1
|
Gomes ARQ, Cruz JN, Castro ALG, Cordovil Brigido HP, Varela ELP, Vale VV, Carneiro LA, Ferreira GG, Percario S, Dolabela MF. Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb. Molecules 2023; 28:5557. [PMID: 37513429 PMCID: PMC10385196 DOI: 10.3390/molecules28145557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
From Eleutherine plicata, naphthoquinones, isoeleutherine, and eleutherol were isolated, and previous studies have reported the antioxidant activity of these metabolites. The present work evaluated the role of oxidative changes in mice infected with Plasmodium berghei and treated with E. plicata extract, fraction, and isolated compounds, as well as to verify possible oxidative changes induced by these treatments. E. plicata extracts were prepared from powder from the bulbs, which were submitted to maceration with ethanol, yielding the extract (EEEp), which was fractionated under reflux, and the dichloromethane fraction (FDMEp) was submitted for further fractionation, leading to the isolation of isoeleutherine, eleutherine, and eleutherol. The antimalarial activity was examined using the suppressive test, evaluating the following parameters of oxidative stress: trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH). Furthermore, the molecular docking of naphthoquinones, eleutherol, eleutherine, and isoeleutherine interactions with antioxidant defense enzymes was investigated, which was favorable for the formation of the receptor-ligand complex, according to the re-rank score values. Eleutherine and isoeleutherine are the ones with the lowest binding energy for catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx1), showing themselves as possible targets of these molecules in the involvement of redox balance. Data from the present study showed that treatments with E. plicata stimulated an increase in antioxidant capacity and a reduction in oxidative stress in mice infected with P. berghei, with naphthoquinones being responsible for reducing oxidative changes and disease severity.
Collapse
Affiliation(s)
- Antônio Rafael Quadros Gomes
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
- Oxidative Stress Research Lab, Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Jorddy Neves Cruz
- Postgraduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Ana Laura Gadelha Castro
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Heliton Patrick Cordovil Brigido
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Lab, Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | | | - Gleison Gonçalves Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Sandro Percario
- Oxidative Stress Research Lab, Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Para, Belem 66075-110, PA, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Para, Belem 66075-110, PA, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Para, Belem 66075-110, PA, Brazil
| |
Collapse
|
2
|
Pauli FP, Freitas CS, Pereira PR, Magalhães A, de Carvalho da Silva F, Paschoalin VMF, Ferreira VF. Exploring the Antimicrobial and Antitumoral Activities of Naphthoquinone-Grafted Chitosans. Polymers (Basel) 2023; 15:polym15061430. [PMID: 36987212 PMCID: PMC10053705 DOI: 10.3390/polym15061430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Biopolymers obtained from natural macromolecules are noteworthy among materials presenting high biocompatibility and adequate biodegradability, as is the case of chitosan (CS), making this biopolymeric compound a suitable drug delivery system. Herein, chemically-modified CS were synthetized using 2,3-dichloro-1,4-naphthoquinone (1,4-NQ) and the sodium salt of 1,2-naphthoquinone-4-sulfonic acid (1,2-NQ), producing 1,4-NQ-CS and 1,2-NQ-CS by three different methods, employing an ethanol and water mixture (EtOH:H2O), EtOH:H2O plus triethylamine and dimethylformamide. The highest substitution degree (SD) of 0.12 was achieved using water/ethanol and triethylamine as the base for 1,4-NQ-CS and 0.54 for 1,2-NQ-CS. All synthesized products were characterized by FTIR, elemental analysis, SEM, TGA, DSC, Raman, and solid-state NMR, confirming the CS modification with 1,4-NQ and 1,2-NQ. Chitosan grafting to 1,4-NQ displayed superior antimicrobial activities against Staphylococcus aureus and Staphylococcus epidermidis associated with improved cytotoxicity and efficacy, indicated by high therapeutic indices, ensuring safe application to human tissue. Although 1,4-NQ-CS inhibited the growth of human mammary adenocarcinoma cells (MDA-MB-231), it is accompanied by cytotoxicity and should be considered with caution. The findings reported herein emphasize that 1,4-NQ-grafted CS may be useful in protecting injured tissue against bacteria, commonly found in skin infections, until complete tissue recovery.
Collapse
Affiliation(s)
- Fernanda Petzold Pauli
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, Brazil;
| | - Cyntia Silva Freitas
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
| | - Patricia Ribeiro Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
| | - Alviclér Magalhães
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | | | - Vania M. F. Paschoalin
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
- Correspondence: (V.M.F.P.); (V.F.F.)
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, Brazil;
- Correspondence: (V.M.F.P.); (V.F.F.)
| |
Collapse
|
3
|
Ribeiro RCB, Ferreira PG, Borges ADA, Forezi LDSM, da Silva FDC, Ferreira VF. 1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis. Beilstein J Org Chem 2022; 18:53-69. [PMID: 35047082 PMCID: PMC8744465 DOI: 10.3762/bjoc.18.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Several low molecular weight naphthoquinones are very useful in organic synthesis. These compounds have given rise to thousands of other naphthoquinones that have been tested against various microorganisms and pharmacological targets, including being used in the preparation of several drugs that are on the pharmaceutical market. Among these naphthoquinones, the series of compounds prepared from 1,2-naphthoquinone-4-sulfonic acid salts (β-NQS) stands out. In addition to being used in organic synthesis, they are excellent analytical derivatization reagents to spectrophotometrically determine drugs containing primary and secondary amino groups. This review summarizes the literature involving β-NQS.
Collapse
Affiliation(s)
- Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Patricia G Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| | - Amanda de A Borges
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| |
Collapse
|
4
|
Silva LR, Guimarães AS, do Nascimento J, do Santos Nascimento IJ, da Silva EB, McKerrow JH, Cardoso SH, da Silva-Júnior EF. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 2021; 41:116213. [PMID: 33992862 DOI: 10.1016/j.bmc.2021.116213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022]
Abstract
Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Ari Souza Guimarães
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Jadiely do Nascimento
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Igor José do Santos Nascimento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Elany Barbosa da Silva
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - James H McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
5
|
Castro ALG, Cruz JN, Sodré DF, Correa-Barbosa J, Azonsivo R, de Oliveira MS, de Sousa Siqueira JE, da Rocha Galucio NC, de Oliveira Bahia M, Burbano RMR, do Rosário Marinho AM, Percário S, Dolabela MF, Vale VV. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
7
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
8
|
Dias FR, Novais JS, Devillart TADNS, da Silva WA, Ferreira MO, Loureiro RDS, Campos VR, Ferreira VF, de Souza MC, Castro HC, Cunha AC. Synthesis and antimicrobial evaluation of amino sugar-based naphthoquinones and isoquinoline-5,8-diones and their halogenated compounds. Eur J Med Chem 2018; 156:1-12. [DOI: 10.1016/j.ejmech.2018.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
|
9
|
Stereoselective synthesis of 1,2-annulated-C-Aryl glycosides from carbohydrate-derived terminally unsubstituted dienes and arynes: Application towards synthesis of sugar-fused- or branched- naphthalenes, and C-Aryl glycosides. Carbohydr Res 2018; 465:29-34. [DOI: 10.1016/j.carres.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/03/2023]
|
10
|
Synthesis and antitumor evaluation of hybrids of 5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and carbohydrates. Future Med Chem 2018; 10:527-540. [DOI: 10.4155/fmc-2017-0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: Cancer has emerged as a growing public health problem in many parts of the world. Methodology: We describe the synthesis of a series of carbohydrate-based isoquinoline-5,8-diones through the 1,4-addition reaction between 5,8-dioxo-5,8-dihydroisoquinoline and aminocarbohydrates. Halogenated quinones were also synthesized. Their inhibitory effects on the proliferation of human cancer cell lines were studied. Results & conclusion: The most promising compound, derived from isoquinoline-5,8-dione, containing ribofuranosidyl ring, was selectively active in vitro against H1299 cancer cells, with 1.7-fold higher activity than that of vinorelbine tartrate. This result suggests that the glycoconjugate in question may constitute a valuable lead compound to design and synthesize a more active and less toxic derivative with respect to the development of a new antitumor substance.
Collapse
|
11
|
Pokhilo ND, Atopkina LN, Kiseleva MI, Denisenko VA, Anufriev VP. Synthesis and Cytotoxic Evaluation of Glucoconjugated Ethylmompain Derivatives. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quinone-carbohydrate conjugates of ethylmompain, a pigment of the sea urchin Echinothrix diadema, and its chlorinated analog were synthesized. The cytotoxic activity and contraceptive properties of the synthesized compounds have been investigated using the sperm and eggs of the sea urchin Strongylocentrotus intermedius.
Collapse
Affiliation(s)
- Natalia D. Pokhilo
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022, Vladivostok, Prospect 100 let Vladivostoku, 159, Russia
| | - Lyubov N. Atopkina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022, Vladivostok, Prospect 100 let Vladivostoku, 159, Russia
| | - Marina I. Kiseleva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022, Vladivostok, Prospect 100 let Vladivostoku, 159, Russia
| | - Vladimir A. Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022, Vladivostok, Prospect 100 let Vladivostoku, 159, Russia
| | - Victor Ph. Anufriev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022, Vladivostok, Prospect 100 let Vladivostoku, 159, Russia
| |
Collapse
|
12
|
Novais JS, Campos VR, Silva ACJA, de Souza MCB, Ferreira VF, Keller VGL, Ferreira MO, Dias FRF, Vitorino MI, Sathler PC, Santana MV, Resende JALC, Castro HC, Cunha AC. Synthesis and antimicrobial evaluation of promising 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and their halogenated amino compounds for treating Gram-negative bacterial infections. RSC Adv 2017. [DOI: 10.1039/c7ra00825b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work we described the synthesis and antimicrobial evaluation of 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates derivatives that exhibited remarkable activity against two Gram-negative strains of clinical importance.
Collapse
|
13
|
da S Souza LG, Almeida MCS, Lemos TLG, Ribeiro PRV, de Brito ES, Silva VLM, Silva AMS, Braz-Filho R, Costa JGM, Rodrigues FFG, Barreto FS, de Moraes MO. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes. Bioorg Med Chem Lett 2015; 26:435-439. [PMID: 26684850 DOI: 10.1016/j.bmcl.2015.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022]
Abstract
Biflorin 1 is a biologically active quinone, isolated from Capraria biflora. Five new biflorin-based nitrogen derivatives were synthesized, of which two were mixtures of (E)- and (Z)- isomers: (Z)-2a, (Z)-2b, (Z)-3a, (Z)- and (E)-3b, (Z)- and (E)-3c. The antibacterial activity was investigated using the microdilution method for determining the minimum inhibitory concentration (MIC) against six bacterial strains. Tests have shown that these derivatives have potential against all bacterial strains. The cytotoxic activity was also evaluated against three strains of cancer cells, but none of the derivatives showed activity.
Collapse
Affiliation(s)
- Luciana G da S Souza
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil
| | - Macia C S Almeida
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil
| | - Telma L G Lemos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, CE, Brazil.
| | - Paulo R V Ribeiro
- Embrapa Agroindustria Tropical, R Dra Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Edy S de Brito
- Embrapa Agroindustria Tropical, R Dra Sara Mesquita, 2270, 60511-110 Fortaleza, CE, Brazil
| | - Vera L M Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - José G M Costa
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Fábio F G Rodrigues
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-000 Crato, CE, Brazil
| | - Francisco S Barreto
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| | - Manoel O de Moraes
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270 Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 2015. [DOI: 10.1039/c4ra13547d] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Naphthoquinone moieties are present in drugs such as doxorubicin which are used clinically to treat solid cancers.
Collapse
|
15
|
Singh VK, Verma SK, Kadu R, Mobin SM. Identification of unusual C–Cl⋯π contacts in 2-(alkylamino)-3-chloro-1,4-naphthoquinones: effect of N-substituents on crystal packing, fluorescence, redox and anti-microbial properties. RSC Adv 2015. [DOI: 10.1039/c5ra02295a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
XRD study demonstrates the opening of unusual C–Cl⋯π synthon in 2-(alkylamino)-3-chloro-1,4-naphthoquinone. Notably, compound holding N-pyridylmethyl exhibits enhanced activity against S. aureus and proved to be more potent than ciprofloxacin.
Collapse
Affiliation(s)
- Vinay K. Singh
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Sanjay K. Verma
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Rahul Kadu
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Shaikh M. Mobin
- National Single Crystal X-ray Diffraction Facility
- IIT Bombay
- Mumbai 400 076
- India
| |
Collapse
|
16
|
Campos VR, Cunha AC, Silva WA, Ferreira VF, Santos de Sousa C, Fernandes PD, Moreira VN, da Rocha DR, Dias FRF, Montenegro RC, de Souza MCBV, Boechat FDCS, Franco CFJ, Resende JALC. Synthesis of a new class of naphthoquinone glycoconjugates and evaluation of their potential as antitumoral agents. RSC Adv 2015. [DOI: 10.1039/c5ra19192k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel series of carbohydrate-based naphthoquinones was synthesized and evaluated for cytotoxicity against different human cancer cell lines (HCT-116, A-549 and MDA-MB 435). The compounds derived from juglone showed better cytotoxicity profiles.
Collapse
|
17
|
Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
de Castro SL, Emery FS, da Silva Júnior EN. Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones. Eur J Med Chem 2013; 69:678-700. [PMID: 24095760 DOI: 10.1016/j.ejmech.2013.07.057] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
Naphthoquinoidal compounds are of great interest in medicinal chemistry. In recent years, several synthetic routes have been developed to obtain bioactive molecules derived from lapachones. In this mini-review, we focus on the synthetic aspects and strategies used to design these compounds and on the biological activities of these substances for the development of drugs against the neglected diseases leishmaniasis and Chagas disease as well as malaria, tuberculosis and cancer. Three strategies used to develop bioactive naphthoquinoidal compounds are discussed: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Among these strategies, reactions such as copper-catalysed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, and heterocyclisations will be discussed for the development of naphthoquinoidal compounds against Trypanosoma cruzi, Leishmania and cancer. The aim of derivatisation is the generation of novel molecules that inhibit cellular organelles/processes, generate reactive oxygen species (ROS) and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against neglected diseases and cancer.
Collapse
Affiliation(s)
- Solange L de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|