1
|
Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Protein Sci 2024; 33:e5110. [PMID: 39073183 PMCID: PMC11284329 DOI: 10.1002/pro.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.
Collapse
Affiliation(s)
- Matthew W. Mahoney
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Jonathan Helander
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Anoopjit S. Kooner
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Mariah Norman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Vishnu C. Damalanka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paolo De Bona
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paulina Kasperkiewicz
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Wioletta Rut
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Marcin Poreba
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | | | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaSan DiegoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marcin Drag
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - James W. Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
van Niekerk AA, Maluck S, Mag P, Kővágó C, Kerek Á, Jerzsele Á, Steinmetzer T, Pászti-Gere E. Antiviral Drug Candidate Repositioning for Streptococcus suis Infection in Non-Tumorigenic Cell Models. Biomedicines 2024; 12:783. [PMID: 38672139 PMCID: PMC11048155 DOI: 10.3390/biomedicines12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance against zoonotic bacteria, including Streptococcus (S.) suis, highlights the need for new therapeutical strategies, including the repositioning of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different 3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory concentration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and MI-476, showed excellent antibacterial effects against S. suis. Their drug interaction potential was investigated using human liver microsomal cytochrome P450 (CYP450) measurements. In our work, non-tumorigenic IPEC-J2 cells and primary porcine hepatocytes were infected with S. suis, and the putative beneficial impact of these inhibitors was investigated on cell viability (Neutral red assay), on interleukin (IL)-6 levels (ELISA technique), and on redox balance (Amplex red method). The antibacterial inhibitors prevented S. suis-induced cell death (except MI-432) and decreased proinflammatory IL-6 levels. It was also found that MI-432 and MI-476 had antioxidant effects in an intestinal cell model upon S. suis infection. Concentration-dependent suppression of CYP3A4 function was found via application of all three inhibitors. In conclusion, our study suggests that the potential antiviral Phe(3-Am) derivatives with 2',4' dichloro-biphenyl moieties can be considered as effective drug candidates against S. suis infection due to their antibacterial effects.
Collapse
Affiliation(s)
- Ashley Anzet van Niekerk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Csaba Kővágó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| |
Collapse
|
3
|
van Eijk N, Schmacke LC, Steinmetzer T, Pilgram O, Poór M, Pászti-Gere E. In vitro testing of host-targeting small molecule antiviral matriptase/TMPRSS2 inhibitors in 2D and 3D cell-based assays. Biomed Pharmacother 2023; 168:115761. [PMID: 37865989 DOI: 10.1016/j.biopha.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic strongly stimulated the development of small molecule antivirals selectively targeting type II transmembrane serine proteases (TTSP), required for the host-cell entry of numerous viruses. A set of 3-amidinophenylalanine derivatives (MI-21, MI-472, MI-477, MI-485, MI-1903 and MI-1904), which inhibit the cleavage of certain viral glycoproteins was characterized in 2D and 3D primary human hepatocyte models on collagen- and Matrigel-coating using a CCK-8 assay to evaluate their cytotoxicity, a resorufin-based method to detect redox imbalances, fluorescence and ultrafiltration experiments to evaluate their interactions with human serum albumin (HSA) and α-acidic glycoprotein (AGP), and luminescence measurement to assess CYP3A4 modulation. For elucidation of selectivity of the applied compounds towards matriptase, transmembrane serine protease 2 (TMPRRS2), thrombin and factor Xa (FXa) Ki values were determined. It was proven that cell viability was only deteriorated by inhibitor MI-1903, and redox status was not influenced by administration of the selected inhibitors at 50 µM for 24 h. MI-472 and MI-477 formed relatively stable complexes with AGP. CYP3A4 inhibition was found to be strong in PHHs exposed to all inhibitors with the exception of MI-21, which seems to be a promising drug candidate also due to its better selectivity towards matriptase and TMPRSS2 over the blood clotting proteases thrombin and FXa. Our in vitro pharmacokinetic screening with these inhibitors helps to select the compounds with the best selectivity and safety profile suitable for a further preclinical characterization without animal sacrifice.
Collapse
Affiliation(s)
- Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary.
| |
Collapse
|
4
|
Hammerschmidt SJ, Maus H, Weldert AC, Gütschow M, Kersten C. Improving binding entropy by higher ligand symmetry? - A case study with human matriptase. RSC Med Chem 2023; 14:969-982. [PMID: 37252099 PMCID: PMC10211324 DOI: 10.1039/d3md00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
5
|
N-sulfonyl peptide-hybrids as a new class of dengue virus protease inhibitors. Eur J Med Chem 2023; 251:115227. [PMID: 36893626 DOI: 10.1016/j.ejmech.2023.115227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Dengue virus (DENV) from the Flaviviridae family causes an epidemic disease that seriously threatens human life. The viral serine protease NS2B-NS3 is a promising target for drug development against DENV and other flaviviruses. We here report the design, synthesis, and in-vitro characterization of potent peptidic inhibitors of DENV protease with a sulfonyl moiety as N-terminal cap, thereby creating sulfonamide-peptide hybrids. The in-vitro target affinities of some synthesized compounds were in the nanomolar range, with the most promising derivative reaching a Ki value of 78 nM against DENV-2 protease. The synthesized compounds did not have relevant off-target activity nor cytotoxicity. The metabolic stability of compounds against rat liver microsomes and pancreatic enzymes was remarkable. In general, the integration of sulfonamide moieties at the N-terminus of peptidic inhibitors proved to be a promising and attractive strategy for further drug development against DENV infections.
Collapse
|
6
|
In Vitro Pharmacokinetic Behavior of Antiviral 3-Amidinophenylalanine Derivatives in Rat, Dog and Monkey Hepatocytes. Biomedicines 2023; 11:biomedicines11030682. [PMID: 36979660 PMCID: PMC10045298 DOI: 10.3390/biomedicines11030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Type II transmembrane serine proteases represent pharmacological targets for blocking entry and spread of influenza or coronaviruses. In this study, the depletion rates of the 3-amidinophenylalanine (3-APhA)-derived matriptase/TMPRSS2 inhibitors MI-463, MI-472, MI-485 or MI-1900 were determined by LC-MS/MS measurements over a period of 300 min using suspensions of rat, dog and cynomolgus monkey primary hepatocytes. From these in vitro pharmacokinetic (PK) experiments, intrinsic clearance values (Clint) were evaluated, and in vivo pharmacokinetic parameters (hepatic clearance, hepatic extraction ratio and bioavailability) were predicted. It was found that rat hepatocytes were the most active in the metabolism of 3-APhA derivatives (Clint 31.9–37.8 mL/min/kg), whereas dog and monkey cells displayed somewhat lower clearance of these compounds (Clint 6.6–26.7 mL/min/kg). These data support elucidation of important PK properties of anti-TMPRSS2/anti-matriptase 3-APhAs using mammalian hepatocyte models and thus contribute to the optimization of lead compounds.
Collapse
|
7
|
Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. Eur J Med Chem 2022; 238:114437. [DOI: 10.1016/j.ejmech.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
8
|
Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm Sin B 2022; 12:1591-1623. [PMID: 34249607 PMCID: PMC8260826 DOI: 10.1016/j.apsb.2021.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 virus has caused havoc across the entire world. Even though several COVID-19 vaccines are currently in distribution worldwide, with others in the pipeline, treatment modalities lag behind. Accordingly, researchers have been working hard to understand the nature of the virus, its mutant strains, and the pathogenesis of the disease in order to uncover possible drug targets and effective therapeutic agents. As the research continues, we now know the genome structure, epidemiological and clinical features, and pathogenic mechanism of SARS-CoV-2. Here, we summarized the potential therapeutic targets involved in the life cycle of the virus. On the basis of these targets, small-molecule prophylactic and therapeutic agents have been or are being developed for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanbai Li
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Ruiying Liang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Qinghong Hao
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yaning Gao
- Beijing Pharma and Biotech Center, Beijing 100176, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| |
Collapse
|
9
|
Fedor Z, Szentkirályi-Tóth A, Nagy G, Szimrók Z, Varga E, Pászti A, Pászti Z, Jerzsele Á, Pilgram O, Steinmetzer T, Mátis G, Neogrády Z, Pászti-Gere E. Interspecies Comparisons of the Effects of Potential Antiviral 3-Amidinophenylalanine Derivatives on Cytochrome P450 1A2 Isoenzyme. Vet Sci 2022; 9:vetsci9040156. [PMID: 35448654 PMCID: PMC9027957 DOI: 10.3390/vetsci9040156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
In vitro models of animals vulnerable to SARS-CoV-2 infection can support the characterization of effective antiviral drugs, such as synthetic inhibitors of the transmembrane protease serine 2 (TMPRSS2). Changes in cytochrome P450 (CYP) 1A2 activities in the presence of the potential TMPRSS2/matriptase inhibitors (MI) were measured using fluorometric and luminescent assays. Furthermore, the cytotoxicity of these inhibitors was evaluated using the MTS method. In addition, 60 min-long microsomal stability assays were performed using an UPLC-MS/MS procedure to elucidate depletion rates of the inhibitors. CYP1A2 was influenced significantly by MI-463 and MI-1900 in rat microsomes, by MI-432 and MI-482 in beagle microsomes, and by MI-432, MI-463, MI-482, and MI-1900 in cynomolgus monkey microsomes. The IC50 values in monkey microsomes were 1.30 ± 0.14 µM, 2.4 ± 1.4 µM, 0.21 ± 0.09 µM, and 1.1 ± 0.8 µM for inhibitors MI-432, MI-463, MI-482, and MI-1900, respectively. The depletion rates of the parent compounds were lower than 50%, independently of the investigated animal species. The host cell factor TMPRSS2 is of key importance for the cross-species spread of SARS-CoV-2. Studies of the in vitro biotransformation of TMPRSS2 inhibitors provide additional information for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Zsófia Fedor
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Anna Szentkirályi-Tóth
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Gábor Nagy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Zoltán Szimrók
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Eszter Varga
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Anna Pászti
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Zoltán Pászti
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, 1117 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Oliver Pilgram
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35037 Marburg, Germany; (O.P.); (T.S.)
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35037 Marburg, Germany; (O.P.); (T.S.)
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (G.M.); (Z.N.)
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (G.M.); (Z.N.)
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
- Correspondence:
| |
Collapse
|
10
|
Phuong Vu L, Zyulina M, Hingst A, Schnakenburg G, Gütschow M. Combinatorial Assembly, Traceless Generation and In Situ Evaluation of Inhibitors for Therapeutically Relevant Serine Proteases. Bioorg Chem 2022; 121:105676. [DOI: 10.1016/j.bioorg.2022.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
11
|
Pászti-Gere E, Szentkirályi A, Fedor Z, Nagy G, Szimrók Z, Pászti Z, Pászti A, Pilgram O, Steinmetzer T, Bodnárová S, Fliszár-Nyúl E, Poór M. In vitro interaction of potential antiviral TMPRSS2 inhibitors with human serum albumin and cytochrome P 450 isoenzymes. Biomed Pharmacother 2022; 146:112513. [PMID: 34915414 PMCID: PMC8668183 DOI: 10.1016/j.biopha.2021.112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023] Open
Abstract
The interactions of four sulfonylated Phe(3-Am)-derived inhibitors (MI-432, MI-463, MI-482 and MI-1900) of type II transmembrane serine proteases (TTSP) such as transmembrane protease serine 2 (TMPRSS2) were examined with serum albumin and cytochrome P450 (CYP) isoenzymes. Complex formation with albumin was investigated using fluorescence spectroscopy. Furthermore, microsomal hepatic CYP1A2, 2C9, 2C19 and 3A4 activities in presence of these inhibitors were determined using fluorometric assays. The inhibitory effects of these compounds on human recombinant CYP3A4 enzyme were also examined. In addition, microsomal stability assays (60-min long) were performed using an UPLC-MS/MS method to determine depletion percentage values of each compound. The inhibitors showed no or only weak interactions with albumin, and did not inhibit CYP1A2, 2C9 and 2C19. However, the compounds tested proved to be potent inhibitors of CYP3A4 in both assays performed. Within one hour, 20%, 12%, 14% and 25% of inhibitors MI-432, MI-463, MI-482 and MI-1900, respectively, were degraded. As essential host cell factor for the replication of the pandemic SARS-CoV-2, the TTSP TMPRSS2 emerged as an important target in drug design. Our study provides further preclinical data on the characterization of this type of inhibitors for numerous trypsin-like serine proteases.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary.
| | - Anna Szentkirályi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Zsófia Fedor
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Gábor Nagy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Zoltán Szimrók
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Zoltán Pászti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Anna Pászti
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary,Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary,Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
12
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
13
|
A facile approach towards amidinophenylalanine derivatives as building blocks for the synthesis of non-natural peptides and peptidomimetics. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Müller P, Maus H, Hammerschmidt SJ, Knaff P, Mailänder V, Schirmeister T, Kersten C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr Med Chem 2021; 29:635-665. [PMID: 34042026 DOI: 10.2174/0929867328666210526111318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
Collapse
Affiliation(s)
- Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Philip Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
15
|
The Effects of Matriptase Inhibition on the Inflammatory and Redox Homeostasis of Chicken Hepatic Cell Culture Models. Biomedicines 2021; 9:biomedicines9050450. [PMID: 33919461 PMCID: PMC8143509 DOI: 10.3390/biomedicines9050450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
The function of the transmembrane serine protease matriptase is well described in mammals, but it has not been elucidated in avian species yet. Hence, the aim of the present study was to assess the effects of the 3-amidinophenylalanine (3-AphA)-type matriptase inhibitors MI432 and MI460 on the inflammatory and oxidative state of chicken primary hepatocyte mono-cultures and hepatocyte-nonparenchymal cell co-cultures, the latter serving as a proper model of hepatic inflammation in birds. Cell cultures were exposed to MI432 and MI460 for 4 and 24 h at 10, 25, and 50 µM concentrations, and thereafter the cellular metabolic activity, extracellular interleukin (IL-)6, IL-8, H2O2 and malondialdehyde concentrations were monitored. Both inhibitors caused a transient moderate reduction in the metabolic activity following 4 h exposure, which was restored after 24 h, reflecting the fast hepatic adaptation potential to matriptase inhibitor administration. Furthermore, MI432 triggered an intense elevation in the cellular proinflammatory IL-6 and IL-8 production after both incubation times in all concentrations, which was not coupled to enhanced oxidative stress and lipid peroxidation based on unchanged H2O2 production, malondialdehyde levels and glutathione peroxidase activity. These data suggest that physiological matriptase activities might have a key function in retaining the metabolic and inflammatory homeostasis of the liver in chicken, without being a major modulator of the hepatocellular redox state.
Collapse
|
16
|
Pászti-Gere E, Pomothy J, Jerzsele Á, Pilgram O, Steinmetzer T. Exposure of human intestinal epithelial cells and primary human hepatocytes to trypsin-like serine protease inhibitors with potential antiviral effect. J Enzyme Inhib Med Chem 2021; 36:659-668. [PMID: 33641565 PMCID: PMC7928042 DOI: 10.1080/14756366.2021.1886093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 μM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 μM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 μM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Judit Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Oliver Pilgram
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
17
|
Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3:3/9/e202000786. [PMID: 32703818 PMCID: PMC7383062 DOI: 10.26508/lsa.202000786] [Citation(s) in RCA: 577] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.
Collapse
Affiliation(s)
- Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Hannah Limburg
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Hong Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | | | - Wolfgang Garten
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | | |
Collapse
|
18
|
Harbig A, Mernberger M, Bittel L, Pleschka S, Schughart K, Steinmetzer T, Stiewe T, Nist A, Böttcher-Friebertshäuser E. Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airways. J Biol Chem 2020; 295:11388-11407. [PMID: 32303635 DOI: 10.1074/jbc.ra120.012635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.
Collapse
Affiliation(s)
- Anne Harbig
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany
| | - Linda Bittel
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, 35390 Giessen, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,University of Veterinary Medicine Hannover, 30559 Hannover, Germany.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany.,Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | | |
Collapse
|
19
|
Zuo K, Qi Y, Yuan C, Jiang L, Xu P, Hu J, Huang M, Li J. Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer Metastasis Rev 2020; 38:507-524. [PMID: 31471691 DOI: 10.1007/s10555-019-09802-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matriptase is a type II transmembrane serine protease, which has been suggested to play critical roles in numerous pathways of biological developments. Matriptase is the activator of several oncogenic proteins, including urokinase-type plasminogen activator (uPA), hepatocyte growth factor (HGF) and protease-activated receptor 2 (PAR-2). The activations of these matriptase substrates subsequently lead to the generation of plasmin, matrix metalloproteases (MMPs), and the triggers for many other signaling pathways related to cancer proliferation and metastasis. Accordingly, matriptase is considered an emerging target for the treatments of cancer. Thus far, inhibitors of matriptase have been developed as potential anti-cancer agents, which include small-molecule inhibitors, peptide-based inhibitors, and monoclonal antibodies. This review covers established literature to summarize the chemical and biochemical aspects, especially the inhibitory mechanisms and structure-activity relationships (SARs) of matriptase inhibitors with the goal of proposing the strategies for their future developments in anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Zuo
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Yingying Qi
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, People's Republic of China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Pászti-Gere E, Szombath G, Gütschow M, Steinmetzer T, Székács A. 3-Amidinophenylalanine-derived matriptase inhibitors can modulate hepcidin production in vitro. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:511-520. [PMID: 31659405 PMCID: PMC7280348 DOI: 10.1007/s00210-019-01743-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Matriptase-2 (MT-2) is a type II transmembrane serine protease and predominantly attached to the surface of hepatocytes. MT-2 decreases the production of hepcidin, a key regulator of iron homeostasis. In this study, the effects of four 3-amidinophenylalanine-derived combined matriptase-1/matriptase-2 (MT-1/2) inhibitors (MI-432, MI-441, MI-460, and MI-461) on hepcidin production were investigated in hepatocyte mono- and hepatocyte-Kupffer cell co-cultures. In MI-461-treated cell cultures, the extracellular hydrogen peroxide contents and the interleukin-6 and -8 (IL-6 and IL-8) levels were determined and compared to controls. Hepcidin overproduction was observed in hepatocytes upon treatment with MI-432, MI-441 and MI-461 at 50 μM. In contrast, extracellular hydrogen peroxide levels were not elevated significantly after matriptase inhibition with MI-461. Furthermore, MI-461 did not induce increases in IL-6 and IL-8 levels in these hepatic models. A model of the binding mode of inhibitor MI-461 in complex with MT-2 revealed numerous polar contacts contributing to the nanomolar potency of this compound. Based on the in vitro data on hepcidin regulation, treatment with MI-461 might be valuable in pathological states of iron metabolism without causing excessive oxidative stress.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Szombath
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| |
Collapse
|
21
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
22
|
Mirza AZ, Shamshad H. QSAR and Docking Studies on Piperidyl-cyclohexylurea Derivatives for Prediction of Selective and Potent Inhibitor of Matriptase. Curr Comput Aided Drug Des 2019; 15:167-181. [DOI: 10.2174/1573409914666180516162349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 11/22/2022]
Abstract
Background: QSAR models as PLS, GFA, and 3D were developed for a series of matriptase
inhibitors using 35 piperidyl-cyclohexylurea compounds. The training and test sets were divided into a
set of 28 and 8 compounds, respectively and the pki values of each compound were used in the analysis.
Methods:
Docking and alignment methodologies were used to develop models in 3D QSAR. The best
models among all were selected on the basis of regression statistics as r2, predictive r2 and Friedman
Lack of fit measure. Hydrogen donors and rotatable bonds were found to be positively correlated properties
for this target. The models were validated and used for the prediction of new compounds. Based
on the predictions of 3D-QSAR model, 17 new compounds were prepared and their activities were predicted
and compared with the active compound. Prediction of activities was performed for these 18
compounds using consensus results of all models. ADMET was also performed for the best-chosen
compound and compared with the known active.
Results and Conclusion:
The developed model was able to validate the obtained results and can be
successfully used to predict new potential and active compounds.
Collapse
Affiliation(s)
- Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
23
|
Patel NR, Patel DV, Kanhed AM, Patel SP, Patel KV, Afosah DK, Desai UR, Karpoormath R, Yadav MR. 2-Aminobenzamide-Based Factor Xa Inhibitors with Novel Mono- and Bi-Aryls as S4 Binding Elements. ChemistrySelect 2019. [DOI: 10.1002/slct.201803342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nirav R. Patel
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
| | - Dushyant V. Patel
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
| | - Ashish M. Kanhed
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
- Department of Pharmaceutical Chemistry; Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal (Westville); Durban 4000 South Africa
| | - Sagar P. Patel
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
| | - Kirti V. Patel
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structrural Biology and Drug Discovery; Virginia Commonwealth University, Richmond; Virginia 23219 United States
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structrural Biology and Drug Discovery; Virginia Commonwealth University, Richmond; Virginia 23219 United States
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry; Discipline of Pharmaceutical Sciences; College of Health Sciences; University of KwaZulu-Natal (Westville); Durban 4000 South Africa
| | - Mange Ram Yadav
- Faculty of Pharmacy; Kalabhavan Campus; The Maharaja Sayajirao University of Baroda, Vadodara-; 390001 Gujarat India
| |
Collapse
|
24
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
25
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
26
|
Mangold M, Gütschow M, Stirnberg M. A Short Peptide Inhibitor as an Activity-Based Probe for Matriptase-2. Pharmaceuticals (Basel) 2018; 11:ph11020049. [PMID: 29883401 PMCID: PMC6027297 DOI: 10.3390/ph11020049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks such as distinguishing active and inactive matriptase-2. For this purpose we present a short biotinylated peptide derivative with a chloromethyl ketone group, biotin-RQRR-CMK, as an activity-based probe for matriptase-2. Biotin-RQRR-CMK was kinetically characterized and exhibited a second-order rate constant of inactivation (kinac/Ki) of 10,800 M−1 s−1 towards the matriptase-2 activity in the supernatant of transfected human embryonic kidney (HEK) cells. Biotin-RQRR-CMK was able to label active matriptase-2, as visualized in western blot experiments. Pretreatment with aprotinin, an active-site directed inhibitor of serine proteases, protected matriptase-2 from the reaction with biotin-RQRR-CMK.
Collapse
Affiliation(s)
- Martin Mangold
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| | - Michael Gütschow
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| | - Marit Stirnberg
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Bonn 53113, Germany.
| |
Collapse
|
27
|
Sun H, Horatscheck A, Martos V, Bartetzko M, Uhrig U, Lentz D, Schmieder P, Nazaré M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Sun
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - André Horatscheck
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
- Drug Discovery and Development Centre (H3D); Department of Chemistry; University of Cape Town; Rondebosch 7701 South Africa
| | - Vera Martos
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Max Bartetzko
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Germany
| | - Ulrike Uhrig
- European Molecular Biology Laboratory (EMBL); Chemical Biology Core Facility; Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Dieter Lentz
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Peter Schmieder
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology; Leibniz-Institut fϋr Molekulare Pharmakologie (FMP); Campus Berlin-Buch; Robert-Roessle-Strasse 10 13125 Berlin Germany
| |
Collapse
|
28
|
Sun H, Horatscheck A, Martos V, Bartetzko M, Uhrig U, Lentz D, Schmieder P, Nazaré M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew Chem Int Ed Engl 2017; 56:6454-6458. [PMID: 28452102 DOI: 10.1002/anie.201700520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/24/2022]
Abstract
We dissected halogen-aryl π interactions experimentally using a bicyclic N-arylimide based molecular torsion balances system, which is based on the influence of the non-bonded interaction on the equilibria between folded and unfolded states. Through comparison of balances modulated by higher halogens with fluorine balances, we determined the magnitude of the halogen-aryl π interactions in our unimolecular systems to be larger than -5.0 kJ mol-1 , which is comparable with the magnitude estimated in the biomolecular systems. Our study provides direct experimental evidence of halogen-aryl π interactions in solution, which until now have only been revealed in the solid state and evaluated theoretically by quantum-mechanical calculations.
Collapse
Affiliation(s)
- Han Sun
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - André Horatscheck
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Vera Martos
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Max Bartetzko
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.,Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ulrike Uhrig
- European Molecular Biology Laboratory (EMBL), Chemical Biology Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Dieter Lentz
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Peter Schmieder
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| |
Collapse
|
29
|
The Impact of Acute Matriptase Inhibition in Hepatic Inflammatory Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6306984. [PMID: 27642598 PMCID: PMC5013213 DOI: 10.1155/2016/6306984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Purpose. Dysfunction of matriptase-2 can be involved in iron regulatory disorder via downregulation of hepcidin expression. In the present study, we investigated the effects of 3-amidinophenylalanine-derived matriptase inhibitors on porcine hepatic inflammatory cell models. Methods. Hepatocyte-Kupffer cell cocultures (ratio of 2 : 1 and 6 : 1) were treated with four structurally related matriptase inhibitors at 50 μM. Cell cytotoxicity and relative expressions of IL-6 and IL-8 and the levels of hepcidin were determined by MTS and porcine-specific ELISA. The extracellular H2O2 contents were analyzed by Amplex Red method. Results. Matriptase inhibitors at 50 µM for 24 h did not increase cell death rate. The elevated ROS production observed after short-term application of inhibitor MI-441 could be correlated with lowered hepcidin expression. MI-460 could significantly enhance hepcidin levels in the supernatants of cocultures (by 62.21 ± 26.8% in hepatocyte-Kupffer cell, 2 : 1, and by 42.6 ± 14.3% in hepatocyte-Kupffer cell, 6 : 1, cocultures, resp.). No significant changes were found in IL-6 and IL-8 levels in cocultures exposed to matriptase inhibitors. Conclusions. Based on in vitro findings, administration of MI-460 via modulation of hepcidin expression without cytotoxic and oxidative stress inducing properties might be a reliable alternative to treat iron overload in human and veterinary clinical practice.
Collapse
|
30
|
Beckmann AM, Gilberg E, Gattner S, Huang TL, Vanden Eynde JJ, Mayence A, Bajorath J, Stirnberg M, Gütschow M. Evaluation of bisbenzamidines as inhibitors for matriptase-2. Bioorg Med Chem Lett 2016; 26:3741-5. [DOI: 10.1016/j.bmcl.2016.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
31
|
Häußler D, Mangold M, Furtmann N, Braune A, Blaut M, Bajorath J, Stirnberg M, Gütschow M. Phosphono Bisbenzguanidines as Irreversible Dipeptidomimetic Inhibitors and Activity-Based Probes of Matriptase-2. Chemistry 2016; 22:8525-35. [DOI: 10.1002/chem.201600206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Norbert Furtmann
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
32
|
Maiwald A, Hammami M, Wagner S, Heine A, Klebe G, Steinmetzer T. Changing the selectivity profile – from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors. J Enzyme Inhib Med Chem 2016; 31:89-97. [DOI: 10.3109/14756366.2016.1172574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexander Maiwald
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Maya Hammami
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Sebastian Wagner
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Andreas Heine
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| |
Collapse
|
33
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
34
|
3,1-Benzothiazines, 1,4-Benzodioxines and 1,4-Benzoxazines as Inhibitors of Matriptase-2: Outcome of a Focused Screening Approach. Pharmaceuticals (Basel) 2016; 9:ph9010002. [PMID: 26771619 PMCID: PMC4812366 DOI: 10.3390/ph9010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
The liver enzyme matriptase-2 is a multi-domain, transmembrane serine protease with an extracellular, C-terminal catalytic domain. Synthetic low-molecular weight inhibitors of matriptase-2 have potential as therapeutics to treat iron overload syndromes, in particular in patients with β-thalassemia. A sub-library of 64 compounds was screened for matriptase-2 inhibition and several active compounds were identified. (S)-Ethyl 2-(benzyl(3-((4-carbamidoylphenoxy)methyl)-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-2-oxoacetate ((S)-12) showed an IC50 value of less than 10 µM. Structure-activity relationships were discussed and proposals to design new matriptase-2 inhibitors were made.
Collapse
|
35
|
Furtmann N, Häußler D, Scheidt T, Stirnberg M, Steinmetzer T, Bajorath J, Gütschow M. Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structure-Based Design of Inhibitors for Trypsin-Like Serine Proteases. Chemistry 2015; 22:610-25. [DOI: 10.1002/chem.201503534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/18/2022]
|
36
|
Changes in the distribution of type II transmembrane serine protease, TMPRSS2 and in paracellular permeability in IPEC-J2 cells exposed to oxidative stress. Inflammation 2015; 38:775-83. [PMID: 25097076 DOI: 10.1007/s10753-014-9988-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of oxidative stress on barrier integrity and localization of transmembrane serine proteinase 2 (TMPRSS2) were studied using porcine epithelial IPEC-J2 cells on membrane inserts. Increased paracellular permeability of FITC-dextran 4 kDa (fluorescence intensity 43,508 ± 2,391 versus 3,550 ± 759) and that of gentamicin (3.41 ± 0.06 % increase to controls) were measured parallel with the reduced transepithelial electrical resistance (23.3 ± 4.06 % decrease) of cell layers 6 h after 1 h 1 mM H2O2 treatment. The immunohistochemical localization of adherens junctional β-catenin was not affected by reactive oxygen species (ROS) up to 4 mM H2O2. Peroxide-triggered enhanced paracellular permeability of IPEC-J2 cell layer was accompanied by predominantly cytoplasmic occurrence of TMPRSS2 embedded in cell membrane under physiological conditions. These results support that ROS can influence paracellular gate opening via multifaceted mode of action without involvement of β-catenin redistribution in adherens junction. Altered distribution pattern of TMPRSS2 and relocalized transmembrane serine protease activity may contribute to weakening of epithelial barrier integrity under acute oxidative stress.
Collapse
|
37
|
Inhibition of Matriptase Activity Results in Decreased Intestinal Epithelial Monolayer Integrity In Vitro. PLoS One 2015; 10:e0141077. [PMID: 26488575 PMCID: PMC4619522 DOI: 10.1371/journal.pone.0141077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/04/2015] [Indexed: 02/08/2023] Open
Abstract
Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER) causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h) treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases.
Collapse
|
38
|
Weigel LF, Nitsche C, Graf D, Bartenschlager R, Klein CD. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors. J Med Chem 2015; 58:7719-33. [PMID: 26367391 DOI: 10.1021/acs.jmedchem.5b00612] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-mimicking groups with modulated basicity. The most promising compounds were (4-amidino)-L-phenylalanine-containing inhibitors, which reached nanomolar affinities against dengue virus protease. The type and position of the substituents on the phenylglycine and phenylalanine side chains has a significant effect on the inhibitory activity against dengue virus protease and selectivity against other proteases. In addition, the non-natural, basic amino acids described here may have relevance for the development of other peptidic and peptidomimetic drugs such as inhibitors of the blood clotting cascade.
Collapse
Affiliation(s)
- Lena F Weigel
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Dominik Graf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University , Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.,German Centre for Infection Research, Heidelberg University , D-69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
39
|
Häußler D, Scheidt T, Stirnberg M, Steinmetzer T, Gütschow M. A Bisbenzamidine Phosphonate as a Janus-faced Inhibitor for Trypsin-like Serine Proteases. ChemMedChem 2015; 10:1641-6. [PMID: 26306030 DOI: 10.1002/cmdc.201500319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/19/2022]
Abstract
A hybrid approach was applied for the design of an inhibitor of trypsin-like serine proteases. Compound 16 [(R,R)- and (R,S)-diphenyl (4-(1-(4-amidinobenzylamino)-1-oxo-3-phenylpropan-2-ylcarbamoyl)phenylamino)(4-amidinophenyl)methylphosphonate hydrochloride], prepared in a convergent synthetic procedure, possesses a phosphonate warhead prone to react with the active site serine residue in a covalent, irreversible manner. Each of the two benzamidine moieties of 16 can potentially be accommodated in the S1 pocket of the target enzyme, but only the benzamidine close to the phosphonate group would then promote an irreversible interaction. The Janus-faced inhibitor 16 was evaluated against several serine proteases and caused a pronounced inactivation of human thrombin with a second-order rate constant (kinac /Ki) of 59 500 M(-1) s(-1). With human matriptase, 16 showed preference for a reversible mode of inhibition (IC50 =2.6 μM) as indicated by linear progress curves and enzyme reactivation.
Collapse
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Tamara Scheidt
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg (Germany)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).
| |
Collapse
|
40
|
Pászti-Gere E, Barna RF, Ujhelyi G, Steinmetzer T. Interaction exists between matriptase inhibitors and intestinal epithelial cells. J Enzyme Inhib Med Chem 2015; 31:736-41. [PMID: 26118419 DOI: 10.3109/14756366.2015.1060483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.
Collapse
Affiliation(s)
- Erzsebet Pászti-Gere
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Réka Fanni Barna
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Gabriella Ujhelyi
- b Faculty of Pharmacy , Semmelweis University , Budapest , Hungary , and
| | - Torsten Steinmetzer
- c Institute of Pharmaceutical Chemistry, Philipps University , Marburg , Germany
| |
Collapse
|
41
|
Gitlin A, Dębowski D, Karna N, Łęgowska A, Stirnberg M, Gütschow M, Rolka K. Inhibitors of Matriptase-2 Based on the Trypsin Inhibitor SFTI-1. Chembiochem 2015; 16:1601-7. [DOI: 10.1002/cbic.201500200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/12/2022]
|
42
|
Häußler D, Gütschow M. Synthesis of a Fluorescent-Labeled Bisbenzamidine Containing the Central (6,7-Dimethoxy-4-coumaryl)Alanine Building Block. HETEROATOM CHEMISTRY 2015. [DOI: 10.1002/hc.21269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; D-53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; D-53121 Bonn Germany
| |
Collapse
|
43
|
Franco FM, Jones DE, Harris PK, Han Z, Wildman SA, Jarvis CM, Janetka JW. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorg Med Chem 2015; 23:2328-43. [DOI: 10.1016/j.bmc.2015.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
44
|
Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem J 2013; 452:331-43. [PMID: 23527573 DOI: 10.1042/bj20130101] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TMPRSS2 (transmembrane serine proteinase 2) is a multidomain type II transmembrane serine protease that cleaves the surface glycoprotein HA (haemagglutinin) of influenza viruses with a monobasic cleavage site, which is a prerequisite for virus fusion and propagation. Furthermore, it activates the fusion protein F of the human metapneumovirus and the spike protein S of the SARS-CoV (severe acute respiratory syndrome coronavirus). Increased TMPRSS2 expression was also described in several tumour entities. Therefore TMPRSS2 emerged as a potential target for drug design. The catalytic domain of TMPRSS2 was expressed in Escherichia coli and used for an inhibitor screen with previously synthesized inhibitors of various trypsin-like serine proteases. Two inhibitor types were identified which inhibit TMPRSS2 in the nanomolar range. The first series comprises substrate analogue inhibitors containing a 4-amidinobenzylamide moiety at the P1 position, whereby some of these analogues possess inhibition constants of approximately 20 nM. An improved potency was found for a second type derived from sulfonylated 3-amindinophenylalanylamide derivatives. The most potent derivative of this series inhibits TMPRSS2 with a K(i) value of 0.9 nM and showed an efficient blockage of influenza virus propagation in human airway epithelial cells. On the basis of the inhibitor studies, a series of new fluorogenic substrates containing a D-arginine residue at the P3 position was synthesized, some of them were efficiently cleaved by TMPRSS2.
Collapse
|
45
|
Scholfield MR, Zanden CMV, Carter M, Ho PS. Halogen bonding (X-bonding): a biological perspective. Protein Sci 2013; 22:139-52. [PMID: 23225628 PMCID: PMC3588911 DOI: 10.1002/pro.2201] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/05/2022]
Abstract
The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure-energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials.
Collapse
Affiliation(s)
| | | | | | - P Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort Collins, Colorado 80523-1870
| |
Collapse
|
46
|
Abstract
Influenza A viruses of the subtype H9N2 circulate worldwide and have become highly prevalent in poultry in many countries. Moreover, they are occasionally transmitted to humans, raising concern about their pandemic potential. Influenza virus infectivity requires cleavage of the surface glycoprotein hemagglutinin (HA) at a distinct cleavage site by host cell proteases. H9N2 viruses vary remarkably in the amino acid sequence at the cleavage site, and many isolates from Asia and the Middle East possess the multibasic motifs R-S-S-R and R-S-R-R, but are not activated by furin. Here, we investigated proteolytic activation of the early H9N2 isolate A/turkey/Wisconsin/1/66 (H9-Wisc) and two recent Asian isolates, A/quail/Shantou/782/00 (H9-782) and A/quail/Shantou/2061/00 (H9-2061), containing mono-, di-, and tribasic HA cleavage sites, respectively. All H9N2 isolates were activated by human proteases TMPRSS2 (transmembrane protease, serine S1 member 2) and HAT (human airway trypsin-like protease). Interestingly, H9-782 and H9-2061 were also activated by matriptase, a protease widely expressed in most epithelia with high expression levels in the kidney. Nephrotropism of H9N2 viruses has been observed in chickens, and here we found that H9-782 and H9-2061 were proteolytically activated in canine kidney (MDCK-II) and chicken embryo kidney (CEK) cells, whereas H9-Wisc was not. Virus activation was inhibited by peptide-mimetic inhibitors of matriptase, strongly suggesting that matriptase is responsible for HA cleavage in these kidney cells. Our data demonstrate that H9N2 viruses with R-S-S-R or R-S-R-R cleavage sites are activated by matriptase in addition to HAT and TMPRSS2 and, therefore, can be activated in a wide range of tissues what may affect virus spread, tissue tropism and pathogenicity.
Collapse
|
47
|
Active site mapping of trypsin, thrombin and matriptase-2 by sulfamoyl benzamidines. Bioorg Med Chem 2012; 20:6489-505. [DOI: 10.1016/j.bmc.2012.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/16/2022]
|