1
|
van den Hurk RS, Mengerink Y, Peters RAH, van Asten AC, Pirok BWJ, Bos TS. Introducing an algorithm to accurately determine copolymer block-length distributions. Anal Chim Acta 2025; 1354:343990. [PMID: 40253059 DOI: 10.1016/j.aca.2025.343990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/07/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Copolymers are attractive for developing advanced materials with widespread applications such as medical devices, implants, or self-healing coatings for space stations and satellites. Their physical properties are tunable by controlling polymeric characteristics such as molecular weight and chemical composition. Another characteristic that has a significant influence on the material properties is the block-length distribution (BLD). Synthetic chemists can alter the BLD independently from molecular weight and chemical composition. However, analytically characterizing these BLDs, for copolymers composed out of multiple monomers, remains a huge challenge. RESULTS In this study, an algorithm was developed that enables the accurate determination of copolymer BLDs. Copolymers were computationally simulated and fragmented by either a repeated-sampling approach or an analytical solution to obtain unbiased ground-truth data to objectively evaluate such algorithms. The performance of the novel analytical solution, coupled with an optimization algorithm, was assessed under various conditions. We have demonstrated that a trust-region-reflective algorithm yields highly accurate BLDs when fragment data up to the tetramer level is available. Although the presence of noise in the input data led to some noise in the output, it did not notably impact the overall performance of the algorithm. SIGNIFICANCE The proposed algorithm demonstrated significant improvements over existing algorithms for the determination of copolymer BLDs. Using accurately simulated copolymer fragment data, which can be obtained through chemical reactions or physical processes, such algorithms could objectively be evaluated on their performance for the first time. These observations indicate that the proposed algorithm holds great potential for application to experimental copolymer fragment data.
Collapse
Affiliation(s)
- Rick S van den Hurk
- Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| | - Ynze Mengerink
- Biomedical, DSM, Geleen, the Netherlands; Brightlands, Geleen, the Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Group Innovation & Sustainability, Testing, Analytics and Physics Group, Covestro (Netherlands) B.V., Waalwijk, the Netherlands
| | - Arian C van Asten
- Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Netherlands Center for Forensic Science and Medicine, Amsterdam, the Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Tijmen S Bos
- Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| |
Collapse
|
2
|
Kruijswijk JD, Wijker S, Philipsen HJA, Schoenmakers PJ, Somsen GW. Study of the aberrant retention behavior of a semi-crystalline polyamide in reversed-phase liquid chromatography. J Chromatogr A 2025; 1750:465887. [PMID: 40179673 DOI: 10.1016/j.chroma.2025.465887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
The elution behavior of semi-crystalline polyamides (PAs) in reversed-phase liquid chromatography (RPLC) was examined. RPLC of the aliphatic polyamide 4,6 (PA46) yielded a single broad peak. However, the partly aromatic polyamide X (PAX) displayed a deviating elution profile, encompassing early- and late-eluting portions, which changed in relative abundance when varying injection and gradient conditions. These bands were suspected to be due to formation of amorphous and crystalline phases, respectively. RPLC fractions of the PAs were subjected to the same RPLC system and to size-exclusion chromatography. The presumed amorphous PAX portion showed two bands in RPLC, suggesting that (largely) amorphous and crystalline phases are formed upon sample injection. Differential scanning calorimetry (DSC) demonstrated that reducing the crystallinity of PAX decreased the relative abundance of the late-eluting fraction, approaching the behavior of aliphatic polyamides. X-ray diffraction and static-light-scattering analyses confirmed the semi-crystallinity of the two solid PA samples. Although both small particles and larger aggregates were observed in solution, these findings could not be correlated to the differences in elution profile of the PAs. Cloud-point measurements indicated that the solubility of both PA46 and PAX was almost independent of temperature. Strikingly, at low column temperatures (i.e. below the depressed melting point), PAX eluted as a single broad PAX peak. To conclude, the semi-crystallinity of PAX influences its RPLC-elution behavior, and by ensuring complete dissolution of the crystalline phase useful chemical information can be extracted from the obtained chromatograms.
Collapse
Affiliation(s)
- Jordy D Kruijswijk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1105 1081, Amsterdam, HV, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands.
| | - Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, The Netherlands
| | | | - Peter J Schoenmakers
- Centre for Analytical Sciences Amsterdam (CASA), The Netherlands; Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1105 1081, Amsterdam, HV, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| |
Collapse
|
3
|
Lubomirsky E, Preis J, Glassner M, Hofe T, Khodabandeh A, Hilder EF, Arrua RD. Poly(glycidyl methacrylate- co-ethylene glycol dimethacrylate) Monolith with Dual Porosity for Size Exclusion Chromatography. Anal Chem 2024; 96:19623-19631. [PMID: 39587954 DOI: 10.1021/acs.analchem.4c04723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The use of polymeric monoliths as stationary phases for liquid chromatography has been limited, despite their ability to enhance the convection flow of the mobile phase with respect to particulate-based columns. This is due to a poor balance between the volume of flow through pores and the number of active sites within polymeric monoliths. In this paper, we present the obtainment of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (P(GMA-co-EDMA)) monoliths with dual pore size distributions (with pore sizes of 60 and 550 nm). Hierarchical pore size distributions were achieved by performing the monolith synthesis by reversible addition-fragmentation chain transfer (RAFT) polymerization as well as using ternary porogen mixtures (containing PEG, dodecanol, and dioxane). While the controlled polymerization mechanism promoted mesopores in the monolith, ternary porogen mixtures allowed the formation of macropores. The monoliths obtained were used as stationary phases for size exclusion chromatography (SEC) for the separation of poly(methyl methacrylate) standards with molar masses between 2.50 × 103 and 3.06 × 106 g/mol, allowing selectivities that were comparable with commercially available SEC columns packed with porous particles. We believe the approach presented in this work could be the first step toward the obtainment of stationary phases for SEC with enhanced accessibility of exclusion pores. Monolithic columns with accessible porous structures can be beneficial for size-based separations of ultrahigh molar mass analytes with low diffusion coefficients.
Collapse
Affiliation(s)
- Ester Lubomirsky
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - Jasmin Preis
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz 55120, Germany
| | - Mathias Glassner
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz 55120, Germany
| | - Thorsten Hofe
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz 55120, Germany
| | - Aminreza Khodabandeh
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| |
Collapse
|
4
|
Tsarenko E, Göppert NE, Dahlke P, Behnke M, Gangapurwala G, Beringer-Siemers B, Jaepel L, Kellner C, Pretzel D, Czaplewska JA, Vollrath A, Jordan PM, Weber C, Werz O, Schubert US, Nischang I. Unveiling the power of liquid chromatography in examining a library of degradable poly(2-oxazoline)s in nanomedicine applications. J Mater Chem B 2024; 12:11926-11938. [PMID: 39434568 DOI: 10.1039/d4tb01812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A library of degradable poly(2-alkyl-2-oxazoline) analogues (dPOx) with different length of the alkyl substituents was characterized in detail by gradient elution liquid chromatography. The hydrophobicity increased with increased side chain length as confirmed by a hydrophobicity row, established by reversed-phase liquid chromatography. Those dPOx were cytocompatible and formed colloidally stable nanoparticle (NP) formulations with positive zeta potential. Dynamic light scattering (DLS) revealed that dPOx with increased hydrophobicity tended to form NPs with increased sizes. NPs created from the most hydrophobic polymer, degradable poly(2-nonyl-2-oxazoline) (dPNonOx), showed tendency for aggregation at pH 5.0, and in the presence of protease in solution, in particular for NPs formulated without surfactant. Liquid chromatography revealed enzymatic degradation of dPNonOx NPs, clearly demonstrating the disappearance of polymer signals and the appearance of hydrophilic degradation products eluting close to the chromatographic void time. The degradation process was confirmed by 1H NMR spectroscopy. dPNonOx NPs containing the anti-inflammatory drug BRP-201 as payload reduced 5-lipoxygenase activity in human neutrophils. Thereby, composition analysis of the resultant NPs, including drug quantification, was also enabled by liquid chromatography. The results indicate the importance of a detailed analysis of the final polymer-based NP formulations by a multimethod approach, including, next to standard applied techniques such as DLS/ELS, the underexplored potential of liquid chromatography. The latter is demonstrated to resolve a fine structure of solution composition, together with an assessment of possible degradation pathways and is versatile in determining hydrophobicity/hydrophilicity of polymer materials. Our study underscores the power of liquid chromatography for characterization of soft matter drug carriers.
Collapse
Affiliation(s)
- Ekaterina Tsarenko
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Natalie E Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Mira Behnke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Gauri Gangapurwala
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Baerbel Beringer-Siemers
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Lisa Jaepel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carolin Kellner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Justyna A Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Paul M Jordan
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07743 Jena, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
5
|
Hosono N, Kono Y, Mizutani N, Koga D, Uemura T. Detecting single-point isomeric differences in polymer chains by MOF column chromatography. Chem Commun (Camb) 2024; 60:13690-13693. [PMID: 39495197 DOI: 10.1039/d4cc04902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Liquid chromatography with a metal-organic framework (MOF) as the stationary phase enables nanopore threading-based recognition of polymers and identification of single-point isomeric structural differences in the polymer main chain. The polymer adsorption affinity to the MOF and transient kinetics of polymer insertion into the nanopores play crucial roles in the recognition process.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yu Kono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Daichi Koga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
6
|
Halko R, Pavelek D, Kaykhaii M. High Performance Liquid chromatography - Fourier Transform Infrared Spectroscopy Coupling: A Comprehensive Review. Crit Rev Anal Chem 2024:1-12. [PMID: 39167445 DOI: 10.1080/10408347.2024.2391892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This review presents a critical examination of the interface for coupling high performance liquid chromatography (HPLC) with Fourier transform infrared spectrometry (FTIR) since 2010. This coupling offers a robust analytical approach characterized by exceptional chemical specificity and the capacity to analyze complex multi-component mixtures qualitatively and quantitatively with high sensitivity, particularly in low limit of detection ranges. This coupling enables the identification of individual components of a mixture by IR after their separation by HPLC, although challenges arise from the potential distortion of infrared spectra by mobile phase components. Addressing this issue necessitates the implementation of suitable interfaces, such as flow cells or off-line indirect measurement methods like hot inert gas streams or ultrasonic nebulizers. The key parameters influencing the coupling of HPLC-FTIR include the solvent elimination methods, mode of FTIR technique, and IR background for accurate analyte identification. Moreover, the composition of the mobile phase and the utilization of buffer solutions in the HPLC mobile phase profoundly impact analyte identification by FTIR.
Collapse
Affiliation(s)
- Radoslav Halko
- Faculty of Natural Science, Department of Analytical Chemistry, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Denis Pavelek
- Faculty of Natural Science, Department of Analytical Chemistry, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Massoud Kaykhaii
- Faculty of Natural Science, Department of Analytical Chemistry, Comenius University in Bratislava, Bratislava, Slovak Republic
- School of Natural Sciences (Chemistry), College of Sciences and Engineering, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Böth A, Foshag D, Schulz C, Atwi B, Maier SE, Estes DP, Buchmeiser MR, de Goor TV, Tallarek U. Feed injection in liquid chromatography: Reducing the effect of large-volume injections from purely organic diluents in reversed-phase liquid chromatography. J Chromatogr A 2024; 1730:465165. [PMID: 39025026 DOI: 10.1016/j.chroma.2024.465165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
In liquid chromatography (LC), discrepancies in liquid properties such as elution strength and viscosity lead to a mismatch between the sample diluent and mobile phase. This mismatch can result in peak deformation, including peak splitting or even breakthrough, particularly when large sample volumes are injected. The formation of a T-junction between sample solution and mobile phase flow stream, a technique previously used in supercritical fluid chromatography, is the key enabler of feed injection in LC. This T-junction allows the injection needle to infuse the sample directly into the mobile phase. It ensures that the diluent is continuously mixed with the mobile phase before introduced onto the column, thereby reducing the initial solvent mismatch. The degree of dilution depends on the ratio between mobile phase flow rate (Qmp) and feed rate (Qfeed) at which the sample is infused. Our study examined the effect of several parameters on the feed injection of large sample volumes from purely organic diluents in reversed-phase LC. These parameters included the type of diluent, compound retention factor (k), injected sample volume (Vinj), and Qmp. With varied Qfeed, all compounds revealed a similar range of optimal values for Qr = (Qmp-Qfeed)/Qfeed between 2 and 5, a range unaffected by Vinj and Qmp. For Qr > 5, the slope of the plate height curves (H vs. Qr) decreases with increasing k, potentially extending the range of optimal Qr-values. However, the best Qr-value for a separation is determined by the compound with the smallest k, simplifying optimization. Using feed injection, we were able to reduce plate heights by up to a factor of 8 compared to classic flow-through injection of large sample volumes.
Collapse
Affiliation(s)
- André Böth
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Daniel Foshag
- Agilent Technologies R&D and Marketing GmbH & Co. KG, Hewlett Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Charlotte Schulz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Boshra Atwi
- Institute of Polymer Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sarah E Maier
- Institute of Technical Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Deven P Estes
- Institute of Technical Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tom van de Goor
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Agilent Technologies R&D and Marketing GmbH & Co. KG, Hewlett Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
8
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
9
|
Tang S, Pederson Z, Meany EL, Yen CW, Swansiger AK, Prell JS, Chen B, Grosskopf AK, Eckman N, Jiang G, Baillet J, Pellett JD, Appel EA. Label-Free Composition Analysis of Supramolecular Polymer-Nanoparticle Hydrogels by Reversed-Phase Liquid Chromatography Coupled with a Charged Aerosol Detector. Anal Chem 2024; 96:5860-5868. [PMID: 38567987 DOI: 10.1021/acs.analchem.3c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving the desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel composition is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e., proteins) and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with (1) a multi-angle light scattering detector (RPLC-MALS) or (2) high resolution mass spectrometry (RPLC-MS) and a Fourier-transform based deconvolution algorithm. We envision that this analytical strategy could be generalized to characterize critical quality attributes of other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.
Collapse
Affiliation(s)
- Shijia Tang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Zachary Pederson
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Emily L Meany
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Bifan Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Abigail K Grosskopf
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc, South San Francisco, California 94080, United States
| | - Noah Eckman
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Grace Jiang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Julie Baillet
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jackson D Pellett
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Xue T, Zhou L, Wang F, Tian Z, Li N, Ye T, Hao R, Yang L, Gu R, Gan H, Wu Z, Zhu X, Liu S, Sun Y, Dou G, Meng Z. A novel method to quantify chitosan in aqueous solutions by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Carbohydr Polym 2024; 329:121758. [PMID: 38286539 DOI: 10.1016/j.carbpol.2023.121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
In this study, a novel and accurate quantitative analysis method for the direct determination of chitosan (CS) in aqueous solutions using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is presented. By detecting the mass spectrum response intensity of a series of CS characteristic ion pairs, the sample concentration (abscissa) was linearly fitted with the total ion current (TIC) response intensity of its characteristic ion pairs (ordinate). A reliable standard curve was derived for quantifying CS in the range of 125-4000 ng/mL. Under the detection conditions, this CS quantification method yielded acceptable specificity (no interference peak), linearity (with correlation coefficient (r2) values >0.999), precision (acceptable limit RSDr < 3 %, RSDR < 6 %), accuracy (RE within the acceptable limits of ±5 %), and stability (acceptable limit RE within ±5 %, RSDr < 3 %). Moreover, the applicability of measurement was verified when a series of substrates did not interact with CS in the solution. Results have verified the applicability of this method for determining CS content in different composites. This study provides a method for determining CS content with significant practical value and economic benefit.
Collapse
Affiliation(s)
- Ting Xue
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fanjun Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuang Tian
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Nanxi Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tong Ye
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruolin Hao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
11
|
Cancho-Gonzalez S, Ferguson P, Herniman JM, Langley GJ. Controlling the positive ion electrospray ionization of poly(ethylene glycols) when using ultra-high-performance supercritical fluid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2300425. [PMID: 37609802 DOI: 10.1002/jssc.202300425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Poly(ethylene glycols) are complex polymers often added to pharmaceutical formulations to improve drug solubility and delivery. One of the main challenges when using chromatographic techniques coupled to mass spectrometry is the unselective ionization of poly(ethylene glycols) oligomers. Additionally, when the chain length is large enough, multiple charged species are formed, further complicating the mass spectra and processing. This study uses the advanced oligomer separation provided by supercritical fluid chromatography with a mass spectrometry approach that selectively ionizes poly(ethylene glycols) as ammoniated molecules to simplify data analysis and facilitate batch-to-batch comparisons. Several visual representations of the response of the ionization events based on the polymer molecular weight and the repeating unit were used to elucidate trends in ionization. Evaluation of the influence of the oligomer length and end-group on the electrospray ionization of the polymer allowed the development of a process to enable selective ionization for these complex polymers.
Collapse
Affiliation(s)
- Sergio Cancho-Gonzalez
- Faculty of Engineering & Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| | - Paul Ferguson
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Julie M Herniman
- Faculty of Engineering & Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| | - G John Langley
- Faculty of Engineering & Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
LaVallie A, Andrianova AA, Schumaker J, Reagen S, Lu S, Smoliakova IP, Kozliak EI, Kubátová A. Unfolding of Lignin Structure Using Size-Exclusion Fractionation. Polymers (Basel) 2023; 15:3956. [PMID: 37836005 PMCID: PMC10574856 DOI: 10.3390/polym15193956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The heterogeneous and recalcitrant structure of lignin hinders its practical application. Here, we describe how new approaches to lignin characterization can reveal structural details that could ultimately lead to its more efficient utilization. A suite of methods, which enabled mass balance closure, the evaluation of structural features, and an accurate molecular weight (MW) determination, were employed and revealed unexpected structural features of the five alkali lignin fractions obtained with preparative size-exclusion chromatography (SEC). A thermal carbon analysis (TCA) provided quantitative temperature profiles based on sequential carbon evolution, including the final oxidation of char. The TCA results, supported with thermal desorption/pyrolysis gas chromatography-mass spectrometry (TD-Py-GC-MS) and 31P NMR spectroscopy, revealed the unfolding of the lignin structure as a result of the SEC fractionation, due to the disruption of the interactions between the high- and low-MW components. The "unraveled" lignin revealed poorly accessible hydroxyl groups and showed an altered thermal behavior. The fractionated lignin produced significantly less char upon pyrolysis, 2 vs. 47%. It also featured a higher occurrence of low-MW thermal evolution products, particularly guaiacol carbonyls, and more than double the number of OH groups accessible for phosphitylation. These observations indicate pronounced alterations in the lignin intermolecular association following size-exclusion fractionation, which may be used for more efficient lignin processing in biorefineries.
Collapse
Affiliation(s)
- Audrey LaVallie
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- Nueta Hidatsa Sahnish College, 220 8th Ave. E, New Town, ND 58763, USA
| | - Anastasia A. Andrianova
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- Agilent Technologies, 2850 Centerville Rd., Wilmington, DE 19808, USA
| | - Joshua Schumaker
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- SCIEX, 1201 Radio Rd., Redwood City, CA 94065, USA
| | - Sarah Reagen
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- North Dakota Office of the Attorney General, Crime Laboratory Division, 2641 E Main Ave., Bismarck, ND 58501, USA
| | - Shelly Lu
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Irina P. Smoliakova
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Evguenii I. Kozliak
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| |
Collapse
|
13
|
Tang S, Pederson Z, Meany EL, Yen CW, Swansiger AK, Prell JS, Chen B, Grosskopf AK, Eckman N, Jiang G, Baillet J, Pellett JD, Appel EA. Label-Free Composition Analysis of Supramolecular Polymer - Nanoparticle Hydrogels by Reversed-Phase Liquid Chromatography Coupled with a Charged Aerosol Detector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553055. [PMID: 37609276 PMCID: PMC10441420 DOI: 10.1101/2023.08.11.553055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties following applied stresses, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel compositions is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, Bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e. proteins), and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with high resolution mass spectrometry and a Fourier-transform based deconvolution algorithm. To our knowledge, this is the first RPLC-CAD method for characterizing the critical quality attributes of supramolecular hydrogels. We envision this analytical strategy could be generalized to characterize other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.
Collapse
|
14
|
Wenzel B, Schmid M, Teodoro R, Moldovan RP, Lai TH, Mitrach F, Kopka K, Fischer B, Schulz-Siegmund M, Brust P, Hacker MC. Radiofluorination of an Anionic, Azide-Functionalized Teroligomer by Copper-Catalyzed Azide-Alkyne Cycloaddition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2095. [PMID: 37513105 PMCID: PMC10385230 DOI: 10.3390/nano13142095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
This study describes the synthesis, radiofluorination and purification of an anionic amphiphilic teroligomer developed as a stabilizer for siRNA-loaded calcium phosphate nanoparticles (CaP-NPs). As the stabilizing amphiphile accumulates on nanoparticle surfaces, the fluorine-18-labeled polymer should enable to track the distribution of the CaP-NPs in brain tumors by positron emission tomography after application by convection-enhanced delivery. At first, an unmodified teroligomer was synthesized with a number average molecular weight of 4550 ± 20 Da by free radical polymerization of a defined composition of methoxy-PEG-monomethacrylate, tetradecyl acrylate and maleic anhydride. Subsequent derivatization of anhydrides with azido-TEG-amine provided an azido-functionalized polymer precursor (o14PEGMA-N3) for radiofluorination. The 18F-labeling was accomplished through the copper-catalyzed cycloaddition of o14PEGMA-N3 with diethylene glycol-alkyne-substituted heteroaromatic prosthetic group [18F]2, which was synthesized with a radiochemical yield (RCY) of about 38% within 60 min using a radiosynthesis module. The 18F-labeled polymer [18F]fluoro-o14PEGMA was obtained after a short reaction time of 2-3 min by using CuSO4/sodium ascorbate at 90 °C. Purification was performed by solid-phase extraction on an anion-exchange cartridge followed by size-exclusion chromatography to obtain [18F]fluoro-o14PEGMA with a high radiochemical purity and an RCY of about 15%.
Collapse
Affiliation(s)
- Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Maximilian Schmid
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Franziska Mitrach
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01069 Dresden, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Kronlachner L, Frank J, Rosenberg E, Limbeck A. A novel measurement strategy and a dedicated sampling cell for the parallel characterization of organic and inorganic constituents in polymer samples by concurrent laser ablation ICP-OES and EI-MS. Anal Chim Acta 2023; 1264:341305. [PMID: 37230723 DOI: 10.1016/j.aca.2023.341305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Polymeric composite materials are gaining importance due to their universal applicability and easy adaptability for their intended use. For the comprehensive characterization of these materials, the concurrent determination of the organic and the elemental constituents is necessary, which cannot be provided by classical analysis methods. In this work, we present a novel approach for advanced polymer analysis. The proposed approach is based on firing a focused laser beam onto a solid sample placed in an ablation cell. The generated gaseous and particular ablation products are measured online parallelly by EI-MS and ICP-OES. This bimodal approach allows direct characterization of the main organic and inorganic constituents of solid polymer samples. The LA-EI-MS data showed excellent agreement with the literature EI-MS data allowing not only the identification of pure polymers but also of copolymers, as demonstrated with acrylonitrile butadiene styrene (ABS) as the sample. The concurrent collection of ICP-OES elemental data is vital for classification, provenance determination, or authentication studies. The applicability of the proposed procedure has been demonstrated by analysis of various polymer samples from everyday use.
Collapse
Affiliation(s)
- Laura Kronlachner
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria.
| | - Johannes Frank
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Erwin Rosenberg
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Andreas Limbeck
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria.
| |
Collapse
|
16
|
Guerrero-Hurtado E, Gutiérrez-Docio A, Fiedorowicz R, Mollá E, Reglero G, Prodanov M. Why proanthocyanidins elute at increasing order of molecular masses when analysed by normal phase high performance liquid chromatography? Considerations of use. J Chromatogr A 2023; 1696:463957. [PMID: 37030127 DOI: 10.1016/j.chroma.2023.463957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Although it is widely known that proanthocyanidins elute at an increasing order of molecular masses when analysed by normal phase high performance liquid chromatography (NP-HPLC), there is no a consistent explanation of the mechanisms of their separation until now. Therefore, the aim of the present study was to give a reliable response to this question, using a complex procyanidin-rich grape seed extract. For this, an off-column static simulation of extract injection and a fragmented-column dynamic procyanidin location tests were studied to show their precipitation in an aprotic solvent, besides another off-column static simulation and multiple contact dynamic solubilisation tests to confirm procyanidin redissolution in an aprotic/protic solvent system. The results showed that separation of procyanidins in the aprotic/protic solvent system of Diol-NP-HPLC was governed by precipitation/redissolution mechanism, that could be extended to all known plant proanthocyanidin homopolymers, including hydrolysable tannins, if they are able to accomplish this condition. However, separation of monomer species, namely catechins and some hydroxybenzoic acids, was based on classic adsorption/partition mechanism. Other factors, such as analyte solubility, chromatographic conditions and sample preparation, that affect the viability of proanthocyanidin analysis by NP-HPLC were stand out and guidelines for its durable and reproducible use were defined.
Collapse
|
17
|
Knol WC, de Vries QL, Brooijmans T, Gruendling T, Pirok BWJ, Peters RAH. Hyphenation of liquid chromatography and pyrolysis-flame ionization detection/mass spectrometry for polymer quantification and characterization. Anal Chim Acta 2023; 1257:341157. [PMID: 37062568 DOI: 10.1016/j.aca.2023.341157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Size-exclusion chromatography (SEC) hyphenated to pyrolysis-gas chromatography (Py-GC) has been demonstrated as a powerful tool in polymer analysis. A main limitation to the wider application of the method are the long second-dimension Py-GC analysis times, resulting in limited first-dimension sampling and/or long overall run times. Therefore, we set out to develop an online hyphenated SEC×Py-MS/FID method, removing the GC separation and allowing for a drastically reduced second-dimension analysis time compared to SEC-Py-GC. The pyrolysis method had a cycle time of 1.31 min, which was facilitated by liquid nitrogen cooling of the programmable temperature vaporizer (PTV) used for pyrolysis. The developed method featured no molar mass discrimination for masses above ±1.3 kDa, rendering it applicable to most commercial polymer systems. The method was demonstrated on multiple samples, including a complex industrial sample, yielding chemical composition heterogeneity and in some cases sequence heterogeneity information over the molar mass distribution.
Collapse
Affiliation(s)
- Wouter C Knol
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands.
| | - Quincy L de Vries
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Ton Brooijmans
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands; Covestro, Group Innovation, Sluisweg 12, Waalwijk, the Netherlands
| | - Till Gruendling
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, Germany
| | - Bob W J Pirok
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam, the Netherlands; Covestro, Group Innovation, Sluisweg 12, Waalwijk, the Netherlands
| |
Collapse
|
18
|
Garcia A, Blum SA. Polymer Molecular Weight Determination via Fluorescence Lifetime. J Am Chem Soc 2022; 144:22416-22420. [PMID: 36459633 DOI: 10.1021/jacs.2c10036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Control of polymer molecular weight is critical for tailoring structure-function properties; however, traditional molecular weight characterization techniques have limited ability to determine the molecular weight of polymers in real time without sample removal from the reaction mixture, with spatial resolution, and of insoluble polymers. In this work, a fluorescence lifetime imaging microscopy (FLIM) method was developed that overcomes these limitations. The method is demonstrated with polynorbornene and polydicyclopentadiene, polymers derived from ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). The polymer Mw, ranging from 35 to 570 kg/mol as determined by gel-permeation chromatography, was quantitatively correlated with the fluorescence lifetime. The revealed correlation then enabled time-resolved measurement of Mw during an ongoing ROMP reaction, requiring only 1 s per measurement (of a 45 μm × 45 μm polymer sample area), and provided spatial resolution, resulting in simultaneous characterization of polymer morphology. To provide the fluorescence signal, the initial reaction solutions contained a very low doping of a reactive norbornene monomer labeled with fluorescent boron dipyrromethene (BODIPY), such that 1 in every 107 monomers contained a fluorophore. The resulting FLIM visualization method enables the rapid determination of the molecular weights of growing polymers without removal from the reaction mixture and regardless of polymer solubility.
Collapse
Affiliation(s)
- Antonio Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Brooijmans T, Gonzalez PC, Pirok B, Schoenmakers P, Peters R. Two-dimensional tools for analyzing polymer microstructure; coupling non-aqueous ion-exchange chromatography to size-exclusion chromatography. J Chromatogr A 2022; 1683:463536. [DOI: 10.1016/j.chroma.2022.463536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|
20
|
Heeremans T, Deblais A, Bonn D, Woutersen S. Chromatographic separation of active polymer-like worm mixtures by contour length and activity. SCIENCE ADVANCES 2022; 8:eabj7918. [PMID: 35675403 PMCID: PMC9177071 DOI: 10.1126/sciadv.abj7918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The convective transport rate of polymers through confined geometries depends on their size, allowing for size-based separation of polymer mixtures (chromatography). Here, we investigate whether mixtures of active polymers can be separated in a similar manner based on their activity. We use thin, living Tubifex tubifex worms as a model system for active polymers and study the transport of these worms by an imposed flow through a channel filled with a hexagonal pillar array. The transport rate through the channel depends strongly on the degree of activity, an effect that we assign to the different distribution of conformations sampled by the worms depending on their activity. Our results demonstrate a unique way to sort mixtures of active polymers based on their activity and provide a versatile and convenient experimental system to investigate the hydrodynamics of active polymers.
Collapse
Affiliation(s)
- Tess Heeremans
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| |
Collapse
|
21
|
Voorter P, McKay A, Dai J, Paravagna O, Cameron NR, Junkers T. Solvent‐Independent Molecular Weight Determination of Polymers Based on a Truly Universal Calibration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pieter‐Jan Voorter
- Polymer Reaction Design Group School of Chemistry Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
| | - Alasdair McKay
- Polymer Reaction Design Group School of Chemistry Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
| | - Jinhuo Dai
- Dulux Australia 1956 Dandenong Road Clayton VIC 3168 Australia
| | - Olga Paravagna
- Dulux Australia 1956 Dandenong Road Clayton VIC 3168 Australia
| | - Neil R. Cameron
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton Victoria, 3800 Australia
- School of Engineering University of Warwick. Coventry CV4 7AL UK
| | - Tanja Junkers
- Polymer Reaction Design Group School of Chemistry Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
| |
Collapse
|
22
|
Groeneveld G, Dunkle MN, Pursch M, Mes EP, Schoenmakers PJ, Gargano AF. Investigation of the Effects of Solvent-Mismatch and Immiscibility in Normal-Phase × Aqueous Reversed-Phase Liquid Chromatography. J Chromatogr A 2022; 1665:462818. [DOI: 10.1016/j.chroma.2022.462818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
23
|
Wu Y, Figueira FL, Edeleva M, Van Steenberge PHM, D'hooge DR, Zhou Y, Luo Z. Cost‐efficient modeling of distributed molar mass and topological variations in graft copolymer synthesis by upgrading the method of moments. AIChE J 2021. [DOI: 10.1002/aic.17559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| | | | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Ghent Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Ghent Belgium
- Centre for Textiles Science and Engineering (CTSE) Ghent University Ghent Belgium
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
24
|
Groeneveld G, Salome R, Dunkle MN, Bashir M, Gargano AFG, Pursch M, Mes EPC, Schoenmakers PJ. Fast determination of functionality-type × molecular-weight distribution of propoxylates with varying numbers of hydroxyl end-groups using gradient-normal-phase liquid chromatography × ultra-high pressure size-exclusion chromatography. J Chromatogr A 2021; 1659:462644. [PMID: 34739964 DOI: 10.1016/j.chroma.2021.462644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Understanding the relation between chemical characteristics and properties of synthetic polymers is one of the challenges faced by analytical chemists in industry. This is a complex task, as polymers are not synthesized as single molecule, but are populations of chemically similar compounds with distributions over several properties. The latter include, for example, molecular weight, nature of end-groups (functionality), and chemical composition. In this paper, comprehensive two-dimensional liquid chromatography was used to determine the combined functionality-type and molecular-weight distributions of hydroxy‑functionalized propoxylates. Propoxylates derived from different initiators (one up to eight terminal hydroxyl groups) were separated in the first dimension using a gradient normal-phase LC separation (NPLC). In the second dimension ultra-high pressure size-exclusion chromatography separation (UHPSEC), further speciating distributions based on molecular size. The developed NPLC × SEC method with evaporative light-scattering detection can be used for the fast screening (< 30 min) of mutually dependent functionality-type and molecular-weight distributions of unknown propoxylates.
Collapse
Affiliation(s)
- Gino Groeneveld
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Ron Salome
- Dow, Analytical Science, P.O. Box 48, 4530 AA Terneuzen, the Netherlands
| | - Melissa N Dunkle
- Dow, Analytical Science, P.O. Box 48, 4530 AA Terneuzen, the Netherlands
| | - Mubasher Bashir
- Dow, Analytical Science, P.O. Box 48, 4530 AA Terneuzen, the Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | | | - Edwin P C Mes
- Dow, Analytical Science, P.O. Box 48, 4530 AA Terneuzen, the Netherlands
| | - Peter J Schoenmakers
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
25
|
Voorter PJ, McKay A, Dai J, Paravagna O, Cameron NR, Junkers T. Solvent-Independent Molecular Weight Determination of Polymers Based on a Truly Universal Calibration. Angew Chem Int Ed Engl 2021; 61:e202114536. [PMID: 34861091 DOI: 10.1002/anie.202114536] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/16/2023]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) allows for accurate molecular weight calibration and determination that can be corrected for solvent influences. Polystyrene and poly(ethylene glycol) standards have been used to calibrate DOSY diffusion data for a variety of solvents, showing a high correlation of data when the bulk viscosity of the solvent is accounted for following the Stokes-Einstein equation. In this way, a type of universal calibration is introduced that allows for determinations of average molecular weight that are at least as accurate as those of traditional size-exclusion chromatography (SEC), if not better. Further, we demonstrate that DOSY calibrations can be used between laboratories, hence removing the need for individual calibration of setups as currently done.
Collapse
Affiliation(s)
- Pieter-Jan Voorter
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
| | - Alasdair McKay
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
| | - Jinhuo Dai
- Dulux Australia, 1956 Dandenong Road, Clayton, VIC 3168, Australia
| | - Olga Paravagna
- Dulux Australia, 1956 Dandenong Road, Clayton, VIC 3168, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria, 3800, Australia.,School of Engineering, University of Warwick., Coventry, CV4 7AL, UK
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Building 23, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Malik MI. Liquid Chromatography at Critical Conditions in Polymer Analysis: A Perspective. Chromatographia 2021. [DOI: 10.1007/s10337-021-04096-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Miao Q, Mi Y, Cui J, Zhang J, Tan W, Li Q, Guo Z. Determination of chitosan content with Schiff base method and HPLC. Int J Biol Macromol 2021; 182:1537-1542. [PMID: 34022309 DOI: 10.1016/j.ijbiomac.2021.05.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023]
Abstract
Tremendous awareness of determination of chitosan content accurately is increasing, due to it has great significance to the quality control of chitosan. In this article, two kinds of chitosan-Schiff base derivatives (BCSB and PCSB) were synthesized by the different average degrees of deacetylation (DD) of chitosan with benzaldehyde or propanal, respectively. The total mass of Schiff base derivative product was dried and obtained without washing and loss. Then, a certain amount of the prepared Schiff base compound was taken to hydrolyze into glucosamine hydrochloride (GAH) in strong hydrochloric acidic environment, whose concentration was quantified by HPLC, and the mass of GAH contained in hydrolysis solution could be calculated. Subsequently, the total quality of GAH obtained by hydrolysis of all of the Schiff base product was calculated and obtained, and then the theoretical mass of chitosan could be deduced and calculated by further converse calculation. Finally, the chitosan content was obtained by combining the sample mass used in Schiff base reaction and the theoretical mass of chitosan. This method was accurate and convenient, providing a preeminent idea and method for the determination of chitosan content.
Collapse
Affiliation(s)
- Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Lubomirsky E, Khodabandeh A, Preis J, Susewind M, Hofe T, Hilder EF, Arrua RD. Polymeric stationary phases for size exclusion chromatography: A review. Anal Chim Acta 2021; 1151:338244. [PMID: 33608083 DOI: 10.1016/j.aca.2021.338244] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
Synthetic and natural macromolecules are commonly used in a variety of fields such as plastics, nanomedicine, biotherapeutics, drug delivery and tissue engineering. Characterising macromolecules in terms of their structural parameters (size, molar mass and distribution, architecture) is key to have a better understanding of their structure-property relationships. Size exclusion chromatography (SEC) is a commonly used technique for polymer characterization since it offers access to the determination of the size of a macromolecule, its molar mass and the molar mass distribution. Moreover, detectors that allow the determination of true molar masses, macromolecule's architecture and the composition of copolymers can be coupled to the chromatographic system. Like other chromatographic techniques, the stationary phase is of paramount importance for efficient SEC separations. This review presents the basic principles for the design of stationary phases for SEC as well as synthetic methods currently used in the field. Current status of fully-porous polymeric stationary phases used in SEC is reviewed and their advantages and limitations are also discussed. Finally, the potential of polymer monoliths in SEC is also covered, highlighting the limitations this column technology could address. However, further development in the polymer structure is needed to consider this column technology in the field of macromolecule separation.
Collapse
Affiliation(s)
- Ester Lubomirsky
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Aminreza Khodabandeh
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Jasmin Preis
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz, 55120, Germany
| | - Moritz Susewind
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz, 55120, Germany
| | - Thorsten Hofe
- Polymer Standards Service GmbH, In der Dalheimer Wiese 5, Mainz, 55120, Germany
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia.
| |
Collapse
|
29
|
Miao Q, Cui Y, Zhang J, Mi Y, Tan W, Li Q, Gu G, Dong F, Guo Z. Determination of chitosan content with ratio coefficient method and HPLC. Int J Biol Macromol 2020; 164:384-388. [DOI: 10.1016/j.ijbiomac.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
|
30
|
Knol WC, Pirok BWJ, Peters RAH. Detection challenges in quantitative polymer analysis by liquid chromatography. J Sep Sci 2020; 44:63-87. [PMID: 32935906 PMCID: PMC7821191 DOI: 10.1002/jssc.202000768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Accurate quantification of polymer distributions is one of the main challenges in polymer analysis by liquid chromatography. The response of contemporary detectors is typically influenced by compositional features such as molecular weight, chain composition, end groups, and branching. This renders the accurate quantification of complex polymers of which there are no standards available, extremely challenging. Moreover, any (programmed) change in mobile-phase composition may further limit the applicability of detection techniques. Current methods often rely on refractive index detection, which is not accurate when dealing with complex samples as the refractive-index increment is often unknown. We review current and emerging detection methods in liquid chromatography with the aim of identifying detectors, which can be applied to the quantitative analysis of complex polymers.
Collapse
Affiliation(s)
- Wouter C Knol
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Ron A H Peters
- Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, Amsterdam, The Netherlands.,DSM Resins & Functional Materials, Analytical Technology Centre, Waalwijk, The Netherlands
| |
Collapse
|
31
|
Ziminska M, Wilson JJ, McErlean E, Dunne N, McCarthy HO. Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a "Smart" Gene Delivery System. MATERIALS 2020; 13:ma13112530. [PMID: 32498464 PMCID: PMC7321466 DOI: 10.3390/ma13112530] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Thermoresponsive hydrogels demonstrate tremendous potential as sustained drug delivery systems. However, progress has been limited as formulation of a stable biodegradable thermosensitive hydrogel remains a significant challenge. In this study, free radical polymerization was exploited to formulate a biodegradable thermosensitive hydrogel characterized by sustained drug release. Highly deacetylated chitosan and N-isopropylacrylamide with distinctive physical properties were employed to achieve a stable, hydrogel network at body temperature. The percentage of chitosan was altered within the copolymer formulations and the subsequent physical properties were characterized using 1H-NMR, FTIR, and TGA. Viscoelastic, swelling, and degradation properties were also interrogated. The thermoresponsive hydrogels were loaded with RALA/pEGFP-N1 nanoparticles and release was examined. There was sustained release of nanoparticles over three weeks and, more importantly, the nucleic acid cargo remained functional and this was confirmed by successful transfection of the NCTC-929 fibroblast cell line. This tailored thermoresponsive hydrogel offers an option for sustained delivery of macromolecules over a prolonged considerable period.
Collapse
Affiliation(s)
- Monika Ziminska
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Jordan J. Wilson
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemistry and Chemical Engineering, Queen’s University of Belfast, Belfast BT9 5AG, UK
| | - Emma McErlean
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Nicholas Dunne
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| |
Collapse
|
32
|
Mordan EH, Wade JH, Pearce E, Meunier DM, Bailey RC. A linear mass concentration detector for solvent gradient polymer separations. Analyst 2020; 145:4484-4493. [DOI: 10.1039/c9an02533b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silicon photonic microring resonators are an optical sensor utilized here as a detector for gradient elution liquid chromatography of polymers. Universal refractive index based detection and a linear mass concentration response is observed.
Collapse
Affiliation(s)
| | - James H. Wade
- Core R&D Analytical Sciences
- The Dow Chemical Company
- Midland
- Unites States
| | - Eric Pearce
- Core R&D Analytical Sciences
- The Dow Chemical Company
- Midland
- Unites States
| | - David M. Meunier
- Core R&D Analytical Sciences
- The Dow Chemical Company
- Midland
- Unites States
| | - Ryan C. Bailey
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
33
|
Malik MI. Critical parameters of liquid chromatography at critical conditions in context of poloxamers: Pore diameter, mobile phase composition, temperature and gradients. J Chromatogr A 2019; 1609:460440. [PMID: 31416625 DOI: 10.1016/j.chroma.2019.460440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022]
Abstract
At the borderline between size exclusion chromatography (SEC) and interaction chromatography (IC) there is a special mobile phase composition and temperature at which polymer chains become "chromatographically invisible". This point is termed as "chromatographic critical point" and chromatographic separations performed using these conditions are called "liquid chromatography at critical conditions" (LCCC). LCCC is a powerful technique in the analysis of functional polymers and block copolymers. At these so-called critical conditions molar mass discrimination of any specific homopolymer is suppressed rendering elution of whole range of molar mass at same elution volume. These conditions allow enhanced separation with regard to non-critical segment either in exclusion or interaction regime of the polymer chromatography. This article is intended to critically discuss different parameters that can be maneuvered to improve separation and in turn characterization of non-critical segment of block copolymers at LCCC. Different experimental parameters evaluated in this study include pore size of the column, mobile phase composition, temperature and gradients. These parameters can be adeptly adjusted to improve separation of non-critical segment while keeping the other segment close to critical conditions. Current study demonstrates that pore diameter and mobile phase are the only practical variable that can be used for improvement of characterization of non-critical block in the block copolymer while non-critical block is in exclusion regime. On the other hand, pore diameter of the column, temperature, solvent composition and gradients are important parameters that can be skillfully tuned for improvement of separation of non-critical block while non-critical block elutes in interaction regime. The above-mentioned variations are evaluated for di-block as well as tri-block copolymers of A-B-A and B-A-B type. Moreover, LCCC-IC is especially important for analysis of poloxamers.
Collapse
Affiliation(s)
- Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
34
|
Poly(propylene ether carbonate)-Based Di- and Tri-Block Copolymers: Synthesis and Chromatographic Characterization. Macromol Res 2019. [DOI: 10.1007/s13233-019-7128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Adamopoulou T, Nawada S, Deridder S, Wouters B, Desmet G, Schoenmakers PJ. Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing. J Chromatogr A 2019; 1598:77-84. [PMID: 30929867 DOI: 10.1016/j.chroma.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Conventional one-dimensional column-based liquid chromatographic (LC) systems do not offer sufficient separation power for the analysis of complex mixtures. Column-based comprehensive two-dimensional liquid chromatography offers a higher separation power, yet suffers from instrumental complexity and long analysis times. Spatial two-dimensional liquid chromatography can be considered as an alternative to column-based approaches. The peak capacity of the system is ideally the product of the peak capacities of the two dimensions, yet the analysis time remains relatively short due to parallel second-dimension separations. Aspects affecting the separation efficiency of this type of systems include flow distribution to homogeneously distribute the mobile phase for the second-dimension (2D) separation, flow confinement during the first-dimension (1D) separation, and band-broadening effects during analyte transfer from the 1D separation channel to the 2D separation area. In this study, the synergy between computational fluid dynamics (CFD) simulations and rapid prototyping was exploited to address band broadening during the 2D development and analyte transfer from 1D to 2D. Microfluidic devices for spatial two-dimensional liquid chromatography were designed, simulated, 3D-printed and tested. The effects of presence and thickness of spacers in the 2D separation area were addressed and leaving these out proved to be the most efficient solution regarding band broadening reduction. The presence of a stationary-phase material in the 1D channel had a great effect on the analyte transfer from the 1D to the 2D and the resulting band broadening. Finally, pressure limit of the fabricated devices and printability are discussed.
Collapse
Affiliation(s)
- Theodora Adamopoulou
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Suhas Nawada
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Sander Deridder
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Bert Wouters
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Peter J Schoenmakers
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Mordan EH, Wade JH, Wiersma ZSB, Pearce E, Pangburn TO, deGroot AW, Meunier DM, Bailey RC. Silicon Photonic Microring Resonator Arrays for Mass Concentration Detection of Polymers in Isocratic Separations. Anal Chem 2018; 91:1011-1018. [PMID: 30496685 DOI: 10.1021/acs.analchem.8b04263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular weight distribution (MWD) is often the most informative analytical parameter in polymer analysis, with gel permeation chromatography (GPC) being the most common approach for determining the MWD for polymer samples. Many industrially relevant polymers lack chromogenic or fluorogenic signatures, precluding use of spectroscopy-based detection. Universal detectors, such as evaporative light scattering and charged aerosol detectors, are nonlinear, limiting quantitative polymer analysis. Differential refractive index (dRI) detectors show linear mass concentration sensitivity but are limited for some analyses given that they are incompatible with gradient-based separations, have a limited dynamic range, and require extended thermal equilibration times. In this study, we investigated the utility of silicon photonic microring resonator arrays as a quantitative mass concentration detector for industrial polymer analysis. Microring resonators have optical properties that are sensitive to changes in refractive index, offer an extended dynamic range, have a broad solvent compatibility, and have a linear mass concentration detection for a range of molecular weights. Linear mass concentration detection for microrings was demonstrated through a series of isocratic GPC separations using narrow MWD polystyrene (PS) standards. This detection technology was then utilized in conjunction with conventional GPC detectors to analyze a series of broad MWD PS standards, with results in good agreement with dRI and UV/visible. These results demonstrate the potential of the microring resonator platform as a detector for industrial polymer analysis.
Collapse
Affiliation(s)
- Emily H Mordan
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - James H Wade
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Core R&D Analytical Sciences , The Dow Chemical Company , Midland , Michigan 48667 , Unites States
| | - Zach S B Wiersma
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric Pearce
- Core R&D Analytical Sciences , The Dow Chemical Company , Midland , Michigan 48667 , Unites States
| | - Todd O Pangburn
- Core R&D Analytical Sciences , The Dow Chemical Company , Midland , Michigan 48667 , Unites States
| | - A Willem deGroot
- Performance Plastics Characterization , The Dow Chemical Company , Lake Jackson , Texas 77541 , United States
| | - David M Meunier
- Core R&D Analytical Sciences , The Dow Chemical Company , Midland , Michigan 48667 , Unites States
| | - Ryan C Bailey
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
37
|
|
38
|
Dudowicz J, Douglas JF, Freed KF. Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures. J Chem Phys 2018; 149:044704. [PMID: 30068175 DOI: 10.1063/1.5040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reversible binding of molecules to surfaces is one of the most fundamental processes in condensed fluids, with obvious applications in the molecular separation of materials, chromatographic characterization, and material processing. Motivated in particular by the ubiquitous occurrence of binding processes in molecular biology and self-assembly, we have developed a lattice type theory of competitive molecular binding to solid substrates from binary mixtures of two small molecule liquids that interact between themselves by van der Waals forces in addition to exhibiting binding interactions with the solid surface. The derived theory, in contrast to previously existing theoretical frameworks, enables us to investigate the influence of van der Waals interactions on interfacial binding and selective molecular adsorption. For reference, the classic Langmuir theory of adsorption is recovered when all van der Waals interaction energies between the molecules in the bulk liquid phase and those on the surface are formally set to zero. Illustrative calculations are performed for the binding of molecules to a solid surface from pure liquids and from their binary mixtures. The properties analyzed include the surface coverage θ, the binding transition temperature Tbind, the individual surface coverages, θA and θC, and the relative surface coverages, σAC≡θA/θC or σCA≡θC/θA. The latter two quantities coincide with the degrees of adsorption directly determined from experimental adsorption measurements. The Langmuir theory is shown to apply formally under a wide range of conditions where the original enthalpies (Δh or ΔhA and ΔhC) and entropies (Δs or ΔsA and ΔsC) of the binding reactions are simply replaced by their respective "effective" counterparts (Δheff or ΔhAeff and ΔhCeff and Δseff or ΔsAeff and ΔsCeff), whose values depend on the strength of der Waals interactions and of the "bare" free energy parameters (Δh or ΔhA and ΔhC, and Δs or ΔsA and ΔsC). Numerous instances of entropy-enthalpy compensation between these effective free energy parameters follow from our calculations, confirming previous reports on this phenomenon obtained from experimental studies of molecular binding processes in solution.
Collapse
Affiliation(s)
- Jacek Dudowicz
- Department of Chemistry, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Karl F Freed
- Department of Chemistry, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
39
|
Yang P, Bai L, Wang W, Rabasco J. Analysis of hydrophobically modified ethylene oxide urethane rheology modifiers by comprehensive two dimensional liquid chromatography. J Chromatogr A 2018; 1560:55-62. [DOI: 10.1016/j.chroma.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/27/2022]
|
40
|
Yang P, Gao W, Shulman JE, Chen Y. Separation and identification of polymeric dispersants in detergents by two-dimensional liquid chromatography. J Chromatogr A 2018; 1566:111-117. [PMID: 29960735 DOI: 10.1016/j.chroma.2018.06.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Polymeric dispersants are an important ingredient in many consumer products. Their separations and identifications in final product formulation can be very challenging due to the presence of multiple polymeric dispersants at different levels and the presence of other polymeric and small-molecule components. In this study, using nearly comprehensive two-dimensional liquid chromatography (2D-LC), various water-soluble polymer and co-polymer dispersants were separated with aqueous size exclusion chromatography (SEC) in the first dimension (1D) and gradient elution reversed-phase liquid chromatography (RPLC) in the second dimension (2D). Detection of the polymeric dispersants was accomplished by evaporative light scattering detector (ELSD). A large ID (8.0 mm) SEC column used in common one-dimensional SEC practices was directly adopted in the 2D setup for rapid method development. A close representation of fully comprehensive 2D separation was achieved even with 60% of 1D eluent diverted to waste, demonstrating the flexibility and versatility of having SEC in 1D for two dimensional separation of polymers. Important method parameters, such as 2D column dimensions and flow rate, gradient conditions, and buffer pH were studied. Practical aspects of routine industrial applications such as solvent consumption and analysis time were also considered. This method was exploited for quick identification of polymeric dispersants in commercial detergent samples. Nine detergent samples were screened and polymeric dispersants and additional polymer features were detected in the samples.
Collapse
Affiliation(s)
- Peilin Yang
- The Dow Chemical Company, Analytical Sciences, Collegeville, PA 19426, USA.
| | - Wei Gao
- The Dow Chemical Company, Analytical Sciences, Collegeville, PA 19426, USA
| | - Jan E Shulman
- The Dow Chemical Company, Home and Personal Care, Collegeville, PA 19426, USA
| | - Yunshen Chen
- The Dow Chemical Company, Home and Personal Care, Collegeville, PA 19426, USA
| |
Collapse
|
41
|
Lee S, Choi H, Chang T, Staal B. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers. Anal Chem 2018; 90:6259-6266. [DOI: 10.1021/acs.analchem.8b00913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sanghoon Lee
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Heejae Choi
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Taihyun Chang
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Bastiaan Staal
- Competence Center Analytics, BASF SE, Ludwigshafen, 67056, Germany
| |
Collapse
|
42
|
Determination of polymeric impurities in asunaprevir drug substance and product using size exclusion effect of reversed-phase columns. J Pharm Biomed Anal 2018; 151:200-208. [DOI: 10.1016/j.jpba.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/21/2022]
|
43
|
Epping R, Panne U, Falkenhagen J. Power of Ultra Performance Liquid Chromatography/Electrospray Ionization-MS Reconstructed Ion Chromatograms in the Characterization of Small Differences in Polymer Microstructure. Anal Chem 2018; 90:3467-3474. [DOI: 10.1021/acs.analchem.7b05214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruben Epping
- Bundesanstalt für Materialforschung und−prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ulrich Panne
- Bundesanstalt für Materialforschung und−prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
- Chemistry Department, Humboldt Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Jana Falkenhagen
- Bundesanstalt für Materialforschung und−prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
44
|
Size exclusion chromatography of lignin: The mechanistic aspects and elimination of undesired secondary interactions. J Chromatogr A 2018; 1534:101-110. [DOI: 10.1016/j.chroma.2017.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
|
45
|
Caltabiano AM, Foley JP, Striegel AM. Aqueous size-exclusion chromatography of polyelectrolytes on reversed-phase and hydrophilic interaction chromatography columns. J Chromatogr A 2017; 1532:161-174. [PMID: 29248345 DOI: 10.1016/j.chroma.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
The size-exclusion separation of a water-soluble polyelectrolyte polymer, sodium polystyrene sulfonate (NaPSS), was demonstrated on common reversed-phase (C18, C4, phenyl, and cyano) and hydrophilic interaction chromatography (HILIC) columns. The effect of common solvents - acetonitrile (ACN), tetrahydrofuran (THF), and methanol (MeOH), used as mobile phase modifiers - on the elution of NaPSS and the effect of column temperature (within a relatively narrow range corresponding to typical chromatographic conditions, i.e., 10 °C-60 °C) on the partition coefficient, KSEC, were also investigated. Non-size-exclusion chromatography (non-SEC) effects can be minimized by the addition of an electrolyte and an organic modifier to the mobile phase, and by increasing the column temperature (e.g., to 50 °C or 60 °C). Strong solvents such as THF and ACN are more successful in the reduction of such effects than is the weaker solvent MeOH. The best performance is seen on medium polarity and polar stationary phases, such as cyanopropyl- and diol-modified silica (HILIC), where the elution of the NaPSS polyelectrolyte is by a near-ideal SEC mechanism. Hydrophobic stationary phases, such as C18, C4, and phenyl, require a higher concentration of a strong solvent modifier (THF) in the mobile phase to reduce non-SEC interactions of the solute with the stationary phase.
Collapse
Affiliation(s)
- Anna M Caltabiano
- Analytical Sciences and Development, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA; Department of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Joe P Foley
- Department of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - André M Striegel
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), 100 Bureau Drive, MS 8392, Gaithersburg, MD, 20899‑8392, USA
| |
Collapse
|
46
|
Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 2017; 41:68-98. [PMID: 29027363 PMCID: PMC5814945 DOI: 10.1002/jssc.201700863] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022]
Abstract
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations.
Collapse
Affiliation(s)
- Bob W J Pirok
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,TI-COAST, Science Park, Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Brzonova I, Asina F, Andrianova AA, Kubátová A, Smoliakova IP, Kozliak EI, Ji Y. Fungal Biotransformation of Insoluble Kraft Lignin into a Water Soluble Polymer. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ivana Brzonova
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Fnu Asina
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Anastasia A. Andrianova
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Alena Kubátová
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Irina P. Smoliakova
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Evguenii I. Kozliak
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yun Ji
- Department of Chemical Engineering and ‡Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
48
|
Abdul-Karim R, Musharraf SG, Malik MI. Synthesis and Characterization of Novel Biodegradable Di- and Tri-Block Copolymers Based on Ethylene Carbonate Polymer as Hydrophobic Segment. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rubina Abdul-Karim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi; Karachi 75270 Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi; Karachi 75270 Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi; Karachi 75270 Pakistan
| |
Collapse
|
49
|
Speedy standing wave design, optimization, and scaling rules of simulated moving bed systems with linear isotherms. J Chromatogr A 2017; 1493:19-40. [DOI: 10.1016/j.chroma.2017.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 11/16/2022]
|
50
|
Lee S, Lee H, Chang T, Hirao A. Synthesis and Characterization of an Exact Polystyrene-graft-polyisoprene: A Failure of Size Exclusion Chromatography Analysis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sanghoon Lee
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hyojoon Lee
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taihyun Chang
- Division
of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Akira Hirao
- Polymeric
and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department
of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|