1
|
Lashkaripour A, McIntyre DP, Calhoun SGK, Krauth K, Densmore DM, Fordyce PM. Design automation of microfluidic single and double emulsion droplets with machine learning. Nat Commun 2024; 15:83. [PMID: 38167827 PMCID: PMC10761910 DOI: 10.1038/s41467-023-44068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here, we compile a comprehensive droplet dataset and use it to train machine learning models capable of accurately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous single and double emulsions from 15 to 250 μm at rates up to 12000 Hz for different fluids commonly used in life sciences. Blind predictions by our models for as-yet-unseen fluids, geometries, and device materials yield accurate results, establishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3 μm (<8%) of the desired diameter, facilitating tailored droplet-based platforms and accelerating their utility in life sciences.
Collapse
Affiliation(s)
- Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - David P McIntyre
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | | | - Karl Krauth
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Douglas M Densmore
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Bianchi JRDO, de la Torre LG, Costa ALR. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Foods 2023; 12:3385. [PMID: 37761094 PMCID: PMC10527709 DOI: 10.3390/foods12183385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Microfluidic technology has emerged as a powerful tool for several applications, including chemistry, physics, biology, and engineering. Due to the laminar regime, droplet-based microfluidics enable the development of diverse delivery systems based on food-grade emulsions, such as multiple emulsions, microgels, microcapsules, solid lipid microparticles, and giant liposomes. Additionally, by precisely manipulating fluids on the low-energy-demand micrometer scale, it becomes possible to control the size, shape, and dispersity of generated droplets, which makes microfluidic emulsification an excellent approach for tailoring delivery system properties based on the nature of the entrapped compounds. Thus, this review points out the most current advances in droplet-based microfluidic processes, which successfully use food-grade emulsions to develop simple and complex delivery systems. In this context, we summarized the principles of droplet-based microfluidics, introducing the most common microdevice geometries, the materials used in the manufacture, and the forces involved in the different droplet-generation processes into the microchannels. Subsequently, the encapsulated compound type, classified as lipophilic or hydrophilic functional compounds, was used as a starting point to present current advances in delivery systems using food-grade emulsions and their assembly using microfluidic technologies. Finally, we discuss the limitations and perspectives of scale-up in droplet-based microfluidic approaches, including the challenges that have limited the transition of microfluidic processes from the lab-scale to the industrial-scale.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Ana Leticia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
- Institute of Exact and Technological Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal 35690-000, Brazil
| |
Collapse
|
3
|
Anyaduba TD, Otoo JA, Schlappi TS. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. MICROMACHINES 2022; 13:1946. [PMID: 36363966 PMCID: PMC9695966 DOI: 10.3390/mi13111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Collapse
Affiliation(s)
- Tochukwu D. Anyaduba
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
- Abbott Rapid Diagnostics, 4545 Towne Center Ct, La Jolla, San Diego, CA 92121, USA
| | - Jonas A. Otoo
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| | - Travis S. Schlappi
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| |
Collapse
|
4
|
Chen TY, Hsiao YW, Baker-Fales M, Cameli F, Dimitrakellis P, Vlachos DG. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chem Sci 2022; 13:10644-10685. [PMID: 36320706 PMCID: PMC9491096 DOI: 10.1039/d2sc01684b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 10/26/2023] Open
Abstract
Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| |
Collapse
|
5
|
Costa ALR, Willerth SM, de la Torre LG, Han SW. Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Mater Today Bio 2022; 13:100221. [PMID: 35243296 PMCID: PMC8866736 DOI: 10.1016/j.mtbio.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
6
|
Zhang F, Zhang Y, Luo C, Zhang D, Zhao Z. Performance study of μDMFC with foamed metal cathode current collector. RSC Adv 2022; 12:4145-4152. [PMID: 35425416 PMCID: PMC8981057 DOI: 10.1039/d2ra00246a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Micro Direct Methanol Fuel Cells (μDMFCs) often have application in moveable power due to their green and portable nature. In a μDMFC's structure, a current collector of the μDMFC needs to have high corrosion resistance such that the μDMFC can work for a long time in a redox reaction and respond to variable environmental conditions. To this end, four cathode current collectors were prepared. The materials selected were foam stainless steel (FSS) and foam titanium (FT), with fields of hole type and grid type. The performance of μDMFC with different cathode collector types was investigated by I–V–P polarization curves, Electrochemical Impedance Spectroscopy (EIS), and discharge test. The experimental results show that the maximum power density of the hole-type FSS cathode current collector μDMFC (HFSS-μDMFC) is 49.53 mW cm−2 at 70 °C in the methanol solution of 1 mol L−1, which is 70.15% higher than that of the hole-type FT cathode current collector μDMFC (HFT-μDMFC). The maximum power density of the grid-type FSS cathode current collector μDMFC (GFSS-μDMFC) is 22.60 mW cm−2, which is 11.99% higher than that of the grid-type FT cathode current collector μDMFC (GFT-μDMFC). The performance of the HFSS-μDMFC is optimal in the methanol solution of 1 mol L−1. Micro Direct Methanol Fuel Cells (μDMFCs) often have application in moveable power due to their green and portable nature.![]()
Collapse
Affiliation(s)
- Fan Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanhui Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuan Luo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Dacheng Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, China
| | - Zhengang Zhao
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, China
| |
Collapse
|
7
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Kumar S, Rao RVS. Mass transfer studies in a micromixer-settler: extraction of Cs and Sr with CCD-PEG-400 solvent from simulated acidic radwaste solutions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Du J, Ibaseta N, Guichardon P. Generation of an O/W emulsion in a flow-focusing microchip: Importance of wetting conditions and of dynamic interfacial tension. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Jung S, Song R, Kim J, Ko JH, Lee J. Controlling the Release of Amphiphilic Liposomes from Alginate Hydrogel Particles for Antifouling Paint. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1515-1522. [PMID: 31968942 DOI: 10.1021/acs.langmuir.9b03415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As an alternative to the toxic antifouling paint that minimizes the adhesion force between organic molecules on large surfaces, a paint containing hydrogel particles encapsulating amphiphilic liposomes has been suggested. However, the release rate of liposomes, which is important for maximizing the antifouling performance, has not been adequately explored. We investigated the control of the release rate of liposomes encapsulated in alginate. Monodispersed alginate particles were generated using 3D-printed microfluidic devices, and their sizes were varied through the channel size, flow rate, and alginate concentration in the microfluidic devices ([Formula: see text]). The release rate of liposomes from the alginate particles was experimentally monitored under various conditions: alginate concentration, surrounding solution, and ambient fluid flow. The effects of chemical and mechanical stimuli on the effective diffusion coefficient (Deff) of amphiphilic liposomes were analyzed, and accordingly, the best production conditions for antifouling alginate particles are suggested. This study provides essential physical insights and is useful for optimizing the performance of eco-friendly antifouling paint that includes alginate particles.
Collapse
Affiliation(s)
- Sejin Jung
- School of Mechanical Engineering , Sungkyunkwan University , Suwon , Gyeonggi-do 16419 , Republic of Korea
| | - Ryungeun Song
- School of Mechanical Engineering , Sungkyunkwan University , Suwon , Gyeonggi-do 16419 , Republic of Korea
| | - Jihoon Kim
- Maritime Robotics Test and Evaluation Unit , Korea Institute of Ocean Science and Technology , Pohang , Gyeongsangbuk-do 37553 , Republic of Korea
| | - Jin Hwan Ko
- Mechanical Engineering , Jeju National University , 102 Jejudaehak-ro, Jeju-si , Jeju Special Self-Government Province 63243 , Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering , Sungkyunkwan University , Suwon , Gyeonggi-do 16419 , Republic of Korea
- Institute for Quantum Biophysics (IQB) , Sungkyunkwan University , Suwon , Gyeonggi-do 16419 , Republic of Korea
| |
Collapse
|
11
|
A Cosine Similarity Algorithm Method for Fast and Accurate Monitoring of Dynamic Droplet Generation Processes. Sci Rep 2018; 8:9967. [PMID: 29967430 PMCID: PMC6028520 DOI: 10.1038/s41598-018-28270-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Droplet microfluidics has attracted significant interests in functional microcapsule synthesis, pharmaceuticals, fine chemicals, cosmetics and biomedical research. The low variability of performing chemical reactions inside droplets could benefit from improved homogeneity and reproducibility. Therefore, accurate and convenient methods are needed to monitor dynamic droplet generation processes. Here, a novel Cosine Similarity Algorithm (CSA) method was developed to monitor the droplet generation frequency accurately and rapidly. With a microscopic droplet generation video clip captured with a high-speed camera, droplet generation frequency can be computed accurately by calculating the cosine similarities between the frames in the video clip. Four kinds of dynamic droplet generation processes were investigated including (1) a stable condition in a single microfluidic channel, (2) a stable condition in multiple microfluidic channels, (3) a single microfluidic channel with artificial disturbances, and (4) microgel fabrication with or without artificial disturbances. For a video clip with 5,000 frames and a spatial resolution of 512 × 62 pixels, droplet generation frequency up to 4,707.9 Hz can be calculated in less than 1.70 s with an absolute relative calculation error less than 0.08%. Artificial disturbances in droplet generation processes can be precisely determined using the CSA method. This highly effective CSA method could be a powerful tool for further promoting the research of droplet microfluidics.
Collapse
|
12
|
Wu H, Chen X, Gao X, Zhang M, Wu J, Wen W. High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring. Anal Chem 2018; 90:4303-4309. [DOI: 10.1021/acs.analchem.8b00048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Han Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- College of Science, Shanghai University, Shanghai 200444, China
| | - Xinlian Chen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Mengying Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- College of Science, Shanghai University, Shanghai 200444, China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Droplet Breakup Dynamics in Bi-Layer Bifurcating Microchannel. MICROMACHINES 2018; 9:mi9020057. [PMID: 30393333 PMCID: PMC6187458 DOI: 10.3390/mi9020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Breakup of droplets at bi-layer bifurcating junction in polydimethylsiloxane (PDMS) microchannel has been investigated by experiments and numerical simulation. The pressure drop in bi-layer bifurcating channel was investigated and compared with single-layer bifurcating channel. Daughter droplet size variation generated in bi-layer bifurcating microchannel was analyzed. The correlation was proposed to predict the transition between breakup and non-breakup conditions of droplets in bi-layer bifurcating channel using a phase diagram. In the non-breakup regime, droplets exiting port can be switched via tuning flow resistance by controlling radius of curvature, and or channel height ratio. Compared with single-layer bifurcating junction, 3-D cutting in diagonal direction from bi-layer bifurcating junction induces asymmetric fission to form daughter droplets with distinct sizes while each size has good monodispersity. Lower pressure drop is required in the new microsystem. The understanding of the droplet fission in the novel microstructure will enable more versatile control over the emulsion formation, fission and sorting. The model system can be developed to investigate the encapsulation and release kinetics of emulsion templated particles such as drug encapsulated microcapsules as they flow through complex porous media structures, such as blood capillaries or the porous tissue structures, which feature with bifurcating junctions.
Collapse
|
14
|
Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
|
16
|
Li J, Barrow DA. A new droplet-forming fluidic junction for the generation of highly compartmentalised capsules. LAB ON A CHIP 2017; 17:2873-2881. [PMID: 28731104 DOI: 10.1039/c7lc00618g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new oscillatory microfluidic junction is described, which enables the consistent formation of highly uniform and complex double emulsions, and is demonstrated for the encapsulation of four different reagents within the inner droplets (called cores) of the double emulsion droplets. Once the double emulsion droplets had attained a spherical form, the cores assumed specific 3D arrangements, the orchestration of which appeared to depend upon the specific emulsion morphology. Such double emulsion droplets were used as templates to produce highly compartmentalised microcapsules and multisomes. Based on these construct models, we numerically demonstrated a model chemical reaction sequence between and within the liquid cores. This work could provide a platform to perform space/time-dependent applications, such as programmed experiments, synthesis, and delivery systems.
Collapse
Affiliation(s)
- J Li
- Applied Microfluidic Laboratory, School of Engineering, Cardiff University, Cardiff, UK.
| | - D A Barrow
- Applied Microfluidic Laboratory, School of Engineering, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Buttacci JD, Loewenberg M, Roberts CC, Nemer MB, Rao RR. Criteria for drop generation in multiphase microfluidic devices. Phys Rev E 2017; 95:063103. [PMID: 28709301 DOI: 10.1103/physreve.95.063103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/07/2022]
Abstract
A theory is presented for the transition between the coflowing and the drop-generation regimes observed in microfluidic channels with a rectangular cross section. This transition is characterized by a critical ratio of the dispersed- to continuous-phase volume flow rates. At flow-rate ratios higher than this critical value, drop generation is suppressed. The critical ratio corresponds to the fluid cross section where the dispersed-phase fluid is just tangent to the channel walls. The transition criterion is a function of the ratio of the fluid viscosities, the three-phase contact angle formed between the fluid phases and the channel walls, and the aspect ratio of the channel cross section; the transition is independent of interfacial tension. Hysteretic behavior of drop generation with respect to the flow-rate ratio is predicted for partially wetting dispersed-phase fluids. Experimental data are consistent with this theory.
Collapse
Affiliation(s)
- Joseph D Buttacci
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Michael Loewenberg
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Christine C Roberts
- Engineering Sciences Center, Sandia National Laboratories, P.O. Box 5800, MS 0346, Albuquerque, New Mexico 87185, USA
| | - Martin B Nemer
- Engineering Sciences Center, Sandia National Laboratories, P.O. Box 5800, MS 0346, Albuquerque, New Mexico 87185, USA
| | - Rekha R Rao
- Engineering Sciences Center, Sandia National Laboratories, P.O. Box 5800, MS 0346, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
18
|
Numerical Investigation of Cell Encapsulation for Multiplexing Diagnostic Assays Using Novel Centrifugal Microfluidic Emulsification and Separation Platform. MICROMACHINES 2016; 7:mi7020017. [PMID: 30407391 PMCID: PMC6190305 DOI: 10.3390/mi7020017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
In the present paper, we report a novel centrifugal microfluidic platform for emulsification and separation. Our design enables encapsulation and incubation of multiple types of cells by droplets, which can be generated at controlled high rotation speed modifying the transition between dripping-to-jetting regimes. The droplets can be separated from continuous phase using facile bifurcated junction design. A three dimensional (3D) model was established to investigate the formation and sedimentation of droplets using the centrifugal microfluidic platform by computational fluid dynamics (CFD). The simulation results were compared to the reported experiments in terms of droplet shape and size to validate the accuracy of the model. The influence of the grid resolution was investigated and quantified. The physics associated with droplet formation and sedimentation is governed by the Bond number and Rossby number, respectively. Our investigation provides insight into the design criteria that can be used to establish centrifugal microfluidic platforms tailored to potential applications, such as multiplexing diagnostic assays, due to the unique capabilities of the device in handling multiple types of cells and biosamples with high throughput. This work can inspire new development of cell encapsulation and separation applications by centrifugal microfluidic technology.
Collapse
|
19
|
Wang Y, Li Y, Thérien-Aubin H, Ma J, Zandstra PW, Kumacheva E. Two-dimensional arrays of cell-laden polymer hydrogel modules. BIOMICROFLUIDICS 2016; 10:014110. [PMID: 26858822 PMCID: PMC4723409 DOI: 10.1063/1.4940430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 05/05/2023]
Abstract
Microscale technologies offer the capability to generate in vitro artificial cellular microenvironments that recapitulate the spatial, biochemical, and biophysical characteristics of the native extracellular matrices and enable systematic, quantitative, and high-throughput studies of cell fate in their respective environments. We developed a microfluidic platform for the generation of two-dimensional arrays of micrometer-size cell-laden hydrogel modules (HMs) for cell encapsulation and culture. Fibroblast cells (NIH 3T3) and non-adherent T cells (EL4) encapsulated in HMs showed high viability and proliferation. The platform was used for real-time studies of the effect of spatial constraints and structural and mechanical properties of HMs on cell growth, both on the level of individual cells. Due to the large number of cell-laden HMs and stochastic cell distribution, cell studies were conducted in a time- and labor efficient manner. The platform has a broad range of applications in the exploration of the role of chemical and biophysical cues on individual cells, studies of in vitro cell migration, and the examination of cell-extracellular matrix and cell-cell interactions.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Yunfeng Li
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | | | - Jennifer Ma
- Institute of Biomaterials & Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
20
|
|
21
|
Nemer MB, Roberts CC, Hughes LG, Wyatt NB, Brooks CF, Rao R. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor. AIChE J 2014. [DOI: 10.1002/aic.14510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | - Rekha Rao
- Sandia National Laboratories; Albuquerque NM 87123
| |
Collapse
|
22
|
Nunes JK, Tsai SSH, Wan J, Stone HA. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2013; 46:114002. [PMID: 23626378 PMCID: PMC3634598 DOI: 10.1088/0022-3727/46/11/114002] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers.
Collapse
Affiliation(s)
- J K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| | - S S H Tsai
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| | - J Wan
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - H A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
23
|
Thompson CS, Abate AR. Adhesive-based bonding technique for PDMS microfluidic devices. LAB ON A CHIP 2013; 13:632-5. [PMID: 23282717 DOI: 10.1039/c2lc40978j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a simple and inexpensive technique for bonding PDMS microfluidic devices. The technique uses only adhesive tape and an oven; plasma bonders and cleanroom facilities are not required. It also produces channels that are immediately hydrophobic, allowing formation of aqueous-in-oil emulsions.
Collapse
Affiliation(s)
- C Shea Thompson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
24
|
Poly(triallyl isocyanurate–co-ethylene dimethacrylate–co-alkyl methacrylate) stationary phases in the chromatographic separation of hydrophilic solutes. J Chromatogr A 2013; 1272:65-72. [DOI: 10.1016/j.chroma.2012.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 11/23/2022]
|