1
|
Zhao Q, Li S, Krall L, Li Q, Sun R, Yin Y, Fu J, Zhang X, Wang Y, Yang M. Deciphering cellular complexity: advances and future directions in single-cell protein analysis. Front Bioeng Biotechnol 2025; 12:1507460. [PMID: 39877263 PMCID: PMC11772399 DOI: 10.3389/fbioe.2024.1507460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Single-cell protein analysis has emerged as a powerful tool for understanding cellular heterogeneity and deciphering the complex mechanisms governing cellular function and fate. This review provides a comprehensive examination of the latest methodologies, including sophisticated cell isolation techniques (Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting (MACS), Laser Capture Microdissection (LCM), manual cell picking, and microfluidics) and advanced approaches for protein profiling and protein-protein interaction analysis. The unique strengths, limitations, and opportunities of each method are discussed, along with their contributions to unraveling gene regulatory networks, cellular states, and disease mechanisms. The importance of data analysis and computational methods in extracting meaningful biological insights from the complex data generated by these technologies is also highlighted. By discussing recent progress, technological innovations, and potential future directions, this review emphasizes the critical role of single-cell protein analysis in advancing life science research and its promising applications in precision medicine, biomarker discovery, and targeted therapeutics. Deciphering cellular complexity at the single-cell level holds immense potential for transforming our understanding of biological processes and ultimately improving human health.
Collapse
Affiliation(s)
- Qirui Zhao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Shan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qianyu Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Rongyuan Sun
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuqi Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyi Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yonghua Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel) 2023; 15:4164. [PMID: 37627192 PMCID: PMC10452610 DOI: 10.3390/cancers15164164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling undertaken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics, transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby enriching the field of personalized medicine in breast cancer. The comparison between traditional and single-cell transcriptomics has identified unique gene expression patterns and facilitated the understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer subtypes by illuminating intricate protein expression patterns and their post-translational modifications. The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex dynamics of protein regulation and interaction. Despite these advancements, this review underscores the need for a holistic integration of multiple 'omics' strategies to fully decipher breast cancer heterogeneity. Such integration not only ensures a comprehensive understanding of breast cancer's molecular complexities, but also promotes the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, China;
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
3
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
4
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Liu L, Chen D, Wang J, Chen J. Advances of Single-Cell Protein Analysis. Cells 2020; 9:E1271. [PMID: 32443882 PMCID: PMC7290353 DOI: 10.3390/cells9051271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Proteins play a significant role in the key activities of cells. Single-cell protein analysis provides crucial insights in studying cellular heterogeneities. However, the low abundance and enormous complexity of the proteome posit challenges in analyzing protein expressions at the single-cell level. This review summarizes recent advances of various approaches to single-cell protein analysis. We begin by discussing conventional characterization approaches, including fluorescence flow cytometry, mass cytometry, enzyme-linked immunospot assay, and capillary electrophoresis. We then detail the landmark advances of microfluidic approaches for analyzing single-cell protein expressions, including microfluidic fluorescent flow cytometry, droplet-based microfluidics, microwell-based assay (microengraving), microchamber-based assay (barcoding microchips), and single-cell Western blotting, among which the advantages and limitations are compared. Looking forward, we discuss future research opportunities and challenges for multiplexity, analyte, throughput, and sensitivity of the microfluidic approaches, which we believe will prompt the research of single-cell proteins such as the molecular mechanism of cell biology, as well as the clinical applications for tumor treatment and drug development.
Collapse
Affiliation(s)
- Lixing Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Microchannel Fabrication in Fused Quartz by Backside Laser-Induced Plasma Ablation Using 248 nm KrF Excimer Laser. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Laser-induced plasma ablation (LIPA) using a 248 nm KrF excimer laser was investigated for microchannel fabrication. Examination of the morphology in relation to ablation performance was emphasized, and a synthetic LIPA mechanism model was proposed based on the results. Backside LIPA with a metal target on the bottom can be attributed to a combination of two phenomena: laser-induced plasma vaporization thermal ablation from the metal target below and enhanced laser–glass direct interaction from the plasma residuum. The laser absorption enhancement of quartz substrate resulting from the metal residuum was validated clearly using absorption spectrum measurements. The influence of laser parameters on the etching quality during LIPA was also analyzed for processing optimization. Finally, fused quartz glass microchannels of outstanding surface quality and dimension uniformity were implemented. The channel depth was 28 μm, and the bottom surface roughness was better than several hundred nanometers.
Collapse
|
7
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
8
|
Chen P, Chen D, Li S, Ou X, Liu BF. Microfluidics towards single cell resolution protein analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
High-Content Quantification of Single-Cell Immune Dynamics. Cell Rep 2016; 15:411-22. [PMID: 27050527 PMCID: PMC4835544 DOI: 10.1016/j.celrep.2016.03.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Cells receive time-varying signals from the environment and generate functional responses by secreting their own signaling molecules. Characterizing dynamic input-output relationships in single cells is crucial for understanding and modeling cellular systems. We developed an automated microfluidic system that delivers precisely defined dynamical inputs to individual living cells and simultaneously measures key immune parameters dynamically. Our system combines nanoliter immunoassays, microfluidic input generation, and time-lapse microscopy, enabling study of previously untestable aspects of immunity by measuring time-dependent cytokine secretion and transcription factor activity from single cells stimulated with dynamic inflammatory inputs. Employing this system to analyze macrophage signal processing under pathogen inputs, we found that the dynamics of TNF secretion are highly heterogeneous and surprisingly uncorrelated with the dynamics of NF-κB, the transcription factor controlling TNF production. Computational modeling of the LPS/TLR4 pathway shows that post-transcriptional regulation by TRIF is a key determinant of noisy and uncorrelated TNF secretion dynamics in single macrophages. Dynamic stimulation of single immune cells with a versatile microfluidic device Coupled longitudinal measurements of NF-κB localization and TNF secretion on the same cell Single-cell harvesting, staining, and mRNA quantification on the same device High-content dataset, and modeling of TRIF-based noise in TNF secretion
Collapse
|
10
|
Iranmanesh I, Ramachandraiah H, Russom A, Wiklund M. On-chip ultrasonic sample preparation for cell based assays. RSC Adv 2015. [DOI: 10.1039/c5ra16865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate pre-alignment, size-based separation, isolation, trapping, up-concentration and fluorescence monitoring of cells in a sequence by the use of a multi-step, three-transducer acoustophoresis chip designed for cellular sample preparation.
Collapse
Affiliation(s)
- Ida Iranmanesh
- Department of Applied Physics
- Albanova
- KTH Royal Institute of Technology
- SE-106 91 Stockholm
- Sweden
| | - Harisha Ramachandraiah
- Division of Proteomics and Nanobiotechnology
- Science for Life Laboratory
- KTH Royal Institute of Technology
- SE-171 21 Solna
- Sweden
| | - Aman Russom
- Division of Proteomics and Nanobiotechnology
- Science for Life Laboratory
- KTH Royal Institute of Technology
- SE-171 21 Solna
- Sweden
| | - Martin Wiklund
- Department of Applied Physics
- Albanova
- KTH Royal Institute of Technology
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
11
|
Abstract
Flow-cytometric (FC) detection of proteins in single cells is a rapid, quantitative method for single-cell protein analysis. Recent advancements in microfluidic technologies have leveraged miniaturization and automation to adapt flow cytometry for analyzing single cell protein profiles both for cell surface and intracellular proteins. Here, we describe the method for microfluidic FC, along with instructions to build a microfluidic platform capable of automated cell culture, cell surface receptor immunostaining, intracellular phosphoprotein and intracellular cytokine immunostaining, and analysis using micro-flow cytometry. As a demonstration of our platform and protocol, we detail the profiling of TLR4 receptor activation, ERK1/2 phosphorylation, and TNFα production in LPS stimulated macrophages using the microfluidic platform.
Collapse
Affiliation(s)
- Meiye Wu
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA
| | - Anup K Singh
- Biological Science and Technology, Sandia National Laboratories, 969, MS 9292, 7011 East Avenue, Livermore, CA, 94551-0969, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
12
|
Wu M, Singh AK. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and posttranslational modifications at single-cell resolution. ACTA ACUST UNITED AC 2014; 19:587-92. [PMID: 25027027 DOI: 10.1177/2211068214542247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation of a kinase cascade that culminates in induction of messenger RNA (mRNA) and noncoding microRNA (miRNA) production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient posttranslational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for posttranslational modifications. Since we know that cells in populations behave heterogeneously,(1) especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell's physiological state. In this Technology Brief, we describe our automated microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and posttranslational modifications in single intact cells with >95% reduction in reagent requirement in under 8 h.
Collapse
Affiliation(s)
- Meiye Wu
- Sandia National Laboratory, Livermore, CA, USA
| | | |
Collapse
|
13
|
Adutler-Lieber S, Zaretsky I, Platzman I, Deeg J, Friedman N, Spatz JP, Geiger B. Engineering of synthetic cellular microenvironments: implications for immunity. J Autoimmun 2014; 54:100-11. [PMID: 24951031 DOI: 10.1016/j.jaut.2014.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.
Collapse
Affiliation(s)
- Shimrit Adutler-Lieber
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Ilia Platzman
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Janosch Deeg
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Joachim P Spatz
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Castro-López V, Elizalde J, Pacek M, Hijona E, Bujanda L. A simple and portable device for the quantification of TNF-α in human plasma by means of on-chip magnetic bead-based proximity ligation assay. Biosens Bioelectron 2014; 54:499-505. [PMID: 24316452 DOI: 10.1016/j.bios.2013.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 02/02/2023]
Abstract
There is a general need in healthcare systems all around the world to reduce costs in terms of time and money without compromising patients outcome. Point-of-Care Testing (POCT) is currently being used in some applications (e.g. POC coagulation devices) as an alternative to already established standard central laboratory tests to overcome sample transportation and long turnaround times. The main objective of this investigation was to quantify Tumour Necrosis Factor-alpha (TNF-α) on-chip within the clinical relevant range of 5-100 pg/mL in human pooled plasma. The novel solid-phase assay developed in this study was a magnetic bead-based proximity ligation assay (PLA) in which one of the assay proximity probes was directly immobilised onto streptavidin-coated magnetic beads. The portable device was based on a disposable and single-use cyclo-olefin polymer (COP) microfluidic chip interfaced with a quantitative real-time polymerase chain reaction (qPCR) device previously developed in-house. Sample volume was 10 µL and total assay time under 3 h. The POC device and assay developed offer portability, smaller reagent and sample consumption, and faster time-to-results compared with standard ELISAs. Determination and monitoring of TNF-α therapy at the point-of-care will help to improve clinical and/or economical outcome in governmental healthcare budgets.
Collapse
Affiliation(s)
| | - Jorge Elizalde
- CIC microGUNE, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa, Spain; IK4-Ikerlan, P(o) JMª Arizmendiarrieta 2, 20500 Arrasate-Mondragón, Gipuzkoa, Spain
| | - Marcin Pacek
- POC Microsolutions, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa, Spain
| | - Elizabeth Hijona
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| |
Collapse
|
15
|
Junkin M, Tay S. Microfluidic single-cell analysis for systems immunology. LAB ON A CHIP 2014; 14:1246-60. [PMID: 24503696 DOI: 10.1039/c3lc51182k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland.
| | | |
Collapse
|
16
|
Wilson JL, Suri S, Singh A, Rivet CA, Lu H, McDevitt TC. Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomed Microdevices 2014; 16:79-90. [PMID: 24085533 PMCID: PMC3945678 DOI: 10.1007/s10544-013-9807-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The differentiation of pluripotent stem cells as embryoid bodies (EBs) remains a common method for inducing differentiation toward many lineages. However, differentiation via EBs typically yields a significant amount of heterogeneity in the cell population, as most cells differentiate simultaneously toward different lineages, while others remain undifferentiated. Moreover, physical parameters, such as the size of EBs, can modulate the heterogeneity of differentiated phenotypes due to the establishment of nutrient and oxygen gradients. One of the challenges in examining the cellular composition of EBs is the lack of analytical methods that are capable of determining the phenotype of all of the individual cells that comprise a single EB. Therefore, the objective of this work was to examine the ability of a microfluidic cell trapping array to analyze the heterogeneity of cells comprising EBs during the course of early differentiation. The heterogeneity of single cell phenotype on the basis of protein expression of the pluripotent transcription factor OCT-4 was examined for populations of EBs and single EBs of different sizes at distinct stages of differentiation. Results from the cell trap device were compared with flow cytometry and whole mount immunostaining. Additionally, single cells from dissociated pooled EBs or individual EBs were examined separately to discern potential differences in the value or variance of expression between the different methods of analysis. Overall, the analytical method described represents a novel approach for evaluating how heterogeneity is manifested in EB cultures and may be used in the future to assess the kinetics and patterns of differentiation in addition to the loss of pluripotency.
Collapse
Affiliation(s)
- Jenna L. Wilson
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shalu Suri
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ankur Singh
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Catherine A. Rivet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Wu M, Piccini ME, Singh AK. MiRNA detection at single-cell resolution using microfluidic LNA flow-FISH. Methods Mol Biol 2014; 1211:245-260. [PMID: 25218391 DOI: 10.1007/978-1-4939-1459-3_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Flow cytometry in combination with fluorescent in situ hybridization (flow-FISH) is a powerful technique that can be utilized to rapidly detect nucleic acids at single-cell resolution without the need for homogenization or nucleic acid extraction. Here, we describe a microfluidic-based method which enables the detection of microRNAs or miRNAs in single intact cells by flow-FISH using locked nucleic acid (LNA)-containing probes. Our method can be applied to all RNA species including mRNA and small noncoding RNA and is suitable for multiplexing with protein immunostaining in the same cell. For demonstration of our method, this chapter details the detection of miR155 and CD69 protein in PMA and ionomycin-stimulated Jurkat cells. We also include instructions on how to set up a microfluidic chip sample preparation station to prepare cells for imaging and analysis on a commercial flow cytometer or a custom-built micro-flow cytometer.
Collapse
Affiliation(s)
- Meiye Wu
- Biological Science and Technology, Sandia National Laboratories, MS 9292, 969, Livermore, CA, 94551-0969, USA
| | | | | |
Collapse
|
18
|
|
19
|
Sinha A, Jebrail MJ, Kim H, Patel KD, Branda SS. A versatile automated platform for micro-scale cell stimulation experiments. J Vis Exp 2013. [PMID: 23962881 DOI: 10.3791/50597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥ 10(5)) in milliliter-scale volumes (≥ 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100-2,000 cells) in micro-scale volumes (1-20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of laboratories and applications, and prove especially useful in facilitating analysis of cells and stimuli that are available in only limited quantities.
Collapse
Affiliation(s)
- Anupama Sinha
- Department of Systems Biology, Sandia National Laboratories, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Elucidation of the heterogeneity of cells is a challenging task due to the lack of efficient analytical tools to make measurements with single-cell resolution. Microfluidics has emerged as a powerful platform for single-cell analysis with the ability to manipulate small volume and integrate multiple sample preparation steps into one device. In this review, we discuss the differentiating advantages of microfluidic platforms that have been demonstrated for single-cell protein analysis.
Collapse
Affiliation(s)
- Yanli Liu
- 1Sandia National Laboratories, Livermore, CA, USA
| | | |
Collapse
|
21
|
Liu Y, Barua D, Liu P, Wilson BS, Oliver JM, Hlavacek WS, Singh AK. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform. PLoS One 2013; 8:e60159. [PMID: 23544131 PMCID: PMC3609784 DOI: 10.1371/journal.pone.0060159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.
Collapse
Affiliation(s)
- Yanli Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Peng Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Bridget S. Wilson
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Janet M. Oliver
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anup K. Singh
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wu M, Piccini M, Koh CY, Lam KS, Singh AK. Single cell microRNA analysis using microfluidic flow cytometry. PLoS One 2013; 8:e55044. [PMID: 23383050 PMCID: PMC3559333 DOI: 10.1371/journal.pone.0055044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that have cell type and cell context-dependent expression and function. To study miRNAs at single-cell resolution, we have developed a novel microfluidic approach, where flow fluorescent in situ hybridization (flow-FISH) using locked-nucleic acid probes is combined with rolling circle amplification to detect the presence and localization of miRNA. Furthermore, our flow cytometry approach allows analysis of gene-products potentially targeted by miRNA together with the miRNA in the same cells. We demonstrate simultaneous measurement of miR155 and CD69 in 12-O-tetradecanoylphorbol 13-acetate (PMA) and Ionomycin stimulated Jurkat cells. The flow-FISH method can be completed in ∼10 h, utilizes only 170 nL of reagent per experimental condition, and is the first to directly detect miRNA in single cells using flow cytometry.
Collapse
Affiliation(s)
- Meiye Wu
- Department of Biotechnology and Bioengineering, Sandia National Laboratory, Livermore, CA, USA
| | | | | | | | | |
Collapse
|
23
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
24
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|