesses abundant nitrogen and oxo-functionalities. COFs TpPa-1 exhibited good water dispersibility and strong adsorption affinities for Pd2+ and thus was used as loading support to modify Pd2+. The Pd2+-modified COFs TpPa-1 electrode (Pd2+/COFs) showed high electrocatalytic activity for both hydrazine oxidation reaction and nitrophenol reduction reaction. In addition, TpPa-1-derived nitrogen-doped carbon presented high activity for the electro-oxidation of reduced glutathione (GSH), and sensitive electrochemical detection of GSH was achieved. The presented COFs TpPa-1 can be utilized as a precursor as well as support for anchoring electro-active molecules and nanoparticles, which will be useful for electrochemical sensing and electrocatalysis.
Collapse
|
23
|
Asadpour F, Mazloum-Ardakani M. Electro-assisted self-assembly of mesoporous silica thin films: application to electrochemical sensing of glutathione in the presence of copper. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Wang W, Chen J, Zhou Z, Zhan S, Xing Z, Liu H, Zhang L. Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate-Gold Platinum Nanoparticles-Based Electrochemical Sensor. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081142. [PMID: 36013320 PMCID: PMC9410014 DOI: 10.3390/life12081142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Determining the concentration of glutathione is crucial for developing workable medical diagnostic strategies. In this paper, we developed an electrochemical sensor by electrodepositing amino-based reactive groups and gold–platinum nanomaterials on the surface of glassy carbon electrode successively. The sensor was characterized by cyclic voltammetry (CV), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectra (EIS). Results showed that Au@Pt nanoparticles with the size of 20–40 nm were presented on the surface of electrode. The sensor exhibits excellent electrocatalytic oxidation towards glutathione. Based on this, we devised an electrochemical biosensor for rapid and sensitive detection of glutathione. After optimizing experimental and operational conditions, a linear response for the concentration of GSH, in the range of 0.1–11 μmol/L, with low detection and quantification limits of 0.051 μM (S/N = 3), were obtained. The sensor also exhibits superior selectivity, reproducibility, low cost, as well as simple preparation and can be applied in human serum sample detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongying Liu
- Correspondence: (H.L.); (L.Z.); Tel.: +86-571-87713533 (H.L.)
| | - Linan Zhang
- Correspondence: (H.L.); (L.Z.); Tel.: +86-571-87713533 (H.L.)
| |
Collapse
|
25
|
Voltammetric studies of glutathione transfer across arrays of liquid-liquid microinterfaces for sensing applications. Amino Acids 2022; 54:911-922. [PMID: 35583563 DOI: 10.1007/s00726-022-03166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
The simple and facilitated transfer of tripeptide glutathione across the water/2-nitrophenyl octhyl ether interface was studied via cyclic voltammetry at interface between two immiscible electrolyte solutions (ITIES). The micro-perforated membrane prepared with a laser with a femtosecond pulse was used for mechanical stabilization of the interface. The method of cyclic voltammetry was used to study the passive and facilitated interfacial transfer of glutathione and its complex with the crown ether dibenzo-18-crown-6 (DB18C6).The glutathione mass transfer mechanism was established and substantiated, the diffusion coefficients, thermodynamic characteristics of interphase transfer and the constant of complexation of the glutathione by DB18C6 were determined. Square wave voltammetry based on facilitated transfer was used for more accurate and sensitive determination of glutathione low detection limit (0.8 μM) with wide linear dynamic range (from 3.0 to 80 μM) was reached. The influence of various potentially interfering ions on the voltammetric determination of glutathione has also been investigated. The method developed was applied to determine glutathione in aqueous solutions and malt extract.
Collapse
|
26
|
MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione. Biosens Bioelectron 2022; 215:114388. [DOI: 10.1016/j.bios.2022.114388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/23/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
|
27
|
Wang L, Yu L, Ge H, Bu Y, Sun M, Huang D, Wang S. A novel reversible dual-mode probe based on amorphous carbon nanodots for the detection of mercury ion and glutathione. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Electrochemical sensing of copper-chelator D- penicillamine based on complexation with gold nanoparticles modified copper based-metal organic frameworks. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Zhang T, Liu Y, Pi J, Lu N, Zhang R, Chen W, Zhang Z, Xing D. A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. Biosens Bioelectron 2022; 196:113686. [PMID: 34628262 DOI: 10.1016/j.bios.2021.113686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Artificial peroxisome is of critical importance to supersede natural peroxisome in fabricating protocell system and disease treatment. Nevertheless, developing feasible artificial peroxisome with various stable functions remains a monumental challenge. Nanozyme with multiple enzyme-like activities can mimic natural enzymes in peroxisome, which make it a prospective candidate for artificial peroxisome design. Herein, we prepared a nanozyme with multiple peroxisomal-like activities - Pd nanoparticles functionalized nitrogen-doped porous carbon-reduced graphene oxide (PdNPs/N-PC-rGO). Due to its sandwich-like structure, the incorporation of N heteroatoms and the synergistic effect between PdNPs and N-PC-rGO bi-support, the PdNPs/N-PC-rGO exhibited triple peroxisomal-like activities including oxidase (OXD), peroxidase (POD) and catalase (CAT), leading it a promising alternative for artificial peroxisome exploration. Furthermore, the PdNPs/N-PC-rGO showed high electrocatalytic activity, which could be employed for the detection of electrochemical active substances reduced glutathione (GSH). The PdNPs/N-PC-rGO modified electrode displayed a wide concentration range from 70 nM to 1500 μM, with a very low detection limit of 9.8 nM (S/N = 3). Therefore, PdNPs/N-PC-rGO was a promising nanozyme for various biotechnological applications such as artificial organelles, biosensing, cytoprotection, disease diagnosis and treatment.
Collapse
Affiliation(s)
- Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiuchan Pi
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Liu S, Wang J, Shi YE, Zhai Y, Lv YK, Zhang P, Wang Z. Glutathione modulated fluorescence quenching of sulfur quantum dots by Cu 2O nanoparticles for sensitive assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120365. [PMID: 34509893 DOI: 10.1016/j.saa.2021.120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfur quantum dots (S-dots) show great potential for applications in various field, due to their favorable biocompatibility, high stability, and antibacterial properties. However, the use of S-dots in chemical sensing is limited by the lack of functional groups on the surface. In this work, a fluorescence glutathione (GSH) assay is developed based on the GSH modulated quenching effect of Cu2O nanoparticles (NP) on S-dots. The fluorescence of S-dots is effectively quenched after forming complex with Cu2O NP through a static quenching effect (SQE). Introducing of GSH can trigger the decomposition of Cu2O NP into GSH-Cu(I) complex, which leads to the weaken of SQE and the partial recover of the fluorescence. The intensity of recovered fluorescence shows a positive correlation with the concentration of GSH in the concentration range of 20 to 500 μM. The fluorescence GSH assay shows excellent selectivity and robustness towards various interferences and high concentration salt, which endow the successful detection of GSH in human blood sample. The presented results provide a new door for the design of fluorescence assays, which also provides a platform for the applications in nanomedicine and environmental science.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jianwen Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Peng Zhang
- Shenzhen Luohu people's hospital, No. 47 Youyi Rd, Luohu, Shenzhen, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
31
|
Moghadam FH, Taher MA, Agheli H. Electroanalytical Monitoring of Glutathione in Biological Fluids Using Novel Pt/SWCNTs-Ionic Liquid Amplified Sensor. Top Catal 2022. [DOI: 10.1007/s11244-021-01509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
33
|
Kaimal R, Vinoth V, Shrikrishna Salunke A, Valdés H, Viswanathan Mangalaraja R, Aljafari B, Anandan S. Highly sensitive and selective detection of glutathione using ultrasonic aided synthesis of graphene quantum dots embedded over amine-functionalized silica nanoparticles. ULTRASONICS SONOCHEMISTRY 2022; 82:105868. [PMID: 34902816 PMCID: PMC8669454 DOI: 10.1016/j.ultsonch.2021.105868] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized. GQDs embedded on amine-functionalized SiNPs were physical-chemically characterized by different techniques that included high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), UV-visible spectroscopy, Fourier-transform infrared spectroscopy(FTIR), and Raman spectroscopy. The newly developed electrode exhibits a good response to glutathione with a wide linear range (0.5-7 µM) and a low detection limit (0.5 µM) with high sensitivity(2.64 µA µM-1). The fabricated GQDs-SiNPs/GC electrode shows highly attractive electrocatalytic activity towards glutathione detection in the neutral media at low potential due to a synergistic surface effect caused by the incorporation of GQDs over SiNPs. It leads to higher surface area and conductivity, improving electron transfer and promoting redox reactions. Besides, it provides outstanding selectivity, reproducibility, long-term stability, and can be used in the presence of interferences typically found in real sample analysis.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Victor Vinoth
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Laboratorio de Technologίas Limpias, Facultad de Ingernierίa, Universidad Catόlica de la Santίsima Concepciόn, Concepciόn, Chile.
| | - Amol Shrikrishna Salunke
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Héctor Valdés
- Laboratorio de Technologίas Limpias, Facultad de Ingernierίa, Universidad Catόlica de la Santίsima Concepciόn, Concepciόn, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion, Chile; Technological Development Unit (UDT), University of Concepcion, Coronel Industrial Park, Coronel, Chile
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
34
|
Romano MP, Lionetto MG, Mangone A, De Bartolomeo AR, Giordano ME, Contini D, Guascito MR. Development and characterization of a gold nanoparticles glassy carbon modified electrode for dithiotreitol (DTT) detection suitable to be applied for determination of atmospheric particulate oxidative potential. Anal Chim Acta 2022; 1206:339556. [DOI: 10.1016/j.aca.2022.339556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
|
35
|
Kaimal R, Senthilkumar P, Aljafari B, Anandan S. A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: an innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst 2022; 147:3894-3907. [DOI: 10.1039/d2an00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a scheme that aptly describes the reduction of gold nanoparticles’ crystalline size on the surface of MWCNTs in an aqueous phase to generate a LAMWCNT-Au heterostructure, employing an Nd:YAG laser (energy = 505 mJ and λ = 1064 nm) is developed.
Collapse
Affiliation(s)
- Reshma Kaimal
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| | - Periyathambi Senthilkumar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, and Research Institute, TANUVAS, Tirunelveli 627358, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India
| |
Collapse
|
36
|
Zhu B, Bryant DT, Akbarinejad A, Travas-Sejdic J, Pilkington LI. A novel electrochemical conducting polymer sensor for the rapid, selective and sensitive detection of biothiols. Polym Chem 2022. [DOI: 10.1039/d1py01394g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A rapid, selective and sensitive, novel conducting-polymer sensing platform for the detection and analysis of biothiols.
Collapse
Affiliation(s)
- Bicheng Zhu
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Devon T. Bryant
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Alireza Akbarinejad
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
37
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Halawa MI, Xia Q, Li BS. An ultrasensitive chemiluminescent biosensor for tracing glutathione in human serum using BSA@AuNCs as a peroxidase-mimetic nanozyme on a luminol/artesunate system. J Mater Chem B 2021; 9:8038-8047. [PMID: 34486628 DOI: 10.1039/d1tb01343b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a nanosensor chemiluminescent (CL) probe for sensing glutathione (GSH) was developed, for the first time, based on its inhibition of the intrinsic peroxidase-mimetic effect of BSA@AuNCs. The endoperoxide linkage of artesunate could be hydrolyzed by BSA@AuNCs resulting in the release of reactive oxygen species (ROS), and the consequent generation of strong CL emission. By virtue of the strong covalent interactions of -S⋯Au-, GSH could greatly suppress the peroxidase-mimetic effect of BSA@AuNCs, leading to a drastic CL quenching. The CL quenching efficiency increased proportionally to the logarithm of GSH concentration through the linearity range of 50.0-5000.0 nM with a limit of detection of 5.2 nM. This CL-based strategy for GSH tracing demonstrated the advantages of ultrasensitivity, high selectivity and simplicity. This strategy was successfully utilized to measure GSH levels in human serum with reasonable recovery results of 98.71%, 103.18%, and 101.68%, suggesting that this turn-off CL sensor is a promising candidate for GSH in biological and clinical samples.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qing Xia
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bing Shi Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
39
|
Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1220. [PMID: 34439468 PMCID: PMC8389000 DOI: 10.3390/antiox10081220] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVD) (such as occlusion of the coronary arteries, hypertensive heart diseases and strokes) are diseases that generate thousands of patients with a high mortality rate worldwide. Many of these cardiovascular pathologies, during their development, generate a state of oxidative stress that leads to a deterioration in the patient's conditions associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Within these reactive species we find superoxide anion (O2•-), hydroxyl radical (•OH), nitric oxide (NO•), as well as other species of non-free radicals such as hydrogen peroxide (H2O2), hypochlorous acid (HClO) and peroxynitrite (ONOO-). A molecule that actively participates in counteracting the oxidizing effect of reactive species is reduced glutathione (GSH), a tripeptide that is present in all tissues and that its synthesis and/or regeneration is very important to be able to respond to the increase in oxidizing agents. In this review, we will address the role of glutathione, its synthesis in both the heart and the liver, and its importance in preventing or reducing deleterious ROS effects in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| |
Collapse
|
40
|
He M, Shang N, Zheng B, Yue G. An ultrasensitive colorimetric and fluorescence dual-readout assay for glutathione with a carbon dot-MnO 2 nanosheet platform based on the inner filter effect. RSC Adv 2021; 11:21137-21144. [PMID: 35479353 PMCID: PMC9034092 DOI: 10.1039/d1ra02411f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023] Open
Abstract
An ultrasensitive colorimetric and fluorescence dual-readout assay based on the inner filter effect (IFE) was developed for glutathione (GSH) determination, in which carbon dots (C-dots) were used as a fluorophore and MnO2 nanosheets as an absorber. Due to the excellent optical absorption properties of MnO2 nanosheets and the good spectral overlap between the fluorophore and absorber, MnO2 nanosheets could effectively quench the fluorescence of C-dots via the IFE. As the target, GSH could reduce MnO2 nanosheets to Mn2+ ions, which inhibited the IFE and resulted in the fading of solution color and the recovery of the fluorescence signal. And these two kinds of signals were respectively used for qualitative and quantitative detection of GSH. The results showed that this proposed assay could distinguish 10 μM GSH with the naked eye and quantitatively detect GSH within the concentration range of 0.1-400 μM. The limit of detection was 6.6 nM. Moreover, this assay showed sensitive responses in human serum and urine samples, which indicated that this IFE-based assay has great potential in GSH-related clinical and bioanalytical applications.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Ning Shang
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Bo Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Gege Yue
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
41
|
Wang H, Hua H, Tang H, Li Y. Dual-signaling amplification strategy for glutathione sensing by using single gold nanoelectrodes. Anal Chim Acta 2021; 1166:338579. [PMID: 34022990 DOI: 10.1016/j.aca.2021.338579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023]
Abstract
A new nanosensor for glutathione (GSH) detection by use of single nanoelectrodes has been developed through a dual-signaling ratiometric amplification strategy. Ag nanoparticles (Ag NPs) metalized DNA1 was modified on an Au nanoelectrode surface. Due to the strong affinity between Ag NP and GSH, Ag NPs could be removed by the addition of GSH. The remaining metalized DNA1 could hardly form a double strand, while the de-metalized DNA1 could hybrid with DNA2 and DNA3 to form a complex structure to adsorb methylene blue (MB), and then the electrochemical signal of differential pulse voltammetry (DPV) from MB oxidation could be observed. With the addition of GSH, the peak current of MB oxidation at about -0.27 V (IMB) increases, while the signal of Ag oxidation at about 0.1 V (IAg) decreases. It was found that there had a linear relationship between the ratio of dual-signal (IMB/IAg) and the GSH concentrations, which could be used to detect GSH. The ratiometric nanosensor is label-free, easy to operate, and can eliminate inherent system errors. Considering the advantages of nanoelectrodes, such as low IR drop, fast response, and small overall dimension, this developed nanosensor can be used for GSH detection living systems (e.g., cell lysate).
Collapse
Affiliation(s)
- Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Hongmei Hua
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
42
|
Chen Y, Dong X, Zheng Y, Wang Y, Guo Z, Jiang H, Wang X. A novel turn-on fluorescent sensor for the sensitive detection of glutathione via gold nanocluster preparation based on controllable ligand-induced etching. Analyst 2021; 145:4265-4275. [PMID: 32463397 DOI: 10.1039/d0an00807a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we report a facile one-pot chemical etching approach to simply and rapidly prepare gold nanoclusters capped with luminol (Lum-AuNCs) in an alkaline aqueous solution at room temperature. A series of characterization studies have been carried out to explore the morphology, the optical properties and chemical components of Lum-AuNCs. The average diameter of Lum-AuNCs is 1.8 ± 0.3 nm, exhibiting fluorescence near 510 nm upon excitation at 420 nm with a quantum yield of 14.29% and an average fluorescence lifetime of 9.47 ns. On the basis of the ligand-induced etching of glutathione (GSH) to the intermediate (luminol capped gold nanoparticles, abbreviated as Lum-AuNPs), a novel and simple method for the fluorescence determination of GSH has been established. The method displays a good linear response in the range of 0.05-300 μM toward GSH with a limit of detection of 35 nM. This detection strategy with high sensitivity and selectivity facilitates its practical application for the detection of GSH levels in cell extracts. The in vitro cell results illustrate that Lum-AuNCs have good cytocompatibility and can be used to readily differentiate normal cells and tumor cells.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiawei Dong
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Youkun Zheng
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zengchao Guo
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
43
|
Halawa MI, Wu F, Zafar MN, Mostafa IM, Abdussalam A, Han S, Xu G. Turn-on fluorescent glutathione detection based on lucigenin and MnO 2 nanosheets. J Mater Chem B 2021; 8:3542-3549. [PMID: 31799572 DOI: 10.1039/c9tb02158b] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a glutathione (GSH) sensing nano-platform using lucigenin as a fluorescent probe in the presence of MnO2 nanosheets was reported for the first time. Unlike the earlier fluorescent detection systems based on MnO2 nanosheets, which depend on Förster resonance energy transfer (FRET) or the dynamic quenching effect (DQE), the mechanism of the quenching process of MnO2 nanosheets on lucigenin fluorescence was attributed mainly to a static quenching effect (SQE) with a minor contribution of the inner filter effect (IFE). A double exponential fluorescence decay of lucigenin was obtained in various MnO2 nanosheet concentrations as a result of their SQE and IFE. Based on this phenomenon and taking advantage of the redox reaction between GSH and MnO2 nanosheets, we have developed a switch-on sensitive fluorescent method for GSH via the recovery of the MnO2 nanosheet-quenched fluorescence of lucigenin. A good linearity range of 1.0-150.0 μM with a low limit of detection (S/N = 3) of 180.0 nM was achieved, revealing the higher sensitivity for GSH determination in comparison with the previously reported MnO2 nanosheet-based turn-on fluorescent methods. The developed fluorescent nano-platform exhibits excellent selectivity with successful application for GSH detection in human serum plasma, indicating its good practicability for GSH sensing in biological and clinical applications.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mulik BB, Munde AV, Dighole RP, Sathe BR. Electrochemical determination of semicarbazide on cobalt oxide nanoparticles: Implication towards environmental monitoring. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Rajes K, Walker KA, Hadam S, Zabihi F, Rancan F, Vogt A, Haag R. Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases. Pharmaceutics 2020; 13:pharmaceutics13010037. [PMID: 33383706 PMCID: PMC7823658 DOI: 10.3390/pharmaceutics13010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
A synthetic route for redox-sensitive and non-sensitive core multi-shell (CMS) carriers with sizes below 20 nm and narrow molecular weight distributions was established. Cyclic voltammetric measurements were conducted characterizing the redox potentials of reduction-sensitive CMS while showcasing its reducibility through glutathione and tris(2-carboxyethyl)-phosphine as a proof of concept. Measurements of reduction-initiated release of the model dye Nile red by time-dependent fluorescence spectroscopy showed a pronounced release for the redox-sensitive CMS nanocarrier (up to 90% within 24 h) while the non-sensitive nanocarriers showed no release in PBS. Penetration experiments using ex vivo human skin showed that the redox-sensitive CMS nanocarrier could deliver higher percentages of the loaded macrocyclic dye meso-tetra (m-hydroxyphenyl) porphyrin (mTHPP) to the skin as compared to the non-sensitive CMS nanocarrier. Encapsulation experiments showed that these CMS nanocarriers can encapsulate dyes or drugs with different molecular weights and hydrophobicity. A drug content of 1 to 6 wt% was achieved for the anti-inflammatory drugs dexamethasone and rapamycin as well as fluorescent dyes such as Nile red and porphyrins. These results show that redox-initiated drug release is a promising strategy to improve the topical drug delivery of macrolide drugs.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
| | - Karolina A. Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| |
Collapse
|
46
|
Aksoy M, Kıranşan KD. The Construction and Testing of an Amperometric Biosensor for Oxidized Glutathione with Glutathione Reductase Immobilized on Reduced Graphene Oxide Paper Modified with Cobalt Sulphur. ChemistrySelect 2020. [DOI: 10.1002/slct.202003552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mine Aksoy
- Atatürk University Faculty of Science Department of Chemistry Erzurum Turkey
| | | |
Collapse
|
47
|
Rajaram R, Kanagavalli P, Senthilkumar S, Mathiyarasu J. Au Nanoparticle-decorated Nanoporous PEDOT Modified Glassy Carbon Electrode: A New Electrochemical Sensing Platform for the Detection of Glutathione. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Silva WP, Rocha RG, Felisbino JKRP, Sousa RMF, Munoz RAA, Richter EM. Electrochemical Determination of the Steroid Tibolone and Its Metabolites in Saliva Samples. ChemElectroChem 2020. [DOI: 10.1002/celc.202001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weberson P. Silva
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Raquel G. Rocha
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | | | - Raquel M. F. Sousa
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Rodrigo A. A. Munoz
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Eduardo M. Richter
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| |
Collapse
|
49
|
Huynh K, Liem-Nguyen V, Feng C, Lindberg R, Björn E. Quantification of total concentration of thiol functional groups in environmental samples by titration with monobromo(trimethylammonio)bimane and determination with tandem mass spectrometry. Talanta 2020; 218:121109. [PMID: 32797873 DOI: 10.1016/j.talanta.2020.121109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Thiol compounds (R-SH) have many important biological functions and are principal controls of the speciation of several toxic metals in the environment. However, determining the concentration of thiols associated with environmental matrices is challenging due to the compounds' low abundance and interferences from non-thiol compounds for many available methods. Here a novel method has been developed and validated to quantify the total concentration of thiol functional groups in aqueous samples using derivatization with monobromo(trimethylammonio)bimane (qBBr) and quantification with tandem mass spectrometry. The thiol concentration was determined by titration of the sample with qBBr, which reacts selectively with thiols, and quantification of the residual qBBr. We systematically evaluated potential interferences from various organic compounds, inorganic ions (including sea water matrices), sulfide and mercury (Hg) species, and demonstrate that the method is highly sensitive, selective and robust. The limit of detection (LOD) for total thiols is in the nanomolar concentration range (~6 nM). The method performance was also demonstrated by determination of the total thiol concentration in different natural samples including boreal stream water (1.16 μM), wetland porewater (0.96 μM) and the Suwanee River natural organic matter (NOM) reference material SR101 N (7.9 μmol g-1). The developed method represents a combination of low LOD and high selectivity and robustness that is unsurpassed for total thiol concentration measurements.
Collapse
Affiliation(s)
- Khoa Huynh
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Van Liem-Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Caiyan Feng
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Richard Lindberg
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
50
|
A Self-Powered Biosensor for the Detection of Glutathione. BIOSENSORS-BASEL 2020; 10:bios10090114. [PMID: 32899114 PMCID: PMC7558183 DOI: 10.3390/bios10090114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
Glutathione is an important biological molecule which can be an indicator of numerous diseases. A method for self-powered detection of glutathione levels in solution has been developed using an enzymatic biofuel cell. The device consists of a glucose oxidase anode and a bilirubin oxidase cathode. For the detection of glutathione, the inhibition of bilirubin oxidase leads to a measurable decrease in current and power output. The reported method has a detection limit of 0.043 mM and a linear range up to 1.7 mM. Being able to detect a range of concentrations can be useful in evaluating a patient’s health. This method has the potential to be implemented as a quick, low-cost alternative to previously reported methods.
Collapse
|