1
|
Monteiro RP, Calhau IB, Gomes AC, Lopes AD, Da Silva JP, Gonçalves IS, Pillinger M. β-Cyclodextrin and cucurbit[7]uril as protective encapsulation agents of the CO-releasing molecule [CpMo(CO) 3Me]. Dalton Trans 2024; 54:166-180. [PMID: 39526807 DOI: 10.1039/d4dt01863j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The CO releasing ability of the complex [CpMo(CO)3Me] (1) (Cp = η5-C5H5) has been assessed using a deoxymyoglobin-carbonmonoxymyoglobin assay. In the dark, CO release was shown to be promoted by the reducing agent sodium dithionite in a concentration-dependent manner. At lower dithionite concentrations, where dithionite-induced CO release was minimised, irradiation at 365 nm with a low-power UV lamp resulted in a strongly enhanced release of CO (half-life (t1/2) = 6.3 min), thus establishing complex 1 as a photochemically activated CO-releasing molecule. To modify the CO release behaviour of the tricarbonyl complex, the possibility of obtaining inclusion complexes between 1 and β-cyclodextrin (βCD) or cucurbit[7]uril (CB7) by liquid-liquid interfacial precipitation (1@βCD(IP)), liquid antisolvent precipitation (1@CB7), and mechanochemical ball-milling (1@βCD(BM)) was evaluated. All these methods led to the isolation of a true inclusion compound (albeit mixed with nonincluded 1 for 1@βCD(BM)), as evidenced by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} magic angle spinning (MAS) NMR. PXRD showed that 1@βCD(IP) was microcrystalline with a channel-type crystal packing structure. High resolution mass spectrometry studies revealed the formation of aqueous phase 1 : 1 complexes between 1 and CB7. For 1@βCD(IP) and 1@CB7, the protective effects of the hosts led to a decrease in the CO release rates with respect to nonincluded 1. βCD had the strongest effect, with a ca. 10-fold increase in t1/4 for dithionite-induced CO release, and a ca. 2-fold increase in t1/2 for photoinduced CO release.
Collapse
Affiliation(s)
- Rodrigo P Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - André D Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - José P Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Yang X, Lu W, Alves de Souza RW, Mao Q, Baram D, Tripathi R, Wang G, Otterbein LE, Wang B. Metal-Free CO Prodrugs Activated by Molecular Oxygen Protect against Doxorubicin-Induced Cardiomyopathy in Mice. J Med Chem 2024; 67:18981-18992. [PMID: 39417235 PMCID: PMC11571113 DOI: 10.1021/acs.jmedchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Carbon monoxide has been extensively studied for its various therapeutic activities in cell cultures and animal models. Great efforts have been made to develop noninhalational approaches for easy and controlled CO delivery. Herein, we introduce a novel metal-free CO prodrug approach that releases CO under near-physiological conditions. CO from the quinone-derived CO prodrugs is initiated by general acid/base-catalyzed tautomerization followed by oxidation by molecular oxygen to form the key norbornadienone intermediate, leading to cheletropic CO release only in an aerobic environment. Representative CO prodrug analog QCO-105 showed marked anti-inflammatory effects and HO-1 induction activity in RAW264.7 macrophages. In a mouse model of doxorubicin-induced cardiomyopathy, we show for the first time that the CO prodrug QCO-105 prevented cardiomyocyte injury, consistent with the known organ-protective effects of HO-1 and CO. Overall, such a new CO prodrug design serves as the starting point for developing CO-based therapy in attenuating the cardiotoxicity of doxorubicin.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wen Lu
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Rodrigo W. Alves de Souza
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Qiyue Mao
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dipak Baram
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gangli Wang
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Leo E. Otterbein
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Binghe Wang
- Chemistry
Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Calhau IB, Gomes AC, Mendes RF, Almeida Paz FA, Gonçalves IS, Pillinger M. An organic-organometallic CO-releasing material comprising 4,4'-bipyridine and molybdenum subcarbonyl building blocks. Dalton Trans 2024; 53:12783-12796. [PMID: 39023244 DOI: 10.1039/d4dt01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Over the past two decades, following the discovery of the important biological roles of carbon monoxide (CO), metal carbonyl complexes have been intensively studied as CO-releasing molecules (CORMs) for therapeutic applications. To improve the properties of "bare" low molecular weight CORMs, attention has been drawn to conjugating CORMs with macromolecular and inorganic scaffolds to produce CO-releasing materials (CORMAs) capable of storing and delivering large payloads of the gasotransmitter. A significant obstacle is to obtain CORMAs that retain the beneficial features of the parent CORMs. In the present work, a crystalline metal-organic framework (MOF) formulated as Mo(CO)3(4,4'-bipyridine)3/2 (Mobpy), with a structure based on Mo(CO)3 metallic nodes and bipyridine linkers, has been prepared in near quantitative yield by a straightforward reflux method, and found to exhibit CO-release properties that mimic those typically observed for molybdenum carbonyl CORMs. Mobpy was characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR, FT-Raman and diffuse reflectance (DR) UV-vis spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR. The release of CO from Mobpy was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mobpy liberates CO upon contact with a physiological buffer in the dark, leading to a maximum released amount of 1.3-1.5 mmol g-1, after 1.5 h at 37 °C, with half-lives of 0.5-1.0 h (time to transfer 0.5 equiv. of CO to Mb). In the solid-state and under open air, Mobpy undergoes complete decarbonylation over a period of 42 days, corresponding to a theoretical CO-release of 7.25 mmol g-1.
Collapse
Affiliation(s)
- Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
6
|
Carrola A, Romão CC, Vieira HLA. Carboxyhemoglobin (COHb): Unavoidable Bystander or Protective Player? Antioxidants (Basel) 2023; 12:1198. [PMID: 37371928 DOI: 10.3390/antiox12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon monoxide (CO) is a cytoprotective endogenous gas that is ubiquitously produced by the stress response enzyme heme-oxygenase. Being a gas, CO rapidly diffuses through tissues and binds to hemoglobin (Hb) increasing carboxyhemoglobin (COHb) levels. COHb can be formed in erythrocytes or in plasma from cell-free Hb. Herein, it is discussed as to whether endogenous COHb is an innocuous and inevitable metabolic waste product or not, and it is hypothesized that COHb has a biological role. In the present review, literature data are presented to support this hypothesis based on two main premises: (i) there is no direct correlation between COHb levels and CO toxicity, and (ii) COHb seems to have a direct cytoprotective and antioxidant role in erythrocytes and in hemorrhagic models in vivo. Moreover, CO is also an antioxidant by generating COHb, which protects against the pro-oxidant damaging effects of cell-free Hb. Up to now, COHb has been considered as a sink for both exogenous and endogenous CO generated during CO intoxication or heme metabolism, respectively. Hallmarking COHb as an important molecule with a biological (and eventually beneficial) role is a turning point in CO biology research, namely in CO intoxication and CO cytoprotection.
Collapse
Affiliation(s)
- André Carrola
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. Tricarbonyl-Pyrazine-Molybdenum(0) Metal-Organic Frameworks for the Storage and Delivery of Biologically Active Carbon Monoxide. ACS Biomater Sci Eng 2023; 9:1909-1918. [PMID: 36996427 PMCID: PMC10091354 DOI: 10.1021/acsbiomaterials.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
9
|
Okuda C, Sakai H. Effect of carbon monoxide administration using haemoglobin-vesicles on the hippocampal tissue. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:1-9. [PMID: 35084281 DOI: 10.1080/21691401.2022.2027428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) is a toxic gas that causes neuropathy. However, CO is endogenously produced in small amounts showing various beneficial effects. We hypothesized that CO-bound haemoglobin-vesicle (HbV) administration would reduce cerebral ischaemia-reperfusion injury without causing neuropathy. Three experiments were conducted. First, rats were exposed to CO inhalation to create a CO-poisoning group, and they were sacrificed on 0, 7, 14, and 21 days after CO exposure. Histopathologically, hippocampal damage was prominent at 14 days. Second, the rats were administered with CO-HbV equivalent to 50 or 25% of circulating blood volume (CO-HbV50 or CO-HbV25 group). Rats were sacrificed 14 days after administration. Third, rats put into haemorrhagic shock by 50% of circulating blood withdrawal were resuscitated using saline, autologous blood, and CO-HbV. They were sacrificed 14 days after resuscitation. Hippocampal damage assessment clarified that almost no necrotic cells were observed in the CO-HbV50 group. Necrotic cells in the CO-HbV25 group were comparable to those found for the control group. In rats resuscitated from haemorrhagic shock, the hippocampal damage in the group using CO-HbV was the mildest. Administration of CO-HbV did not lead to marked hippocampal damage. Furthermore, CO-HbV was effective at preventing cerebral ischaemia-reperfusion injury after haemorrhagic shock.
Collapse
Affiliation(s)
- Chie Okuda
- Department of Chemistry, Nara Medical University, Kashihara, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| |
Collapse
|
10
|
Reiländer S, Schmehl W, Popp K, Nuss K, Kronen P, Verdino D, Wiezorek C, Gutmann M, Hahn L, Däubler C, Meining A, Raschig M, Kaiser F, von Rechenberg B, Scherf-Clavel O, Meinel L. Oral Use of Therapeutic Carbon Monoxide for Anyone, Anywhere, and Anytime. ACS Biomater Sci Eng 2022. [DOI: 10.1021/acsbiomaterials.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Reiländer
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Wolfgang Schmehl
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Kevin Popp
- German Plastics Center (SKZ), Friedrich-Bergius-Ring 22, Wuerzburg97076, Germany
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Peter Kronen
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Dagmar Verdino
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Christina Wiezorek
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lukas Hahn
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Christof Däubler
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Alexander Meining
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Martina Raschig
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg97070, Germany
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Würzburg97070, Germany
| |
Collapse
|
11
|
Thomas JM, Kuduvalli SS, T.S A, Sivasankar C. Investigation of the CO releasing ability of azachalcone bound Mn(I) tricarbonyl complexes and their anti‐proliferative properties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| | - Shreyas S. Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Anitha T.S
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| |
Collapse
|
12
|
Mendes SS, Marques J, Mesterházy E, Straetener J, Arts M, Pissarro T, Reginold J, Berscheid A, Bornikoel J, Kluj RM, Mayer C, Oesterhelt F, Friães S, Royo B, Schneider T, Brötz-Oesterhelt H, Romão CC, Saraiva LM. Synergetic Antimicrobial Activity and Mechanism of Clotrimazole-Linked CO-Releasing Molecules. ACS BIO & MED CHEM AU 2022; 2:419-436. [PMID: 35996473 PMCID: PMC9389576 DOI: 10.1021/acsbiomedchemau.2c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Several metal-based
carbon monoxide-releasing molecules (CORMs)
are active CO donors with established antibacterial activity. Among
them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2′-bipyridyl)(azole)]+ display important synergies
against several microbes. We carried out a structure–activity
relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates
with varying metal and ligands. We concluded that the nature of the
bidentate ligand strongly influences the bactericidal activity, with
the substitution of bipyridyl by small bicyclic ligands leading to
highly active clotrimazole conjugates. On the contrary, the metal
did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts:
while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity
and clotrimazole shows only moderate minimal inhibitory concentrations,
the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order
of magnitude higher than that of clotrimazole, and the spectrum of
bacterial target species includes Gram-positive and Gram-negative
bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a
general impact on the membrane topology, has inhibitory effects on
peptidoglycan biosynthesis, and affects energy functions. The mechanism
of action of this kind of CORM conjugates involves a sequence of events
initiated by membrane insertion, followed by membrane disorganization,
inhibition of peptidoglycan synthesis, CO release, and break down
of the membrane potential. These results suggest that conjugation
of CORMs to known antibiotics may produce useful structures with synergistic
effects that increase the conjugate’s activity relative to
that of the antibiotic alone.
Collapse
Affiliation(s)
- Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Joana Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Edit Mesterházy
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Teresa Pissarro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jorgina Reginold
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Robert M Kluj
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Christoph Mayer
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Sofia Friães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Beatriz Royo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
13
|
Zhang X, Guo N, Yang S, Khan H, Zhang W. Hydrophilic CO-Releasing Material of PEGlyated Ruthenium Carbonyl Complex. MATERIALS 2022; 15:ma15103597. [PMID: 35629627 PMCID: PMC9143562 DOI: 10.3390/ma15103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The poor water-solubility and instability of Ru(II) carbonyl complex hamper the therapeutic application as CO releasing materials (CO-RMs). To enhance the hydrophilicity and bio-utility of CO, a robust Ru(I) carbonyl sawhorse skeleton was grafted with water-soluble PEGylated sidearm. In this case, 12 PEGylated sawhorse Ru2(CO)4 complexes were prepared with satisfactory yields and characterized by IR and 1H- and 13C- NMR. X-ray diffraction analysis of CO-RM 8, 13 and 14 revealed the featured diruthenium sawhorse skeleton and PEGylated axial ligands. The flask-shaking method measures the water-solubility of CO-RMs, indicating that both bridging carboxylate ligands and PEGlyated axial ligands regulate the hydrophilicity of these CO-RMs. Under photolysis conditions, CO-RM 4–13 sustainable released therapeutic amounts of CO in the myoglobin assay. The correlation of the CO release kinetics and hydrophilicity of CO-RMs demonstrated that the more hydrophilic CO-RM released CO faster. The biological test found that the low cytotoxic CO-RM 4 showed a specific anticancer activity toward HT-29 tumour cells.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (S.Y.); (H.K.)
| | - Nan Guo
- School of Chemical Engineering, Northwest University, Xi’an 710127, China;
| | - Shuhong Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (S.Y.); (H.K.)
| | - Huma Khan
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (S.Y.); (H.K.)
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China; (X.Z.); (S.Y.); (H.K.)
- Correspondence: ; Tel.: +86-181-8243-8818
| |
Collapse
|
14
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
15
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yang X, Lu W, Wang M, Tan C, Wang B. "CO in a pill": Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release 2021; 338:593-609. [PMID: 34481027 PMCID: PMC8526413 DOI: 10.1016/j.jconrel.2021.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Along with the impressive achievements in understanding the endogenous signaling roles and mechanism(s) of action of carbon monoxide (CO), much research has demonstrated the potential of using CO as a therapeutic agent for treating various diseases. Because of CO's toxicity at high concentrations and the observed difference in toxicity profiles of CO depending on the route of administration, this review analyzes and presents the benefits of developing orally active CO donors. Such compounds have the potential for improved safety profiles, enhancing the chance for developing CO-based therapeutics. In this review, the difference between inhalation and oral administration in terms of toxicity, CO delivery efficiency, and the potential mechanism(s) of action is analyzed. The evolution from CO gas inhalation to oral administration is also extensively analyzed by summarizing published studies up to date. The concept of "CO in a pill" can be achieved by oral administration of novel formulations of CO gas or appropriate CO donors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Minjia Wang
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Mississippi, MS 38677, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Tien Vo TT, Vo QC, Tuan VP, Wee Y, Cheng HC, Lee IT. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol 2021; 46:102124. [PMID: 34507160 PMCID: PMC8427320 DOI: 10.1016/j.redox.2021.102124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy. CO-RMs as pro-drugs for controlled CO delivery are potentially beneficial in cancer treatment. Anticancer activities of CO-RMs are varying and cell-type specific. Anti-proliferative, pro-apoptotic, and anti-angiogenic effects are major niches. ROS may play a central role in the molecular pathways underlying anticancer activities of CO-RMs. CO-RMs can act against Warburg effect, a feature of cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Zhu J, Wang J, Wang G, Zhang J, Tao W, Liu C, Liu M, Zhang H, Xie R, Ye F, Liu Y, Fang W, Chen X, Li Y. Precise Identification of the Dimethyl Sulfoxide Triggered Tricarbonyldichlororuthenium(II) Dimer for Releasing CO. J Phys Chem Lett 2021; 12:4658-4665. [PMID: 33978423 DOI: 10.1021/acs.jpclett.1c00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low concentrations of carbon monoxide (CO) can play vital roles in pharmacological and physiological functions in the human body. The transition-metal carbonyl complexes of the tricarbonyldichlororuthenium(II) dimer [Ru2(CO)6Cl4 (CORM-2)] were proposed as CO-releasing molecules (CORMs) to improve the delivery efficiency of CO for therapeutic effects. The accurate identification of final products for CORMs in solution and the detailed mechanisms of the release of CO were the essential prerequisite for its effective physiological application, which have been deficient. In this study, utilizing the cutting-edge two-dimensional (2D) IR spectroscopy, with the intrinsic vibrational modes and the coupling information on dynamics of intramolecular vibrational energy redistribution (IVR), the final products of A, B, C, and E are accurately identified when CORM-2 is dissolved in dimethyl sulfoxide (DMSO). Furthermore, with the clues on intermolecular interaction and chemical exchange dynamics between different products, the transformations between different products are also directly characterized for the first time. These findings challenge the results from the classic 1D spectroscopic pattern, and they evidently demonstrated that the release of CO from CORM-2 in DMSO was slow and complicated with multiple reaction pathways. Combining with DFT simulations, the detailed mechanisms of release of CO for CORM-2 dissolved in DMSO are schematically proposed, which can significantly contribute to its drug optimization and pharmacological as well as physiological applications.
Collapse
Affiliation(s)
- Jiangrui Zhu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guosheng Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Liu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
| |
Collapse
|
19
|
Phototriggered cytotoxic properties of tricarbonyl manganese(I) complexes bearing α-diimine ligands towards HepG2. J Biol Inorg Chem 2021; 26:135-147. [PMID: 33638701 DOI: 10.1007/s00775-020-01843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Reaction between bromo tricarbonyl manganese(I) and N,N'-bis(phenyl)-1,4-diaza-1,3-butadiene ligands, bearing different electron-donating and electron-withdrawing groups R = OCH3, Cl, and NO2 in the ortho- and para-positions on the phenyl substituent, afforded [MnBr(CO)3(N-N)] complexes. The influence of the character and position of the substituent on the dark stability and carbon monoxide releasing kinetics was systematically investigated and correlated with the data of the time-dependent density functional theory calculations. The combined UV/Vis and IR data clearly revealed that the aerated solutions of [MnBr(CO)3(N-N)] in either coordinating or noncoordinating solvents are dark stable and the fluctuations observed during the incubation period especially in the case of the nitro derivatives may be attributed to the exchange of the axial bromo ligand with the coordinating solvent molecules. The free ligands and nitro complexes were non-cytotoxic to HepG2 cells under both the dark and illumination conditions. In the dark, Mn(I) compounds, incorporating o-OCH3 and o-Cl, exhibited excellent cytotoxicity with IC50 values of 18.1 and 11.8 μM, while their para-substituted analogues were inactive in the dark and active upon the irradiation at 365 nm with IC50 values of 5.7 and 6.7 μM, respectively.
Collapse
|
20
|
Greijer B, De Donder T, Nestor G, Eriksson JE, Seisenbaeva GA, Kessler VG. Complexes of Keggin POMs [PM
12
O
40
]
3−
(M=Mo, W) with GlyGlyGly and GlyGlyGlyGly Oligopeptides. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Björn Greijer
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| | - Timothy De Donder
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| | - Gustav Nestor
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| | - Jan E. Eriksson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| | - Vadim G. Kessler
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
| |
Collapse
|
21
|
Stucki D, Stahl W. Carbon monoxide – beyond toxicity? Toxicol Lett 2020; 333:251-260. [DOI: 10.1016/j.toxlet.2020.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
|
22
|
Weiss VC, Farias G, Amorim AL, Xavier FR, Camargo TP, Bregalda MB, Haukka M, Nordlander E, de Souza B, Peralta RA. Luminescent PhotoCORMs: Enabling/Disabling CO Delivery upon Blue Light Irradiation. Inorg Chem 2020; 59:13078-13090. [PMID: 32902965 DOI: 10.1021/acs.inorgchem.0c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new luminescent carbonyl compounds [Mn(Oxa-H)(CO)3Br] (1) and [Mn(Oxa-NMe2)(CO)3Br] (2) were synthesized and fully characterized. Complexes 1 and 2 showed CO release under blue light (λ453). Spectroscopic techniques and TD-DFT and SOC-TD-DFT calculations indicated that 1 and 2 release the Oxa-H and Oxa-NMe2 coligands in addition to the carbonyl ligands, increasing the luminescence during photoinduction.
Collapse
Affiliation(s)
- Vitor C Weiss
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - IFSC, Campus Florianópolis, Santa Catarina 88020-300, Brazil
| | - Giliandro Farias
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André L Amorim
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Fernando R Xavier
- Universidade do Estado de Santa Catarina (UDESC), Campus Joinville, 89219-710 Joinville, SC, Brazil
| | - Tiago P Camargo
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, Curitiba 81290-000, Brazil
| | - Mayana B Bregalda
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, Curitiba 81290-000, Brazil
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-400 14 Jyväskylä, Finland
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE- 22100 Lund, Sweden
| | - Bernardo de Souza
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rosely A Peralta
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
23
|
Fernandes AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV. Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules. ACS Biomater Sci Eng 2020; 6:1090-1101. [DOI: 10.1021/acsbiomaterials.9b01936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Inês Mendonça-Martins
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Marino F. A. Santos
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís R. Raposo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rita Mendes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Joana Marques
- Instituto de Tecnologia Quı́mica e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Carlos C. Romão
- Instituto de Tecnologia Quı́mica e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Molecular interaction of manganese based carbon monoxide releasing molecule (MnCORM) with human serum albumin (HSA). Bioorg Chem 2019; 92:103078. [DOI: 10.1016/j.bioorg.2019.103078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
|
25
|
Figueiredo-Pereira C, Menezes R, Ferreira S, Santos CN, Vieira HLA. Carbon monoxide released by CORM-A1 prevents yeast cell death via autophagy stimulation. FEMS Yeast Res 2019; 19:5538765. [DOI: 10.1093/femsyr/foz051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Autophagy is an autodigestive process, promoting cytoprotection by the elimination of dysfunctional organelles, misfolded proteins and toxic aggregates. Carbon monoxide (CO) is an endogenous gasotransmitter that under low concentrations prevents cell death and inflammation. For the first time, the role of autophagy in CO-mediated cytoprotection against oxidative stress was evaluated in the model yeast Saccharomyces cerevisiae. The boron-based CO-releasing molecule, CORM-A1, was used to deliver CO. CORM-A1 partially prevented oxidative stress-induced cell death in yeast. Likewise, CORM-A1 activated autophagy under basal physiological conditions, which were assessed by autophagic flux and the expression of mCherry-Atg8 or GFP-Atg8. Inhibition of autophagy by knocking out key autophagic genes in yeast (ATG8 or ATG11) blocked CORM-A1 cytoprotective effect, indicating the critical role of autophagy in CO-induced cytoprotection. The CO-mediated cytoprotection via autophagy induction observed in yeast was validated in primary cultures of astrocytes, a well-characterized model for CO's cytoprotective functions. As in yeast, CORM-A1 prevented oxidative stress-induced cell death in an autophagy-dependent manner in astrocytes. Overall, our data support the cytoprotective action of CO against oxidative stress. CO promotes cytoprotection in yeast via autophagy, opening new possibilities for the study of molecular mechanisms of CO's biological functions using this powerful eukaryotic model.
Collapse
Affiliation(s)
- Cláudia Figueiredo-Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
- ITQB, Universidade Nova de Lisboa, Av Republica, 2780-157 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| | - Cláudia N Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
- ITQB, Universidade Nova de Lisboa, Av Republica, 2780-157 Oeiras, Portugal
| | - Helena L A Vieira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
26
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
27
|
Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods. PLoS One 2018; 13:e0204624. [PMID: 30261022 PMCID: PMC6160121 DOI: 10.1371/journal.pone.0204624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Therapy with inhaled carbon monoxide (CO) is being tested in human clinical trials, yet the alternative use of prodrugs, CO-Releasing Molecules (CORMs), is conceptually advantageous. These molecules are designed to release carbon monoxide in specific tissues, in response to some locally expressed stimulus, where CO can trigger a cytoprotective response. The design of such prodrugs, mostly metal carbonyl complexes, must consider their ADMET profiles, including their interaction with transport plasma proteins. However, the molecular details of this interaction remain elusive. To shed light into this matter, we focused on the CORM prototype [Mo(η5-Cp)(CH2COOH)(CO)3] (ALF414) and performed a detailed molecular characterization of its interaction with bovine serum albumin (BSA), using spectroscopic and computational methods. The experimental results show that ALF414 partially quenches the intrinsic fluorescence of BSA without changing its secondary structure. The interaction between BSA and ALF414 follows a dynamic quenching mechanism, indicating that no stable complex is formed between the protein Trp residues and ALF414. The molecular dynamics simulations are in good agreement with the experimental results and confirm the dynamic and unspecific character of the interaction between ALF414 and BSA. The simulations also provide important insights into the nature of the interactions of this CORM prototype with BSA, which are dominated by hydrophobic contacts, with a contribution from hydrogen bonding. This kind of information is useful for future CORM design.
Collapse
|
28
|
Bijelic A, Rompel A. Polyoxometalates: more than a phasing tool in protein crystallography. CHEMTEXTS 2018; 4:10. [PMID: 30596006 PMCID: PMC6294228 DOI: 10.1007/s40828-018-0064-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023]
Abstract
Protein crystallography is the most widely used method for determining the molecular structure of proteins and obtaining structural information on protein–ligand complexes at the atomic level. As the structure determines the functions and properties of a protein, crystallography is of immense importance for nearly all research fields related to biochemistry. However, protein crystallography suffers from some major drawbacks, whereby the unpredictability of the crystallization process represents the main bottleneck. Crystallization is still more or less a ‘trial and error’ based procedure, and therefore, very time and resource consuming. Many strategies have been developed in the past decades to improve or enable the crystallization of proteins, whereby the use of so-called additives, which are mostly small molecules that make proteins more amenable to crystallization, is one of the most convenient and successful methods. Most of the commonly used additives are, however, restricted to particular crystallization conditions or groups of proteins. Therefore, a more universal additive addressing a wider range of proteins and being applicable to a broad spectrum of crystallization conditions would represent a significant advance in the field of protein crystallography. In recent years, polyoxometalates (POMs) emerged as a promising group of crystallization additives due to their unique structures and properties. In this regard, the tellurium-centered Anderson–Evans polyoxotungstate [TeW6O24]6− (TEW) showed its high potential as crystallization additive. In this lecture text, the development of POMs as tools in protein crystallography are discussed with a special focus on the so far most successful cluster TEW.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
29
|
De La Cruz LKC, Benoit SL, Pan Z, Yu B, Maier RJ, Ji X, Wang B. Click, Release, and Fluoresce: A Chemical Strategy for a Cascade Prodrug System for Codelivery of Carbon Monoxide, a Drug Payload, and a Fluorescent Reporter. Org Lett 2018; 20:897-900. [PMID: 29380605 DOI: 10.1021/acs.orglett.7b03348] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemical strategy was developed wherein a single trigger sets in motion a three-reaction cascade leading to the release of more than one drug-component in sequence with the generation of a fluorescent side product for easy monitoring. As a proof of concept, codelivery of CO with the antibiotic metronidazole was demonstrated.
Collapse
Affiliation(s)
- Ladie Kimberly C De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Robert J Maier
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| |
Collapse
|
30
|
Stifter J, Ulbrich F, Goebel U, Böhringer D, Lagrèze WA, Biermann J. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release. PLoS One 2017; 12:e0188444. [PMID: 29176876 PMCID: PMC5703485 DOI: 10.1371/journal.pone.0188444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Retinal ischemia induces apoptosis leading to neurodegeneration and vision impairment. Carbon monoxide (CO) in gaseous form showed cell-protective and anti-inflammatory effects after retinal ischemia-reperfusion-injury (IRI). These effects were also demonstrated for the intravenously administered CO-releasing molecule (CORM) ALF-186. This article summarizes the results of intravitreally released CO to assess its suitability as a neuroprotective and neuroregenerative agent. METHODS Water-soluble CORM ALF-186 (25 μg), PBS, or inactivated ALF (iALF) (all 5 μl) were intravitreally applied into the left eyes of rats directly after retinal IRI for 1 h. Their right eyes remained unaffected and were used for comparison. Retinal tissue was harvested 24 h after intervention to analyze mRNA or protein expression of Caspase-3, pERK1/2, p38, HSP70/90, NF-kappaB, AIF-1 (allograft inflammatory factor), TNF-α, and GAP-43. Densities of fluorogold-prelabeled retinal ganglion cells (RGC) were examined in flat-mounted retinae seven days after IRI and were expressed as mean/mm2. The ability of RGC to regenerate their axon was evaluated two and seven days after IRI using retinal explants in laminin-1-coated cultures. Immunohistochemistry was used to analyze the different cell types growing out of the retinal explants. RESULTS Compared to the RGC-density in the contralateral right eyes (2804±214 RGC/mm2; data are mean±SD), IRI+PBS injection resulted in a remarkable loss of RGC (1554±159 RGC/mm2), p<0.001. Intravitreally injected ALF-186 immediately after IRI provided RGC protection and reduced the extent of RGC-damage (IRI+PBS 1554±159 vs. IRI+ALF 2179±286, p<0.001). ALF-186 increased the IRI-mediated phosphorylation of MAP-kinase p38. Anti-apoptotic and anti-inflammatory effects were detectable as Caspase-3, NF-kappaB, TNF-α, and AIF-1 expression were significantly reduced after IRI+ALF in comparison to IRI+PBS or IRI+iALF. Gap-43 expression was significantly increased after IRI+ALF. iALF showed effects similar to PBS. The intrinsic regenerative potential of RGC-axons was induced to nearly identical levels after IRI and ALF or iALF-treatment under growth-permissive conditions, although RGC viability differed significantly in both groups. Intravitreal CO further increased the IRI-induced migration of GFAP-positive cells out of retinal explants and their transdifferentiation, which was detected by re-expression of beta-III tubulin and nestin. CONCLUSION Intravitreal CORM ALF-186 protected RGC after IRI and stimulated their axons to regenerate in vitro. ALF conveyed anti-apoptotic, anti-inflammatory, and growth-associated signaling after IRI. CO's role in neuroregeneration and its effect on retinal glial cells needs further investigation.
Collapse
Affiliation(s)
- Julia Stifter
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Ulrich Goebel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Biermann
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, University of Muenster Medical Center, Domagkstrasse 15, Muenster, Germany
| |
Collapse
|
31
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
32
|
Petuker A, Gerschel P, Piontek S, Ritterskamp N, Wittkamp F, Iffland L, Miller R, van Gastel M, Apfel UP. Spectroscopic and reactivity differences in metal complexes derived from sulfur containing Triphos homologs. Dalton Trans 2017; 46:13251-13262. [DOI: 10.1039/c7dt01459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic, computational, and reactivity studies shed light on the different coordination behavior of sulfur containing Triphos derived complexes.
Collapse
Affiliation(s)
- A. Petuker
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - P. Gerschel
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - S. Piontek
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - N. Ritterskamp
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - F. Wittkamp
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - L. Iffland
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - R. Miller
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - M. van Gastel
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim
- Germany
| | - U.-P. Apfel
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| |
Collapse
|
33
|
Popova M, Soboleva T, Arif A, Berreau LM. Properties of a flavonol-based photoCORM in aqueous buffered solutions: influence of metal ions, surfactants and proteins on visible light-induced CO release. RSC Adv 2017. [DOI: 10.1039/c7ra02653f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A flavonol-based photoCORM exhibits reliable visible light-induced CO release in aqueous buffer environments containing constituents of relevance to biological environments.
Collapse
Affiliation(s)
- Marina Popova
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| | - Tatiana Soboleva
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| | - Atta M. Arif
- Department of Chemistry
- University of Utah
- Salt Lake City
- USA
| | - Lisa M. Berreau
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
34
|
Pontillo N, Ferraro G, Messori L, Tamasi G, Merlino A. Ru-Based CO releasing molecules with azole ligands: interaction with proteins and the CO release mechanism disclosed by X-ray crystallography. Dalton Trans 2017; 46:9621-9629. [DOI: 10.1039/c7dt01991b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Structural data on the adducts formed upon reaction of Ru-based CO releasing molecules containing azole ligands with model proteins are reported.
Collapse
Affiliation(s)
- Nicola Pontillo
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’ Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’ Angelo
- Napoli
- Italy
| | - Luigi Messori
- Department of Chemistry
- University of Florence
- Sesto Fiorentino
- Italy
| | - Gabriella Tamasi
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’ Angelo
- Napoli
- Italy
| |
Collapse
|
35
|
Interactions between proteins and Ru compounds of medicinal interest: A structural perspective. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Nobre LS, Jeremias H, Romão CC, Saraiva LM. Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules. Dalton Trans 2016; 45:1455-66. [PMID: 26673556 DOI: 10.1039/c5dt02238j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transition metal carbonyl complexes used as CO-releasing molecules (CORMs) for biological and therapeutic applications may exhibit interesting antimicrobial activity. However, understanding the chemical traits and mechanisms of action that rule this activity is required to establish a rationale for the development of CORMs into useful antibiotics. In this work the bactericidal activity, the toxicity to eukaryotic cells, and the ability of CORMs to deliver CO to bacterial and eukaryotic cells were analysed for a set of seven CORMs that differ in the transition metal, ancillary ligands and the CO release profile. Most of these CORMs exhibited bactericidal properties that decrease in the following order: CORM-2 > CORM-3 > ALF062 > ALF850 > ALF186 > ALF153 > [Fe(SBPy3)(CO)](BF4)2. A similar yet not entirely coincident decreasing order was found for their induction of intracellular reactive oxygen species (ROS) in E. coli. In contrast, studies in model animal cells showed that for any given CORM, the level of intracellular ROS generated was negligible when compared with that measured inside bacteria. Importantly, these CORMs were in general not toxic to eukaryotic cells, namely murine macrophages, kidney LLC-PK1 epithelial cells, and liver cell line HepG2. CORM-2 and CORM-3 delivered CO to the intracellular space of both E. coli and the two types of tested eukaryotic cells, yet toxicity was only elicited in the case of E. coli. CO delivered by ALF186 into the intercellular space did not enter E. coli cells and the compound was not toxic to either bacteria or to eukaryotic cells. The Fe(ii) carbonyl complex [Fe(SBPy3)(CO)](2+) had the reverse, undesirable toxicity profile, being unexpectedly toxic to eukaryotic cells and non-toxic to E. coli. ALF153, the most stable complex in the whole set, was essentially devoid of toxicity or ROS induction ability in all cells. These results suggest that CORMs have a relevant therapeutic potential as antimicrobial drugs since (i) they can show opposite toxicity profiles towards bacteria and eukaryotic cells; (ii) their activity can be modulated through manipulation of the ancillary ligands, as shown with the three {Ru(CO)3}(2+) and two zerovalent Mo based CORMs; and (iii) their toxicity to eukaryotic cells can be made acceptably low. With this new approach, this work contributes to the understanding of the roots of the bactericidal action of CORMs and helps in establishing strategies for their development into a new class of antibiotics.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| | - Hélia Jeremias
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
37
|
Yang S, Chen M, Zhou L, Zhang G, Gao Z, Zhang W. Photo-activated CO-releasing molecules (PhotoCORMs) of robust sawhorse scaffolds [μ(2)-OOCR(1), η(1)-NH2CHR(2)(C = O] OCH3, Ru(I)2CO4]. Dalton Trans 2016; 45:3727-33. [PMID: 26812138 DOI: 10.1039/c5dt04479k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A class of sawhorse-type ruthenium(i) complexes featuring a stable CORM sphere with diverse carboxylic and amino acid derivatives were synthesized and validated as lead structures for photo-activated CO-releasing molecules (PhotoCORMs). The CO release of these CORMs was triggered by 365 nm UV irradiation. Cell viability studies indicated that 3a and 3f were non-toxic both in the dark and in UV light, making them excellent lead structures for therapeutic CORMs.
Collapse
Affiliation(s)
- Shuhong Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | | | |
Collapse
|
38
|
Caterino M, Petruk AA, Vergara A, Ferraro G, Marasco D, Doctorovich F, Estrin DA, Merlino A. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules. Dalton Trans 2016; 45:12206-14. [DOI: 10.1039/c6dt01685e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ariel A. Petruk
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Alessandro Vergara
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages
- Napoli
- Italy
- Department of Pharmacy
- University of Naples Federico II
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Dario A. Estrin
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
39
|
Kautz AC, Kunz PC, Janiak C. CO-releasing molecule (CORM) conjugate systems. Dalton Trans 2016; 45:18045-18063. [DOI: 10.1039/c6dt03515a] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To try to advance CORMs toward medical applications, they are covalently bound to peptides, polymers, nanoparticles, dendrimers, and protein cages or are incorporated into non-wovens, tablets, or metal–organic frameworks.
Collapse
Affiliation(s)
- Anna Christin Kautz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Peter C. Kunz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
40
|
Small Signaling Molecules and CO-Releasing Molecules (CORMs) for the Modulation of the Cellular Redox Metabolism. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Shiri F, Shahraki S, Baneshi S, Nejati-Yazdinejad M, Majd MH. Synthesis, characterization, in vitro cytotoxicity, in silico ADMET analysis and interaction studies of 5-dithiocarbamato-1,3,4-thiadiazole-2-thiol and its zinc(ii) complex with human serum albumin: combined spectroscopy and molecular docking investigations. RSC Adv 2016. [DOI: 10.1039/c6ra17322e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The binding site of new complex Zn(ii) of 5-dithiocarbamato-1,3,4-thiadiazole-2-thiol and HAS.
Collapse
|
42
|
Compain JD, Stanbury M, Trejo M, Chardon-Noblat S. Carbonyl-Terpyridyl-Manganese Complexes: Syntheses, Crystal Structures, and Photo-Activated Carbon Monoxide Release Properties. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500973] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Nguyen D, Boyer C. Macromolecular and Inorganic Nanomaterials Scaffolds for Carbon Monoxide Delivery: Recent Developments and Future Trends. ACS Biomater Sci Eng 2015; 1:895-913. [PMID: 33429521 DOI: 10.1021/acsbiomaterials.5b00230] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon monoxide (CO) is as an important biological gasomediator. It plays significant roles in anti-inflammatory, antihypertensive, and antiapoptotic pathways. Preclinical evidence in animal models has proven the beneficial effects of controlled CO gas administration. However, the medical use of CO gas has been hindered due to its administration. Indeed, its toxicity at high concentrations and the challenging delivery to specific target sites are the limiting factors. To overcome these problems, a wide range of CO-releasing molecules have been designed, and some have emerged as potential therapeutic agents. Despite some successes, these small CO-releasing molecules have limited stability in biologic media resulting in an unspecific release of CO, which could result in side effects. CO-releasing macromolecular and inorganic nanomaterial scaffolds have emerged as promising carriers due to their ability to encapsulate and deliver high amounts of CO-releasing molecules. Furthermore, polymer architecture could be designed for the controlled release of CO under specific stimuli. After highlighting some recent developments in the design of CO-releasing scaffolds, this review will discuss strategies and possible future directions of CO releasing macromolecules and inorganic nanomaterials for potential therapeutic applications.
Collapse
Affiliation(s)
- Diep Nguyen
- Australian Centre for Nanomedicine, School of Chemical Engineering, and ‡Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Gate 2, High Street, Sydney, Australia 2052
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, School of Chemical Engineering, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Gate 2, High Street, Sydney, Australia 2052
| |
Collapse
|
44
|
Bijelic A, Rompel A. The use of polyoxometalates in protein crystallography - An attempt to widen a well-known bottleneck. Coord Chem Rev 2015; 299:22-38. [PMID: 26339074 PMCID: PMC4504029 DOI: 10.1016/j.ccr.2015.03.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/23/2015] [Indexed: 02/01/2023]
Abstract
Polyoxometalates (POMs) are discrete polynuclear metal-oxo anions with a fascinating variety of structures and unique chemical and physical properties. Their application in various fields is well covered in the literature, however little information about their usage in protein crystallization is available. This review summarizes the impact of the vast class of POMs on the formation of protein crystals, a well-known (frustrating) bottleneck in macromolecular crystallography, with the associated structure elucidation and a particular emphasis focused on POM's potential as a powerful crystallization additive for future research. The Protein Data Bank (PDB) was scanned for protein structures with incorporated POMs which were assigned a PDB ligand ID resulting in 30 PDB entries. These structures have been analyzed with regard to (i) the structure of POM itself in the immediate protein environment, (ii) the kind of interaction and position of the POM within the protein structure and (iii) the beneficial effects of POM on protein crystallography apparent so far.
Collapse
Affiliation(s)
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria1
| |
Collapse
|
45
|
Wareham LK, Poole RK, Tinajero-Trejo M. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era. J Biol Chem 2015; 290:18999-9007. [PMID: 26055702 PMCID: PMC4521022 DOI: 10.1074/jbc.r115.642926] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells.
Collapse
Affiliation(s)
- Lauren K Wareham
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Robert K Poole
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Mariana Tinajero-Trejo
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
46
|
Nagel C, McLean S, Poole RK, Braunschweig H, Kramer T, Schatzschneider U. Introducing [Mn(CO)3(tpa-κ(3)N)](+) as a novel photoactivatable CO-releasing molecule with well-defined iCORM intermediates - synthesis, spectroscopy, and antibacterial activity. Dalton Trans 2015; 43:9986-97. [PMID: 24855638 DOI: 10.1039/c3dt51848e] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Mn(CO)3(tpa-κ(3)N)]Br was prepared as a novel photoactivatable CO-releasing molecule (PhotoCORM) from [MnBr(CO)5] and tris(2-pyridylmethyl)amine (tpa) for the delivery of carbon monoxide to biological systems, with the κ(3)N binding mode of the tetradentate tpa ligand demonstrated by X-ray crystallography. The title compound is a CORM prodrug stable in solution in the dark for up to 16 h. However, photoactivation at 365 nm leads to CO release from the metal coordination sphere and transfer to haem proteins, as demonstrated by the standard myoglobin assay. Different iCORM intermediates could be detected with solution IR spectroscopy and assigned using DFT vibrational calculations. The antibacterial activity of the complex was studied on Escherichia coli. No effects were observed when the cultures were either kept in the dark in the presence of PhotoCORM or illuminated in the absence of metal complex. However, photoactivation of [Mn(CO)3(tpa-κ(3)N)]Br at 365 nm led to the appearance of the spectral signatures of CO-coordinated haems in the terminal oxidases of the bacterial electron transport chain in whole-cell UV/Vis absorption spectra. Significant internalization of the PhotoCORM was demonstrated by ICP-MS measurement of the intracellular manganese concentration. In particular when using medium with succinate as the sole carbon source, a very pronounced and concentration-dependent decrease in the E. coli growth rate could be observed upon illumination in the presence of metal complex, which is attributed to the constrained energy metabolism under these conditions and a strong indicator of terminal oxidase inhibition by carbon monoxide delivered from the PhotoCORM.
Collapse
Affiliation(s)
- Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br J Pharmacol 2015; 172:1638-50. [PMID: 24628281 PMCID: PMC4369270 DOI: 10.1111/bph.12688] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral 'drug sphere' for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO.
Collapse
Affiliation(s)
- U Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität WürzburgWürzburg, Germany
| |
Collapse
|
48
|
Lomont JP, Nguyen SC, Harris CB. Exploring the Utility of Tandem Thermal–Photochemical CO Delivery with CORM-2. Organometallics 2014. [DOI: 10.1021/om500859c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Justin P. Lomont
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Son C. Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Charles B. Harris
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Ward JS, Lynam JM, Moir J, Fairlamb IJS. Visible-Light-Induced CO Release from a Therapeutically Viable Tryptophan-Derived Manganese(I) Carbonyl (TryptoCORM) Exhibiting Potent Inhibition againstE. coli. Chemistry 2014; 20:15061-8. [DOI: 10.1002/chem.201403305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/08/2022]
|
50
|
Petruk AA, Vergara A, Marasco D, Bikiel D, Doctorovich F, Estrin DA, Merlino A. Interaction between Proteins and Ir Based CO Releasing Molecules: Mechanism of Adduct Formation and CO Release. Inorg Chem 2014; 53:10456-62. [DOI: 10.1021/ic501498g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ariel A. Petruk
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Alessandro Vergara
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
- Department of Pharmacy, CIRPEB: Centro Interuniversitario
di Ricerca sui Peptidi Bioattivi- University of Naples Federico II, DFM-Scarl, Via Mezzocannone, 16 80134, Napoli, Italy
| | - Damian Bikiel
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Dario A. Estrin
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| |
Collapse
|