1
|
Ghassemi P, Ren X, Foster BM, Kerr BA, Agah M. Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry. Biosens Bioelectron 2020; 150:111868. [PMID: 31767345 PMCID: PMC6957725 DOI: 10.1016/j.bios.2019.111868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Circulating tumor cells (CTCs) in blood can provide valuable information when detecting, diagnosing, and monitoring cancer. This paper describes a system that consists of a constriction-based microfluidic sensor with embedded electrodes that can detect and enumerate cancer cells in blood. The biosensor measures impedance in terms of magnitude and phase at multiple frequencies as cells transit through the constriction channel. Cancer cells deform as they move through while blood cells remain intact, thus generating differential impedance profiles that can be used for detecting and counting CTCs. Two versions of this device are reported, one where the electrodes are embedded into the disposable microfluidic channel, and the other in which the disposable chip is externally fixed to a reusable substrate housing the electrodes. Both configurations were tested by spiking breast or prostate cancer cells into murine blood, and both detected all tumor cells passing through the narrow channels while being able to differentiate between the two cell lines. The chip in its current format has a throughput of 1 μL/min. While the throughput is scalable by integrating more constriction channels in parallel, the presented assay is intended for post-enrichment label-free enumeration and characterization of CTCs.
Collapse
Affiliation(s)
- Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
2
|
Feng Y, Huang L, Zhao P, Liang F, Wang W. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Anal Chem 2019; 91:15204-15212. [PMID: 31702127 DOI: 10.1021/acs.analchem.9b04083] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single-cell impedance measurement is a label-free, noninvasive method for characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electric impedance flow cytometry (IFC) and electric impedance spectroscopy (EIS) are used alone for most microfluidic chips. In this paper, we present a microfluidic device combining the IFC and EIS techniques for single-cell electrical property measurement. The device uses hydrodynamic constriction to passively trap single cells and uses coplanar electrodes to obtain the impedance spectrum of the trapped cell via EIS and discrete impedance data points of the passing cells via IFC. Through experiment, we verified the individual functionality of IFC and EIS respectively, by revealing through IFC the impedance magnitude difference and quantifying through EIS the area-specific membrane capacitance and cytoplasm conductivity of the three types of cancer cells. We also demonstrated the complementarity of IFC and EIS, which holds for a wide range of the flow rate. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhancing the efficiency of electrical property measurement for single cells.
Collapse
Affiliation(s)
- Yongxiang Feng
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Liang Huang
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei , China
| | - Peng Zhao
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Fei Liang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Wenhui Wang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| |
Collapse
|
3
|
Shi HW, Zhao W, Liu Z, Liu XC, Xu JJ, Chen HY. Temporal Sensing Platform Based on Bipolar Electrode for the Ultrasensitive Detection of Cancer Cells. Anal Chem 2016; 88:8795-801. [DOI: 10.1021/acs.analchem.6b02204] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hai-Wei Shi
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Cheng Liu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Zhao W, Wang B, Wang W. Biochemical sensing by nanofluidic crystal in a confined space. LAB ON A CHIP 2016; 16:2050-2058. [PMID: 27098158 DOI: 10.1039/c6lc00416d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrokinetics at nanoscale has attracted broad attention as a promising conductivity based biochemical sensing principle with a good selectivity. The nanoparticle crystal, formed by self-assembling nanoparticles inside a microstructure, has been utilized to fulfill a nanoscale electrokinetics based biochemical sensing platform, named nanofluidic crystal in our previous works. This paper introduces a novel nanofluidic crystal scheme by packing nanoparticles inside a well-designed confined space to improve the device-to-device readout consistency. A pair of electrodes was patterned at the bottom of this tunnel-shaped confined space for ionic current recording. The readout from different chips (n = 16) varied within 8.4% under the same conditions, which guaranteed a self-calibration-free biochemical sensing. Biotin and Pb(2+) were successfully detected by using nanofluidic crystal devices packed with streptavidin and DNAzyme modified nanoparticles, respectively. The limits of detection (LODs) were both 1 nM. This electrically readable nanofluidic crystal sensing approach may find applications in low cost and fast disease screening in limited resource environments.
Collapse
Affiliation(s)
- Wenda Zhao
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Baojun Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China. and National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China and Innovation Center for Micro-Nano-electronics and Integrated System, Beijing, 100871, China
| |
Collapse
|
5
|
Riquelme MV, Zhao H, Srinivasaraghavan V, Pruden A, Vikesland P, Agah M. Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Srinivasaraghavan V, Strobl J, Agah M. Microelectrode bioimpedance analysis distinguishes basal and claudin-low subtypes of triple negative breast cancer cells. Biomed Microdevices 2016. [PMID: 26216474 DOI: 10.1007/s10544-015-9977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is highly aggressive and has a poor prognosis when compared to other molecular subtypes. In particular, the claudin-low subtype of TNBC exhibits tumor-initiating/cancer stem cell like properties. Here, we seek to find new biomarkers to discriminate different forms of TNBC by characterizing their bioimpedance. A customized bioimpedance sensor with four identical branched microelectrodes with branch widths adjusted to accommodate spreading of individual cells was fabricated on silicon and pyrex/glass substrates. Cell analyses were performed on the silicon devices which showed somewhat improved inter-electrode and intra-device reliability. We performed detailed analysis of the bioimpedance spectra of four TNBC cell lines, comparing the peak magnitude, peak frequency and peak phase angle between claudin-low TNBC subtype represented by MDA-MB-231 and Hs578T with that of two basal cells types, the TNBC MDA-MB-468, and an immortalized non-malignant basal breast cell line, MCF-10A. The claudin-low TNBC cell lines showed significantly higher peak frequencies and peak phase angles than the properties might be useful in distinguishing the clinically significant claudin-low subtype of TNBC.
Collapse
Affiliation(s)
- Vaishnavi Srinivasaraghavan
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, 302, Whittemore Hall, Blacksburg, VA, 24061, USA,
| | | | | |
Collapse
|
7
|
Rothbauer M, Praisler I, Docter D, Stauber RH, Ertl P. Microfluidic Impedimetric Cell Regeneration Assay to Monitor the Enhanced Cytotoxic Effect of Nanomaterial Perfusion. BIOSENSORS 2015; 5:736-49. [PMID: 26633532 PMCID: PMC4697142 DOI: 10.3390/bios5040736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022]
Abstract
In the last decade, the application of nanomaterials (NMs) in technical products and biomedicine has become a rapidly increasing market trend. As the safety and efficacy of NMs are of utmost importance, new methods are needed to study the dynamic interactions of NMs at the nano-biointerface. However, evaluation of NMs based on standard and static cell culture end-point detection methods does not provide information on the dynamics of living biological systems, which is crucial for the understanding of physiological responses. To bridge this technological gap, we here present a microfluidic cell culture system containing embedded impedance microsensors to continuously and non-invasively monitor the effects of NMs on adherent cells under varying flow conditions. As a model, the impact of silica NMs on the vitality and regenerative capacity of human lung cells after acute and chronic exposure scenarios was studied over an 18-h period following a four-hour NM treatment. Results of the study demonstrated that the developed system is applicable to reliably analyze the consequences of dynamic NM exposure to physiological cell barriers in both nanotoxicology and nanomedicine.
Collapse
Affiliation(s)
- Mario Rothbauer
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, 1190 Vienna, Austria.
| | - Irene Praisler
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, 1190 Vienna, Austria.
| | - Dominic Docter
- Molecular and Cellular Oncology, ENT/University Medical Center Mainz, 55116 Mainz, Germany.
| | - Roland H Stauber
- Molecular and Cellular Oncology, ENT/University Medical Center Mainz, 55116 Mainz, Germany.
| | - Peter Ertl
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Abdolahad M, Shashaani H, Janmaleki M, Mohajerzadeh S. Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging. Biosens Bioelectron 2014; 59:151-9. [DOI: 10.1016/j.bios.2014.02.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/29/2022]
|
9
|
A comparative study of nano-scale coatings on gold electrodes for bioimpedance studies of breast cancer cells. Biomed Microdevices 2014; 16:689-96. [DOI: 10.1007/s10544-014-9873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Liu Q, Lu Y, Wang H, Zhou J, Zhang Y, Chen Q, Luo S, Li R, Wang P. Impedance Detection and Modeling of Chemotherapeutic Agents by a Cancer Cell-Based Biosensor. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.867498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Charwat V, Rothbauer M, Tedde SF, Hayden O, Bosch JJ, Muellner P, Hainberger R, Ertl P. Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip. Anal Chem 2013; 85:11471-8. [PMID: 24215610 DOI: 10.1021/ac4033406] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A complementary cell analysis method has been developed to assess the dynamic interactions of tumor cells with resident tissue and immune cells using optical light scattering and impedance sensing to shed light on tumor cell behavior. The combination of electroanalytical and optical biosensing technologies integrated in a lab-on-a-chip allows for continuous, label-free, and noninvasive probing of dynamic cell-to-cell interactions between adherent and nonadherent cocultures, thus providing real-time insights into tumor cell responses under physiologically relevant conditions. While the study of adherent cocultures is important for the understanding and suppression of metastatic invasion, the analysis of tumor cell interactions with nonadherent immune cells plays a vital role in cancer immunotherapy research. For the first time, the direct cell-to-cell interactions of tumor cells with bead-activated primary T cells were continuously assessed using an effector cell to target a cell ratio of 10:1.
Collapse
Affiliation(s)
- Verena Charwat
- AIT Austrian Institute of Technology GmbH , Donau-City Straβe 1, 1220 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nguyen TA, Yin TI, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 2013; 85:11068-76. [PMID: 24117341 DOI: 10.1021/ac402761s] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.
Collapse
Affiliation(s)
- Tien Anh Nguyen
- Department of Microsystems Engineering, IMTEK, University of Freiburg , Georges-Koehler Allee 103, 79110 Freiburg, Germany
| | | | | | | |
Collapse
|
13
|
Du E, Ha S, Diez-Silva M, Dao M, Suresh S, Chandrakasan AP. Electric impedance microflow cytometry for characterization of cell disease states. LAB ON A CHIP 2013; 13:3903-3909. [PMID: 23925122 PMCID: PMC3830000 DOI: 10.1039/c3lc50540e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by the malaria parasite Plasmodium falciparum. Invasion by P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells. We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of P. falciparum infected RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation.
Collapse
Affiliation(s)
- E Du
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sungjae Ha
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Monica Diez-Silva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anantha P. Chandrakasan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|