1
|
Johnson MP. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00847-y. [PMID: 40399647 DOI: 10.1038/s41580-025-00847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/23/2025]
Abstract
The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin-Benson-Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.
Collapse
Affiliation(s)
- Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Zarmi Y. High-intensity pulsed-light cultivation of unicellular algae: Photosynthesis continues in the dark. Heliyon 2024; 10:e27224. [PMID: 38495149 PMCID: PMC10943342 DOI: 10.1016/j.heliyon.2024.e27224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Experiments have shown that photon exploitation efficiency in unicellular algal biomass production under a pulsed-light regime with a high-photon flux is higher than the efficiency under continuous illumination with the same flux. This observation has been explained theoretically to be a consequence of the improved efficiency of exploitation of photons by Photosystem II (PS II) thanks to the combined effect of photon-absorption statistics, a rate-limiting time scale and the size of the PQ pool. Exploiting the same ideas, it is shown in this paper that, under a pulsed-light regime, there is a pulse-time length, for which the average exploitation efficiency of PS II absorbed photons is maximal. Under ideal conditions, this maximum is close to 100%. The optimal pulse-time length is roughly proportional to the size of the PQ pool, NPQ. This is clearly seen for τ (the average time gap between consecutive photons absorbed by the PS II-Chlorophyll antenna) of the order of 1 ms or less (corresponding to a high photon flux and/or a large photon absorption cross-section area of the antenna) and for small NPQ. The width of the plot of efficiency vs. pulse length around the optimum is then small and the optimal pulse length is well defined. As τ is increased beyond 1 or NPQ becomes large, the width grows, allowing for a broad choice of pulse lengths, for which efficiency is very close to the maximum. These observations open the door to future designs of highly productive bioreactors.
Collapse
Affiliation(s)
- Yair Zarmi
- Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
3
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
4
|
Madhu S, Sengupta A, Sarnaik AP, Sahasrabuddhe D, Wangikar PP. Global Transcriptome-Guided Identification of Neutral Sites for Engineering Synechococcus elongatus PCC 11801. ACS Synth Biol 2023; 12:1677-1685. [PMID: 37252895 DOI: 10.1021/acssynbio.3c00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engineered cyanobacteria are attractive hosts for the phototrophic conversion of CO2 to chemicals. Synechococcus elongatus PCC11801, a novel, fast-growing, and stress-tolerant cyanobacterium, has the potential to be a platform cell factory, and hence, it necessitates the development of a synthetic biology toolbox. Considering the widely followed cyanobacterial engineering strategy of chromosomal integration of heterologous DNA, it is of interest to discover and validate new chromosomal neutral sites (NSs) in this strain. To that end, global transcriptome analysis was performed using RNA Seq under the conditions of high temperature (HT), carbon (HC), and salt (HS) and ambient growth conditions. We found upregulation of 445, 138, and 87 genes and downregulation of 333, 125, and 132 genes, under HC, HT, and HS, respectively. Following nonhierarchical clustering, gene enrichment, and bioinformatics analysis, 27 putative NSs were predicted. Six of them were experimentally tested, and five showed confirmed neutrality, based on unaltered cell growth. Thus, global transcriptomic analysis was effectively exploited for NS annotation and would be advantageous for multiplexed genome editing.
Collapse
Affiliation(s)
- Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Aditya P Sarnaik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| |
Collapse
|
5
|
Magyar M, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. Characterization of the Rate-Limiting Steps in the Dark-To-Light Transitions of Closed Photosystem II: Temperature Dependence and Invariance of Waiting Times during Multiple Light Reactions. Int J Mol Sci 2022; 24:ijms24010094. [PMID: 36613535 PMCID: PMC9820552 DOI: 10.3390/ijms24010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were effective only with sufficiently long Δτ waiting times between consecutive STSFs. Detailed studies revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented here substantiate this assignment: (i) the Δτ1/2 half-increment rise (or half-waiting) times of the diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid membranes displayed similar temperature dependences between 5 and −80 °C, with substantially increased values at low temperatures; (ii) the Δτ1/2 values in PSII CC were essentially invariant on the Fk−to-Fk+1 (k = 1−4) increments both at 5 and at −80 °C, indicating the involvement of the same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted charge-separated state and in the variable chlorophyll-a fluorescence of PSII.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
- Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
6
|
Ustynyuk LY, Tikhonov AN. Plastoquinol Oxidation: Rate-Limiting Stage in the Electron Transport Chain of Chloroplasts. BIOCHEMISTRY (MOSCOW) 2022; 87:1084-1097. [DOI: 10.1134/s0006297922100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Meng X, Liu L, Chen X. Bacterial photosynthesis: state-of-the-art in light-driven carbon fixation in engineered bacteria. Curr Opin Microbiol 2022; 69:102174. [DOI: 10.1016/j.mib.2022.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
8
|
Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution. Commun Biol 2022; 5:951. [PMID: 36097054 PMCID: PMC9467995 DOI: 10.1038/s42003-022-03926-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Photosystem I (PSI) is a light driven electron pump transferring electrons from Cytochrome c6 (Cyt c6) to Ferredoxin (Fd). An understanding of this electron transfer process is hampered by a paucity of structural detail concerning PSI:Fd interface and the possible binding sites of Cyt c6. Here we describe the high resolution cryo-EM structure of Thermosynechococcus elongatus BP-1 PSI in complex with Fd and a loosely bound Cyt c6. Side chain interactions at the PSI:Fd interface including bridging water molecules are visualized in detail. The structure explains the properties of mutants of PsaE and PsaC that affect kinetics of Fd binding and suggests a molecular switch for the dissociation of Fd upon reduction. Calorimetry-based thermodynamic analyses confirms a single binding site for Fd and demonstrates that PSI:Fd complexation is purely driven by entropy. A possible reaction cycle for the efficient transfer of electrons from Cyt c6 to Fd via PSI is proposed. In order to aid the understanding of the electron transfer process within the cyanobacterial photosystem I, its structure - when complexed with Ferredoxin - is determined at 1.97 Å resolution.
Collapse
|
9
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
10
|
Weliwatte NS, Grattieri M, Simoska O, Rhodes Z, Minteer SD. Unbranched Hybrid Conducting Redox Polymers for Intact Chloroplast-Based Photobioelectrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7821-7833. [PMID: 34132548 DOI: 10.1021/acs.langmuir.1c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 μA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zayn Rhodes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
12
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
13
|
Grattieri M, Chen H, Minteer SD. Chloroplast biosolar cell and self-powered herbicide monitoring. Chem Commun (Camb) 2020; 56:13161-13164. [PMID: 33016281 DOI: 10.1039/d0cc03787g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing chloroplasts in biosolar cells offers a sustainable approach for sunlight harvesting. However, the limited electrochemical communication between these biological entities and an electrode surface has led to complex device setups, hindering their application in the field. Herein, a cross-linker enables a simple photoanode architecture with enhanced photoexcited electron transfer between chloroplasts and abiotic electrodes. The improved "wiring" of the photosynthetic electron transfer chain resulted in a five-fold increase in the biophotocurrent. The biophotoanode is applied in a Pt-free, portable biosolar cell allowing the in situ self-powered monitoring of diuron within limits set by the Environmental Protection Agency.
Collapse
Affiliation(s)
- Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
14
|
Zarmi Y, Gordon JM, Mahulkar A, Khopkar AR, Patil SD, Banerjee A, Reddy BG, Griffin TP, Sapre A. Enhanced Algal Photosynthetic Photon Efficiency by Pulsed Light. iScience 2020; 23:101115. [PMID: 32434141 PMCID: PMC7235644 DOI: 10.1016/j.isci.2020.101115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 10/25/2022] Open
Abstract
We present experimental results demonstrating that, relative to continuous illumination, an increase of a factor of 3-10 in the photon efficiency of algal photosynthesis is attainable via the judicious application of pulsed light for light intensities of practical interest (e.g., average-to-peak solar irradiance). We also propose a simple model that can account for all the measurements. The model (1) reflects the essential rate-limiting elements in bioproductivity, (2) incorporates the impact of photon arrival-time statistics, and (3) accounts for how the enhancement in photon efficiency depends on the timescales of light pulsing and photon flux density. The key is avoiding "clogging" of the photosynthetic pathway by properly timing the light-dark cycles experienced by algal cells. We show how this can be realized with pulsed light sources, or by producing pulsed-light effects from continuous illumination via turbulent mixing in dense algal cultures in thin photobioreactors.
Collapse
Affiliation(s)
- Yair Zarmi
- Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel.
| | - Jeffrey M Gordon
- Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel; School of Mechanical and Chemical Engineering, University of Western Australia, Perth WA, 6009, Australia
| | | | | | | | | | | | | | - Ajit Sapre
- Reliance Industries Ltd., Mumbai, MH, India
| |
Collapse
|
15
|
McKenzie SD, Ibrahim IM, Aryal UK, Puthiyaveetil S. Stoichiometry of protein complexes in plant photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148141. [DOI: 10.1016/j.bbabio.2019.148141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
16
|
Davis GA, Kramer DM. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 10:1778. [PMID: 32082344 PMCID: PMC7003800 DOI: 10.3389/fpls.2019.01778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
The conversion of sunlight into useable cellular energy occurs via the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δψ), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H+/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c-ring stoichiometries, photosynthetic c-rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H+/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c-ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H+/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
Collapse
Affiliation(s)
- Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Bhaduri S, Zhang H, Erramilli S, Cramer WA. Structural and functional contributions of lipids to the stability and activity of the photosynthetic cytochrome b 6 f lipoprotein complex. J Biol Chem 2019; 294:17758-17767. [PMID: 31597701 DOI: 10.1074/jbc.ra119.009331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/08/2019] [Indexed: 11/06/2022] Open
Abstract
The photosynthetic cytochrome b 6 f complex, a homodimer containing eight distinct subunits and 26 transmembrane helices per monomer, catalyzes proton-coupled electron transfer across the thylakoid membrane. The 2.5-Å-resolution structure of the complex from the cyanobacterium Nostoc sp. revealed the presence of 23 lipid-binding sites per monomer. Although the crystal structure of the cytochrome b 6 f from a plant source has not yet been solved, the identities of the lipids present in a plant b 6 f complex have previously been determined, indicating that the predominant lipid species are monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), phosphatidylglycerol (PG), and sulfoquinovosyldiacylglycerol (SQDG). Despite the extensive structural analyses of b 6 f-lipid interactions, the basis of the stabilization by lipids remains poorly understood. In the present study, we report on the effect of individual lipids on the structural and functional integrity of the b 6 f complex, purified from Spinacea oleracea It was found that (i) galactolipids (MGDG, DGDG, and SQDG) and phospholipids dilinolenoyl-phosphatidylglycerol (DLPG), 1,2-dioleoylphosphatidylglycerol (DOPG), and 1,2-dioleoyl-sn-glycerol-3-phosphatidylcholine (DOPC) structurally stabilize the complex to varying degrees; (ii) SQDG has a major role in stabilizing the dimeric complex; (iii) the b 6 f complex is stabilized by incorporation into nanodiscs or bicelles; (iv) removal of bound phospholipid by phospholipase A2 inactivates the cytochrome complex; and (v) activity can be restored significantly by the addition of the anionic lipid PG, which is attributed to stabilization of the quinone portal and the hinge region of the iron-sulfur protein.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| | - Huamin Zhang
- SSCI, a Division of Albany Molecular Research Inc., West Lafayette, Indiana 47906
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
18
|
Ford MM, Smythers AL, McConnell EW, Lowery SC, Kolling DRJ, Hicks LM. Inhibition of TOR in Chlamydomonas reinhardtii Leads to Rapid Cysteine Oxidation Reflecting Sustained Physiological Changes. Cells 2019; 8:cells8101171. [PMID: 31569396 PMCID: PMC6829209 DOI: 10.3390/cells8101171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The target of rapamycin (TOR) kinase is a master metabolic regulator with roles in nutritional sensing, protein translation, and autophagy. In Chlamydomonas reinhardtii, a unicellular green alga, TOR has been linked to the regulation of increased triacylglycerol (TAG) accumulation, suggesting that TOR or a downstream target(s) is responsible for the elusive “lipid switch” in control of increasing TAG accumulation under nutrient limitation. However, while TOR has been well characterized in mammalian systems, it is still poorly understood in photosynthetic systems, and little work has been done to show the role of oxidative signaling in TOR regulation. In this study, the TOR inhibitor AZD8055 was used to relate reversible thiol oxidation to the physiological changes seen under TOR inhibition, including increased TAG content. Using oxidized cysteine resin-assisted capture enrichment coupled with label-free quantitative proteomics, 401 proteins were determined to have significant changes in oxidation following TOR inhibition. These oxidative changes mirrored characterized physiological modifications, supporting the role of reversible thiol oxidation in TOR regulation of TAG production, protein translation, carbohydrate catabolism, and photosynthesis through the use of reversible thiol oxidation. The delineation of redox-controlled proteins under TOR inhibition provides a framework for further characterization of the TOR pathway in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Megan M Ford
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.
| | - Evan W McConnell
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sarah C Lowery
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
Ness J, Naurin S, Effinger K, Stadnytskyi V, Ibrahim IM, Puthiyaveetil S, Cramer WA. Structure‐based control of the rate limitation of photosynthetic electron transport. FEBS Lett 2019; 593:2103-2111. [PMID: 31198994 DOI: 10.1002/1873-3468.13484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jillian Ness
- Department of Biological Sciences Purdue University West Lafayette IN USA
| | - Sejuti Naurin
- Department of Biological Sciences Purdue University West Lafayette IN USA
| | | | | | | | | | - William A. Cramer
- Department of Biological Sciences Purdue University West Lafayette IN USA
| |
Collapse
|
20
|
Cramer WA. Structure-function of the cytochrome b 6f lipoprotein complex: a scientific odyssey and personal perspective. PHOTOSYNTHESIS RESEARCH 2019; 139:53-65. [PMID: 30311133 PMCID: PMC6510485 DOI: 10.1007/s11120-018-0585-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/15/2018] [Indexed: 05/04/2023]
Abstract
Structure-function studies of the cytochrome b6f complex, the central hetero-oligomeric membrane protein complex in the electron transport chain of oxygenic photosynthesis, which formed the basis for a high-resolution (2.5 Å) crystallographic solution of the complex, are described. Structure-function differences between the structure of subunits of the bc complexes, b6f, and bc1 from mitochondria and photosynthetic bacteria, which are often assumed to function identically, are discussed. Major differences which suggest that quinone-dependent electron transport pathways can vary in b6f and bc1 complexes are as follows: (a) an additional c-type heme, cn, and bound single copies of chlorophyll a and β-carotene in the b6f complex; and (b) a cyclic electron transport pathway that encompasses the b6f and PSI reaction center complexes. The importance of including lipid in crystallization of the cytochrome complex, or with any hetero-oligomeric membrane protein complex, is emphasized, and consequences to structure-function of b6f being a lipoprotein complex discussed, including intra-protein dielectric heterogeneity and resultant pathways of trans-membrane electron transport. The role of the b6f complex in trans-membrane signal transduction from reductant generated on the p-side of the electron transport chain to the regulation of light energy to the two photosystems by trans-side phosphorylation of the light-harvesting chlorophyll protein is presented. Regarding structure aspects relevant to plastoquinol-quinone entrance-egress: (i) modification of the p-side channel for plastoquinone access to the iron-sulfur protein would change the rate-limiting step in electron transport; (ii) the narrow niche for entry of plastoquinol into b6f from the PSII reaction center complex would seem to require close proximity between the complexes.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, Hockmeyer Building for Structural Biology, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN. Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves. PHOTOSYNTHESIS RESEARCH 2019. [PMID: 29516232 DOI: 10.1007/s11120-018-0494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin-dependent rate of electron transfer from plastoquinol (PQH2) to [Formula: see text] (via the Cyt b6f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2 ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2 ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2 ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Avercheva
- Faculty of Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
- Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
22
|
Van Gelder K, Rea KA, Virta LKA, Whitnell KL, Osborn M, Vatta M, Khozin A, Skorupinska-Tudek K, Surmacz L, Akhtar TA. Medium-Chain Polyprenols Influence Chloroplast Membrane Dynamics in Solanum lycopersicum. PLANT & CELL PHYSIOLOGY 2018; 59:2350-2365. [PMID: 30192960 DOI: 10.1093/pcp/pcy157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The widespread occurrence of polyprenols throughout the plant kingdom is well documented, yet their functional role is poorly understood. These lipophilic compounds are known to be assembled from isoprenoid precursors by a class of enzymes designated as cis-prenyltransferases (CPTs), which are encoded by small CPT gene families in plants. In this study, we report that RNA interference (RNAi)-mediated knockdown of one member of the tomato CPT family (SlCPT5) reduced polyprenols in leaves by about 70%. Assays with recombinant SlCPT5 produced in Escherichia coli determined that the enzyme synthesizes polyprenols of approximately 50-55 carbons (Pren-10, Pren-11) in length and accommodates a variety of trans-prenyldiphosphate precursors as substrates. Introduction of SlCPT5 into the polyprenol-deficient yeast Δrer2 mutant resulted in the accumulation of Pren-11 in yeast cells, restored proper protein N-glycosylation and rescued the temperature-sensitive growth phenotype that is associated with its polyprenol deficiency. Subcellular fractionation studies together with in vivo localization of SlCPT5 fluorescent protein fusions demonstrated that SlCPT5 resides in the chloroplast stroma and that its enzymatic products accumulate in both thylakoid and envelope membranes. Transmission electron microscopy images of polyprenol-deficient leaves revealed alterations in chloroplast ultrastructure, and anisotropy measurements revealed a more disordered state of their envelope membranes. In polyprenol-deficient leaves, CO2 assimilation was hindered and their thylakoid membranes exhibited lower phase transition temperatures and calorimetric enthalpies, which coincided with a decreased photosynthetic electron transport rate. Taken together, these results uncover a role for polyprenols in governing chloroplast membrane dynamics.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Lilia K A Virta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kenna L Whitnell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Michael Osborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Maritza Vatta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Alexandra Khozin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | | | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
23
|
Habiby O, Nahor O, Israel A, Liberzon A, Golberg A. Exergy efficiency of light conversion into biomass in the macroalga Ulva sp. (Chlorophyta) cultivated under the pulsed light in a photobioreactor. Biotechnol Bioeng 2018. [PMID: 29537063 DOI: 10.1002/bit.26588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Marine macroalgae are a potential feedstock for biorefineries that can reduce dependence on fossil fuels and contribute to bioeconomy. New knowledge and technologies for efficient conversion of solar energy into macroalgae biomass are needed to increase biomass yields and energy conversion efficiency. In this work, we show that the green macroalgae from Ulva sp. can grow under the pulsed light in a photobioreactor with higher exergy conversion efficiency in comparison to cultivation under constant light with the same intensity. In the tested frequencies, 1-40 Hz and duty cycles (DC) 1-100%, DC has a stronger impact on the growth rate than frequency. The efficiency of light transformation into biomass increased with decreasing DC. Pulsating with DC 20% led to 60% of the biomass chemical energy yield for the respective constant light (DC 100%). Models of Ulva sp. growth rate and exergy conversion efficiency as a function of pulsating light parameters were developed. These results open new directions to enhance solar to chemical energy conversion through macroalgae by controlling the light distribution in the macroalgal biomass.
Collapse
Affiliation(s)
- Oz Habiby
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Omri Nahor
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Alvaro Israel
- Israel Oceanographic and Limnological Research, Ltd. The National Institute of Oceanography, Haifa, Israel
| | | | - Alexander Golberg
- Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Tan T, Sun Y, Luo S, Zhang C, Zhou H, Lin H. Efficient modulation of photosynthetic apparatus confers desiccation tolerance in the resurrection plant Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2017; 58:1976-1990. [PMID: 29036694 DOI: 10.1093/pcp/pcx140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Boea hygrometrica (B. hygrometrica) can tolerate severe desiccation and resume photosynthetic activity rapidly upon water availability. However, little is known about the mechanisms by which B. hygrometrica adapts to dehydration and resumes competence upon rehydration. Here we determine how B. hygrometrica deals with oxidative stress, excessive excitation/electron pressures as well as photosynthetic apparatus modulation during dehydration/rehydration. By measuring ROS generation and scavenging efficiency, we found that B. hygrometrica possesses efficient strategies to maintain cellular redox homeostasis. Transmission electron microscopy (TEM) analysis revealed a remarkable alteration of chloroplast architecture and plastoglobules (PGs) accumulation during dehydration/rehydration. Pulse-amplitude modulated (PAM) chlorophyll fluorescence measurements, P700 redox assay as well as chlorophyll fluorescence emission spectra analysis on leaves of B. hygrometrica during dehydration/rehydration were also performed. Results showed that the photochemical activity of PSII as well as photoprotective energy dissipation in PSII undergo gradual inactivation/activation during dehydration/rehydration in B. hygrometrica; PSI activity is relatively induced upon water deficit, and dehydration leads to physical interaction between PSI and LHCII. Furthermore, blue-native polyacrylamide gel electrophoresis (BN-PAGE) and immunoblot analysis revealed that the protein abundance of light harvesting complexes decrease markedly along with internal water deficit to restrict light absorption and attenuate electron transfer, resulting in limited light excitation and repressed photosynthesis. In contrast, many thylakoid proteins remain at a basal level even after full dehydration. Taken together, our study demonstrated that efficient modulation of cellular redox homeostasis and photosynthetic activity confers desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shishuai Luo
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Kirchhoff H, Li M, Puthiyaveetil S. Sublocalization of Cytochrome b 6f Complexes in Photosynthetic Membranes. TRENDS IN PLANT SCIENCE 2017; 22:574-582. [PMID: 28483636 DOI: 10.1016/j.tplants.2017.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 05/17/2023]
Abstract
It is well established that the majority of energy-converting photosynthetic protein complexes in plant thylakoid membrane are nonhomogenously distributed between stacked and unstacked membrane regions. Yet, the sublocalization of the central cytochrome b6f complex remains controversial. We present a structural model that explains the variation in cytochrome b6f sublocalization data. Small changes in the distance between adjacent membranes in stacked grana regions either allow or restrict access of cytochrome b6f complexes to grana. If the width of the gap falls below a certain threshold, then the steric hindrance prevents cytochrome b6f access to grana. Evidence is presented that the width of stromal gap is variable, demonstrating that the postulated mechanism can regulate the lateral distribution of the cytochrome b6f complexes.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Insitute of Biological Chemistry, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA.
| | - Meng Li
- Insitute of Biological Chemistry, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Sujith Puthiyaveetil
- Insitute of Biological Chemistry, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA; Current address: Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Zia A, Walker BJ, Oung HMO, Charuvi D, Jahns P, Cousins AB, Farrant JM, Reich Z, Kirchhoff H. Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:664-80. [PMID: 27258321 DOI: 10.1111/tpj.13227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.
Collapse
Affiliation(s)
- Ahmad Zia
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Berkley J Walker
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Hui Min Olivia Oung
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Dana Charuvi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Asaph B Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA.
| |
Collapse
|
27
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Agarwal R, Hasan SS, Jones LM, Stofleth JT, Ryan CM, Whitelegge JP, Kehoe DM, Cramer WA. Role of domain swapping in the hetero-oligomeric cytochrome b6f lipoprotein complex. Biochemistry 2015; 54:3151-63. [PMID: 25928281 DOI: 10.1021/acs.biochem.5b00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Domain swapping that contributes to the stability of biologically crucial multisubunit complexes has been implicated in protein oligomerization. In the case of membrane protein assemblies, domain swapping of the iron-sulfur protein (ISP) subunit occurs in the hetero-oligomeric cytochrome b6f and bc1 complexes, which are organized as symmetric dimers that generate the transmembrane proton electrochemical gradient utilized for ATP synthesis. In these complexes, the ISP C-terminal predominantly β-sheet extrinsic domain containing the redox-active [2Fe-2S] cluster resides on the electrochemically positive side of each monomer in the dimeric complex. This domain is bound to the membrane sector of the complex through an N-terminal transmembrane α-helix that is "swapped' to the other monomer of the complex where it spans the complex and the membrane. Detailed analysis of the function and structure of the b6f complex isolated from the cyanobacterium Fremyella diplosiphon SF33 shows that the domain-swapped ISP structure is necessary for function but is not necessarily essential for maintenance of the dimeric structure of the complex. On the basis of crystal structures of the cytochrome complex, the stability of the cytochrome dimer is attributed to specific intermonomer protein-protein and protein-lipid hydrophobic interactions. The geometry of the domain-swapped ISP structure is proposed to be a consequence of the requirement that the anchoring helix of the ISP not perturb the heme organization or quinone channel in the conserved core of each monomer.
Collapse
Affiliation(s)
- Rachna Agarwal
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - S Saif Hasan
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - LaDonna M Jones
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Jason T Stofleth
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher M Ryan
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - David M Kehoe
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - William A Cramer
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Hojka M, Thiele W, Tóth SZ, Lein W, Bock R, Schöttler MA. Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex. PLANT PHYSIOLOGY 2014; 165:1632-1646. [PMID: 24963068 PMCID: PMC4119044 DOI: 10.1104/pp.114.243741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program.
Collapse
Affiliation(s)
- Marta Hojka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfgang Lein
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
32
|
Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA. A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex. J Phys Chem B 2014; 118:6614-25. [PMID: 24867491 PMCID: PMC4067154 DOI: 10.1021/jp501165k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
cytochrome b6f complex,
a member of the cytochrome bc family that
mediates energy transduction in photosynthetic and respiratory membranes,
is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane
electron transfer, quinone oxidation–reduction, and generation
of a proton electrochemical potential. Analysis of electron storage
in this pathway, utilizing simultaneous measurement of heme reduction,
and of circular dichroism (CD) spectra, to assay heme–heme
interactions, implies a heterogeneous distribution of the dielectric
constants that mediate electrostatic interactions between the four
hemes in the complex. Crystallographic information was used to determine
the identity of the interacting hemes. The Soret band CD signal is
dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides
of the complex. Kinetic data imply that the most probable pathway
for transfer of the two electrons needed for quinone oxidation–reduction
utilizes this intramonomer heme pair, contradicting the expectation
based on heme redox potentials and thermodynamics, that the two higher
potential hemes bn on different monomers
would be preferentially reduced. Energetically preferred intramonomer
electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric
constants. Relative to the medium separating the two higher potential
hemes bn, a relatively large dielectric
constant must exist between the intramonomer b-hemes,
allowing a smaller electrostatic repulsion between the reduced hemes.
Heterogeneity of dielectric constants is an additional structure–function
parameter of membrane protein complexes.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences and ‡Department of Physics, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
33
|
Scanu S, Foerster JM, Ullmann GM, Ubbink M. Role of Hydrophobic Interactions in the Encounter Complex Formation of the Plastocyanin and Cytochrome f Complex Revealed by Paramagnetic NMR Spectroscopy. J Am Chem Soc 2013; 135:7681-92. [DOI: 10.1021/ja4015452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Scanu
- Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Johannes M. Foerster
- Structural
Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse
30, 95447 Bayreuth, Germany
| | - G. Matthias Ullmann
- Structural
Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse
30, 95447 Bayreuth, Germany
| | - Marcellus Ubbink
- Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| |
Collapse
|
34
|
Hasan SS, Stofleth JT, Yamashita E, Cramer WA. Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 2013; 52:2649-54. [PMID: 23514009 DOI: 10.1021/bi301638h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b6f catalyzes quinone redox reactions within photosynthetic membranes to generate a transmembrane proton electrochemical gradient for ATP synthesis. A key step involves the transfer of an electron from the [2Fe-2S] cluster of the iron-sulfur protein (ISP) extrinsic domain to the cytochrome f heme across a distance of 26 Å, which is too large for competent electron transfer but could be bridged by translation-rotation of the ISP. Here we report the first crystallographic evidence of significant motion of the ISP extrinsic domain. It is inferred that extensive crystallographic disorder of the ISP extrinsic domain indicates conformational flexibility. The ISP disorder observed in this structure, in contrast to the largely ordered ISP structure observed in the b6f complex supplemented with neutral lipids, is attributed to electrostatic interactions arising from anionic lipids.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
35
|
Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1295-308. [PMID: 23507619 DOI: 10.1016/j.bbabio.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
Abstract
Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
|