1
|
Michaut M, Hoegy F, Steffen A, Contreras JM, Morice C, Plésiat P, Mislin GLA. 1,2,3-Triazole‑gold(I)-triethylphosphine derivatives of nutrients as new antimicrobials against antibiotic resistant Gram-positive pathogens. Bioorg Med Chem Lett 2025; 125-126:130276. [PMID: 40378927 DOI: 10.1016/j.bmcl.2025.130276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
The ongoing rise of bacterial resistance against antibiotics is an incentive to develop radically new antibacterial molecules. Innovative organo-gold(I) antibacterial compounds were synthesized by click chemistry with triethylphosphine‑gold(I) azides and alkyne-functionalized metabolites like amino acids, nicotinic acid and biotin. The resulting organo‑gold(I) compounds exhibited remarkable activities against a panel of Gram-positive pathogens (Staphyloccocus sp., Enterococcus sp. and Clostridium difficile) but failed to inhibit the growth of Gram-negative bacilli (e.g., Escherichia coli) under the conditions used (8 μg. mL-1 maximum).
Collapse
Affiliation(s)
- Mathieu Michaut
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Françoise Hoegy
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Alexandre Steffen
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Jean-Marie Contreras
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Christophe Morice
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR 6249 CNRS Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
2
|
Steinbrueck A, Reback ML, Rumancev C, Siegmund D, Garrevoet J, Falkenberg G, Rosenhahn A, Prokop A, Metzler‐Nolte N. Quinizarin Gold(I) N-Heterocyclic Carbene Complexes with Synergistic Activity Against Anthracycline-Resistant Leukaemia Cells: Synthesis and Biological Activity Studies. Chemistry 2025; 31:e202404147. [PMID: 39757433 PMCID: PMC11840658 DOI: 10.1002/chem.202404147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Indexed: 01/07/2025]
Abstract
New, asymmetric quinizarin-Au(I)-NHC complexes were designed, isolated, and fully characterised including by single crystal X-ray crystallography. Cytotoxicity studies showed effective growth inhibition in HeLa cervical cancer cells with IC50 values ranging from 2.4 μM to 5.3 μM. The successful cellular uptake was evidenced by X-ray fluorescence imaging on cryo-preserved whole HeLa cells and the sub-cellular localisation was monitored by live-cell fluorescence microscopy. Notably, complex 2 b showed circumvention of acquired anthracycline resistance in K562 leukaemia cells as well as synergistic activity with doxorubicin against both wild-type and anthracycline-resistant Nalm-6 leukaemia cells. Interestingly, sub-cellular localisation towards mitochondria proved to be more important than the compounds' overall cytotoxicity for potent antiproliferative activity and to achieve effective resistance circumvention.
Collapse
Affiliation(s)
- Axel Steinbrueck
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Matthew L. Reback
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Christoph Rumancev
- Faculty of Chemistry and BiochemistryAnalytical Chemistry – BiointerfacesRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Daniel Siegmund
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
- Division EnergyFraunhofer UMSICHT, Osterfelder Str. 346047OberhausenGermany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, 22607HamburgGermany
| | | | - Axel Rosenhahn
- Faculty of Chemistry and BiochemistryAnalytical Chemistry – BiointerfacesRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| | - Aram Prokop
- Department of Pediatric Hematology/OncologyHelios Clinics SchwerinWismarsche Straße 393–39719055SchwerinGermany
- Department of Human Medicine, MSH Medical SchoolHamburg, University of Applied Sciences and Medical UniversityAm Kaiserkai 120457HamburgGermany
| | - Nils Metzler‐Nolte
- Faculty of Chemistry and BiochemistryInorganic Chemistry I – Bioinorganic ChemistryRuhr University Bochum, Universitaetsstrasse 15044801BochumGermany
| |
Collapse
|
3
|
Richter LF, Marques F, Correia JDG, Pöthig A, Kühn FE. Exploiting click-chemistry: backbone post-functionalisation of homoleptic gold(I) 1,2,3-triazole-5-ylidene complexes. Dalton Trans 2023; 52:17185-17192. [PMID: 37942578 DOI: 10.1039/d3dt03052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The synthesis of a homoleptic azide-functionalised Au(I) bis-1,2,3-triazole-5-ylidene complex is reported, starting from a backbone-modified 1,2,3-triazolium salt ligand precursor. The incorporated azide handle allows for a straightforward modification of the complex according to click-chemistry protocols without impacting the steric shielding around the metal center, demonstrating the superiority of the presented triazole ligand framework over imidazole based systems. Employing the SPAAC and the CuAAC reactions, post-modification of the complex is facilitated with two model substrates, while retaining very high antiproliferative activity (nanomolar range IC50 values) in A2780 and MCF-7 human cancer cells.
Collapse
Affiliation(s)
- Leon F Richter
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Centre, Molecular Catalysis, Lichtenbergstr. 4, 85748, Garching bei München, Germany.
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Alexander Pöthig
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry; Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Fritz E Kühn
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Centre, Molecular Catalysis, Lichtenbergstr. 4, 85748, Garching bei München, Germany.
| |
Collapse
|
4
|
Moreth D, Hörner G, Müller VVL, Geyer L, Schatzschneider U. Isostructural Series of Ni(II), Pd(II), Pt(II), and Au(III) Azido Complexes with a N^C^N Pincer Ligand to Elucidate Trends in the iClick Reaction Kinetics and Structural Parameters of the Triazolato Products. Inorg Chem 2023; 62:16000-16012. [PMID: 37728290 DOI: 10.1021/acs.inorgchem.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An isoelectronic and isostructural series of cyclometalated azido complexes [M(N3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) based on the N^C^N pincer ligand 1,3-di(2-pyridyl)phenide (dpb) was characterized by X-ray diffraction analysis and investigated for reactivity in the iClick reaction with a wide range of internal and terminal alkynes by using 1H and 19F NMR spectroscopy. Reaction rate constants were found to increase with greater charge density in the order Ni(II) > Pd(II) > Pt(II) > Au(III). Terminal alkynes R-C≡C-R' with strongly electron-withdrawing groups R and R' exhibited faster kinetics than those with electron-donating substituents in the order CF3 > ketone > ester > H > phenyl ≫ amide, while R = CH3 resulted in complete loss of reactivity. Four symmetrical triazolato complexes [M(triazolatoCOOCH3,COOCH3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) as well as four nonsymmetrically substituted triazolato complexes [Pt(triazolatoR,R')(dpb)] originating from terminal and internal alkynes were shown by X-ray crystal structure analysis to exclusively feature N2-coordination of the five-membered ring ligand. However, the Pt(II) triazolato complexes exist as a mixture of N1- and N2-coordinated species in solution. Torsion angles between the mean planes of the N^C^N pincer and the triazolato ligand increase from a nearly coplanar to a perpendicular arrangement when going from Au(III)/Pt(II)/Pd(II) to Ni(II), while different substituents R and R' on the alkyne have no influence on the torsion angle and were rationalized by DFT calculations. Finally, a carbohydrate derivative obtained by glucuronic acid conjugation to methyl propiolate demonstrates the facile biofunctionalization of metal complexes via the iClick reaction.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lucia Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
5
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
6
|
Marciano Y, del Solar V, Nayeem N, Dave D, Son J, Contel M, Ulijn RV. Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. J Am Chem Soc 2023; 145:234-246. [PMID: 36542079 PMCID: PMC10720394 DOI: 10.1021/jacs.2c09820] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds 1 and 2) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge. Peptide sequence strongly dictates the supramolecular packing within the aromatic core, which in turn dictates drug loading. Anionic peptide filaments can effectively load 1, and to a lesser extent 2, while their cationic counterparts could not, collectively demonstrating that loading efficiency is dictated by both aromatic and electrostatic (mis)matching between drug and peptide. Peptide nanofilaments were nontoxic to cancerous and noncancerous cells. By contrast, those loaded with 1 and 2 displayed enhanced cytotoxicity in comparison to 1 and 2 alone, when exposed to Caki-1 and MDA-MB-231 cancerous cell lines, while no cytotoxicity was observed in noncancerous lung fibroblasts, IMR-90. We propose that the enhanced in vitro activity results from the enhanced proteolytic activity in the vicinity of the cancer cells, thereby breaking the filaments into drug-bound peptide fragments that are taken up by these cells, resulting in enhanced cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Virginia del Solar
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dhwanit Dave
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Rein V. Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Arbia Y, Abtouche S, Dahmane M, Brahimi M. New Au(III)- and Fe(III)-based complexes of bio-pharmacological interest: DFT and in silico studies. Theor Chem Acc 2023; 142:4. [DOI: 10.1007/s00214-022-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/26/2022]
|
8
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
9
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
10
|
Abramova EO, Paderina AV, Slavova SO, Kostenko EA, Eliseenkov EV, Petrovskii SK, Gitlina AY, Boyarskiy VP, Grachova EV. Just Add the Gold: Aggregation-Induced-Emission Properties of Alkynylphosphinegold(I) Complexes Functionalized with Phenylene-Terpyridine Subunits. Inorg Chem 2021; 60:18715-18725. [PMID: 34823354 DOI: 10.1021/acs.inorgchem.1c02125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππ stacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer" with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.
Collapse
Affiliation(s)
- Evgenia O Abramova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra V Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Sofia O Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ekaterina A Kostenko
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Eugene V Eliseenkov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Stanislav K Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anastasia Yu Gitlina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vadim P Boyarskiy
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
11
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Peng K, Moreth D, Schatzschneider U. C^N^N Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
13
|
Zhou XQ, Carbo-Bague I, Siegler MA, Hilgendorf J, Basu U, Ott I, Liu R, Zhang L, Ramu V, IJzerman AP, Bonnet S. Rollover Cyclometalation vs Nitrogen Coordination in Tetrapyridyl Anticancer Gold(III) Complexes: Effect on Protein Interaction and Toxicity. JACS AU 2021; 1:380-395. [PMID: 34056633 PMCID: PMC8154207 DOI: 10.1021/jacsau.0c00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 05/05/2023]
Abstract
In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H2biqbpy1 and H2biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1]+, two pyridyl rings coordinate to the metal via a Au-C bond (C∧N∧N∧C coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2]+ all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond (N∧N∧N∧N coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [3H]dofetilide equally well from cell membranes expressing the Kv11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H2biqbpy1 and H2biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H2biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Imma Carbo-Bague
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jonathan Hilgendorf
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Uttara Basu
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Rongfang Liu
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Liyan Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Vadde Ramu
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
15
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
16
|
Luengo A, Marzo I, Reback M, Daubit IM, Fernández‐Moreira V, Metzler‐Nolte N, Gimeno MC. Luminescent Bimetallic Ir III /Au I Peptide Bioconjugates as Potential Theranostic Agents. Chemistry 2020; 26:12158-12167. [PMID: 32542887 PMCID: PMC7540463 DOI: 10.1002/chem.202002067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Indexed: 01/11/2023]
Abstract
Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2 (Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au-C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au-S(cysteine) bond may be more readily cleaved in a biological environment than the Au-C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.
Collapse
Affiliation(s)
- Andrés Luengo
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Matthew Reback
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Isabelle M. Daubit
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Vanesa Fernández‐Moreira
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Nils Metzler‐Nolte
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - M. Concepción Gimeno
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
17
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020; 59:11046-11052. [DOI: 10.1002/anie.202000528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
18
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
19
|
Peng K, Einsele R, Irmler P, Winter RF, Schatzschneider U. The iClick Reaction of a BODIPY Platinum(II) Azido Complex with Electron-Poor Alkynes Provides Triazolate Complexes with Good 1O2 Sensitization Efficiency. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Richard Einsele
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Meier-Menches SM, Casini A. Design Strategies and Medicinal Applications of Metal-Peptidic Bioconjugates. Bioconjug Chem 2020; 31:1279-1288. [DOI: 10.1021/acs.bioconjchem.0c00152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
21
|
Michaut M, Steffen A, Contreras JM, Morice C, Paulen A, Schalk IJ, Plésiat P, Mislin GLA. Chryso-lactams:Gold(I) derivatives of ampicillin with specific activity against Gram-positive pathogens. Bioorg Med Chem Lett 2020; 30:127098. [PMID: 32173196 DOI: 10.1016/j.bmcl.2020.127098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Michaut
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Steffen
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Jean-Marie Contreras
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Christophe Morice
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Aurélie Paulen
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Isabelle J Schalk
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR 6249 CNRS Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
22
|
Metal complexes for mitochondrial bioimaging. J Inorg Biochem 2020; 204:110985. [DOI: 10.1016/j.jinorgbio.2019.110985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
|
23
|
Truong D, Sullivan MP, Tong KKH, Steel TR, Prause A, Lovett JH, Andersen JW, Jamieson SMF, Harris HH, Ott I, Weekley CM, Hummitzsch K, Söhnel T, Hanif M, Metzler-Nolte N, Goldstone DC, Hartinger CG. Potent Inhibition of Thioredoxin Reductase by the Rh Derivatives of Anticancer M(arene/Cp*)(NHC)Cl 2 Complexes. Inorg Chem 2020; 59:3281-3289. [PMID: 32073260 DOI: 10.1021/acs.inorgchem.9b03640] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metal complexes provide a versatile platform to develop novel anticancer pharmacophores, and they form stable compounds with N-heterocyclic carbene (NHC) ligands, some of which have been shown to inhibit the cancer-related selenoenzyme thioredoxin reductase (TrxR). To expand a library of isostructural NHC complexes, we report here the preparation of RhIII- and IrIII(Cp*)(NHC)Cl2 (Cp* = η5-pentamethylcyclopentadienyl) compounds and comparison of their properties to the RuII- and OsII(cym) analogues (cym = η6-p-cymene). Like the RuII- and OsII(cym) complexes, the RhIII- and IrIII(Cp*) derivatives exhibit cytotoxic activity with half maximal inhibitory concentration (IC50) values in the low micromolar range against a set of four human cancer cell lines. In studies on the uptake and localization of the compounds in cancer cells by X-ray fluorescence microscopy, the Ru and Os derivatives were shown to accumulate in the cytoplasmic region of treated cells. In an attempt to tie the localization of the compounds to the inhibition of the tentative target TrxR, it was surprisingly found that only the Rh complexes showed significant inhibitory activity at IC50 values of ∼1 μM, independent of the substituents on the NHC ligand. This indicates that, although TrxR may be a potential target for anticancer metal complexes, it is unlikely the main target or the sole target for the Ru, Os, and Ir compounds described here, and other targets should be considered. In contrast, Rh(Cp*)(NHC)Cl2 complexes may be a scaffold for the development of TrxR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Andre Prause
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany
| | | | | | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany
| | - Claire M Weekley
- Bio21 Institute and Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne 3052, VIC, Australia
| | | | | | | | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, Bochum 44801, Germany
| | | | | |
Collapse
|
24
|
Beto CC, Zeman CJ, Yang Y, Bullock JD, Holt ED, Kane AQ, Makal TA, Yang X, Ghiviriga I, Schanze KS, Veige AS. An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorg Chem 2020; 59:1893-1904. [PMID: 31961144 DOI: 10.1021/acs.inorgchem.9b03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paper focuses on exploiting aurophilic bonding to produce white light emitting materials. Inorganic Click (iClick) is employed to link two or four Au(I) metal ions through a triazolate bridge. Depending on the choice of phosphine ligand (PEt3 or PPh3), dinuclear Au2-FO or tetranuclear Au4-FO complexes can be controllably synthesized (FO = 2-(9,9-dioctylfluoreneyl-)). The iClick products Au2-FO and Au4-FO are characterized by combustion analysis and multinuclear NMR, TOCSY 1D, 1H-13C gHMBC, and 1H-13C gHSQC. In addition, the photophysical properties of Au2-FO and Au4-FO were examined in THF solution. Transient absorption spectroscopy was employed to elucidate the excited state features of the gold compounds. Solution processed OLEDs were fabricated and characterized, which gave white light electroluminescence with CIE coordinates (0.34, 0.36), as seen referenced to CIE standard illuminant D65 (0.31, 0.32). TDDFT computational analysis of Au2-FO and Au4-FO reveals the origin of light emission. In the case of Au4-FO, direct excitation leads to increased aurophilic bonding in the excited state, and as a result the emission profile is broadened to cover a larger region of the visible spectrum, thus giving white light emission. Designing molecules that can access or increase aurophilic bonding in the excited state provides another tool for fine-tuning the emission profiles of gold complexes.
Collapse
Affiliation(s)
- Christopher C Beto
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Charles J Zeman
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Yajing Yang
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - James D Bullock
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ethan D Holt
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Alexander Q Kane
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Tegan A Makal
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Xi Yang
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Kirk S Schanze
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| |
Collapse
|
25
|
Chemistry, structure, and biological roles of Au-NHC complexes as TrxR inhibitors. Bioorg Chem 2020; 95:103552. [DOI: 10.1016/j.bioorg.2019.103552] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
|
26
|
Serebryanskaya TV, Kinzhalov MA, Bakulev V, Alekseev G, Andreeva A, Gushchin PV, Protas AV, Smirnov AS, Panikorovskii TL, Lippmann P, Ott I, Verbilo CM, Zuraev AV, Bunev AS, Boyarskiy VP, Kasyanenko NA. Water soluble palladium(ii) and platinum(ii) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj00060d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water soluble Pd(ii) and Pt(ii)–ADC species synthesized via the metal-mediated coupling of isocyanides and 1,2-diaminobenzene have demonstrated antitumor potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taras L. Panikorovskii
- Saint Petersburg State University
- St. Petersburg
- Russia
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic
- Kola Science Centre
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- D-38106 Braunschweig
- Germany
| | - Cyril M. Verbilo
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander V. Zuraev
- Research Institute for Physical Chemical Problems
- Belarusian State University
- 220006 Minsk
- Belarus
| | - Alexander S. Bunev
- Medicinal Chemistry Center
- Togliatti State University
- 445020 Togliatti
- Russia
| | | | | |
Collapse
|
27
|
Salmain M, Fischer-Durand N, Rudolf B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michèle Salmain
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Nathalie Fischer-Durand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Bogna Rudolf
- Department of Organic Chemistry; Faculty of Chemistry; University of Lodz; 91-403 Lodz Poland
| |
Collapse
|
28
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
29
|
Ko CN, Li G, Leung CH, Ma DL. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Curado N, Dewaele-Le Roi G, Poty S, Lewis JS, Contel M. Trastuzumab gold-conjugates: synthetic approach and in vitro evaluation of anticancer activities in breast cancer cell lines. Chem Commun (Camb) 2019; 55:1394-1397. [PMID: 30632546 PMCID: PMC6691192 DOI: 10.1039/c8cc08769e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the preparation of gold(i)-compounds that are amenable to efficient bioconjugation with monoclonal antibodies via activated ester or maleimide linkers. New Trastuzumab-gold conjugates were synthesized and fully characterized. These bioconjugates are significantly more cytotoxic (sub-micromolar range) to HER2-positive breast cancer cells than the gold complexes and Trastuzumab.
Collapse
Affiliation(s)
- Natalia Curado
- Department of Chemistry Brooklyn College, The City University of New York Brooklyn, NY, 11210, USA.
| | | | | | | | | |
Collapse
|
31
|
Yao K, Bertran A, Morgan J, Hare SM, Rees NH, Kenwright AM, Edkins K, Bowen AM, Farrer NJ. A novel Pt(iv) mono azido mono triazolato complex evolves azidyl radicals following irradiation with visible light. Dalton Trans 2019; 48:6416-6420. [PMID: 31012460 PMCID: PMC6984332 DOI: 10.1039/c9dt01156k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel PtIV azido triazolato complex exists as an equilibrium between two species in d3-MeCN and evolves azide radicals (but not hydroxide radicals) when irradiated with visible light.
The platinum(iv) azido complex trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (1) undergoes cycloaddition with 1,4-diphenyl-2-butyne-1,4-dione (2) under mild, catalyst-free conditions, affording a number of mono and bis click products. The major mono click product (3) exists in MeCN as an equilibrium mixture between two species; 3a and 3b rapidly interconvert through nucleophilic attack of the axial Pt–OH group at the adjacent Ph–CO group. The kinetic and thermodynamic parameters for this interconversion have been measured by selective saturation-transfer NMR spectroscopic experiments and are consistent with cyclisation at the Pt centre. Complex 3b was also characterised by X-ray crystallography. Visible light irradiation (440–480 nm) of 3 in d3-MeCN produces azidyl radicals (N3˙), as demonstrated by EPR spin-trapping with DMPO; no generation of hydroxyl radicals was observed. 1H–195Pt HMBC NMR confirmed that the photoproducts were PtIV rather than PtII species, and HPLC was consistent with these being [3–N3]+ species; no facile photoejection of the triazolato ligand was observed, consistent with MS/MS fragmentation of 3. When 3 was irradiated in the presence of 5′-GMP, no 5′-GMP photoproducts were observed, suggesting that complex 3 is likely to exhibit significantly simplified biological activity (release of azidyl radicals but not DNA binding) compared with complex 1.
Collapse
Affiliation(s)
- Kezi Yao
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Daubit IM, Metzler-Nolte N. On the interaction of N-heterocyclic carbene Ir+I complexes with His and Cys containing peptides. Dalton Trans 2019; 48:13662-13673. [DOI: 10.1039/c9dt01338e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the interaction of an [Ir(+i)(COD)(NHC)Cl] complex with model peptides a chelating motif with a particularly interesting bimetallic peptide-bridged Ir(+iii)–NHC motif was identified with loss of the COD and Cl ligands and oxidation of the metal.
Collapse
Affiliation(s)
- Isabelle Marie Daubit
- Faculty of Chemistry and Biochemistry
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
33
|
Lewe V, Preuss M, Woźnica EA, Spitzer D, Otter R, Besenius P. A clickable NHC-Au(i)-complex for the preparation of stimulus-responsive metallopeptide amphiphiles. Chem Commun (Camb) 2018; 54:9498-9501. [PMID: 30090888 DOI: 10.1039/c8cc05622f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of an alkyne functionalised NHC-Au(i)-complex which is conjugated with amphiphilic oligopeptides using a copper(i) catalysed cycloaddition. The resulting Au(i)-metalloamphiphiles are shown to self-assemble into charge-regulated stimulus-responsive supramolecular polymers in water via a weakly cooperative polymerisation mechanism.
Collapse
Affiliation(s)
- V Lewe
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Farrer NJ, Sharma G, Sayers R, Shaili E, Sadler PJ. Platinum(iv) azido complexes undergo copper-free click reactions with alkynes. Dalton Trans 2018; 47:10553-10560. [PMID: 29480314 PMCID: PMC6083821 DOI: 10.1039/c7dt04183g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
Abstract
We report our investigations into the first examples of copper-free 1,3-dipolar cycloaddition (click) reactions of electrophiles with a PtIV azido complex. The Pt-IV azido complex trans, trans, trans-[PtIV(py)2(N3)2(OH)2] (1) was reactive towards dimethyl acetylenedicarboxylate (DMAD) (2), diethyl acetylenedicarboxylate DEACD (3), N-[(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane (BCN) (11) and dibenzocyclooctyne-amine (DBCO) (12) resulting in formation of the corresponding mono (a) and bis-substituted (b) complexes. Complexes of 2 undergo further reactions between the Pt centre and the carbonyl group to form 2a' and 2b'. This is not seen for the products of the corresponding PtII azido complex trans-[Pt(py)2(N3)2] with acetylene 2. Novel complexes 2a', 2b', 11a and 11b have been characterised by multinuclear NMR, IR and UV-vis spectroscopy and ESI-MS. These reactions represent new synthetic routes to novel Pt(iv) complexes.
Collapse
Affiliation(s)
- Nicola J. Farrer
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Gitanjali Sharma
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Rachel Sayers
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Evyenia Shaili
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| | - Peter J. Sadler
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| |
Collapse
|
35
|
Protonated water-soluble N-heterocyclic carbene ruthenium(II) complexes: Synthesis, cytotoxic and DNA binding properties and molecular docking study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Mitochondrial dynamics tracking with iridium(III) complexes. Curr Opin Chem Biol 2018; 43:51-57. [DOI: 10.1016/j.cbpa.2017.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022]
|
37
|
Diehl T, Krause MTS, Ueberlein S, Becker S, Trommer A, Schnakenburg G, Engeser M. Synthesis of hydroxyl-functionalized N-heterocyclic carbene gold(i) complexes and peptide conjugates. Dalton Trans 2018; 46:2988-2997. [PMID: 28198476 DOI: 10.1039/c6dt04834j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis and characterization of a series of new cationic gold(i) complexes with hydroxyl-functionalized N-heterocyclic carbene (NHC) ligands is described. They are valuable building blocks for further derivatization: as a first example, coupling with amino acids and a dipeptide, respectively, successfully results in amino acid and peptide conjugates that are hard to obtain by other synthetic routes.
Collapse
Affiliation(s)
- Tobias Diehl
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Melanie T S Krause
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Sven Ueberlein
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Stefanie Becker
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Aline Trommer
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Marianne Engeser
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
38
|
Deka B, Bhattacharyya A, Mukherjee S, Sarkar T, Soni K, Banerjee S, Saikia KK, Deka S, Hussain A. Ferrocene conjugated copper(II) complexes of terpyridine and traditional Chinese medicine (TCM) anticancer ligands showing selective toxicity towards cancer cells. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Banashree Deka
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Sanjoy Mukherjee
- School of Chemical Engineering; Purdue University; West Lafayette Indiana 47907 USA
| | - Tukki Sarkar
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| | - Kiran Soni
- Department of Chemistry; University of Delhi; North Campus Delhi 110007 India
| | - Samya Banerjee
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | - Kandarpa K. Saikia
- Department of Bioengineering and Technology, GUIST; Gauhati University; Guwahati 781014 Assam India
| | - Sasanka Deka
- Department of Chemistry; University of Delhi; North Campus Delhi 110007 India
| | - Akhtar Hussain
- Department of Chemistry; Handique Girls’ College; Guwahati 781001 Assam India
| |
Collapse
|
39
|
Wedlock LE, Barnard PJ, Filipovska A, Skelton BW, Berners-Price SJ, Baker MV. Dinuclear Au(i) N-heterocyclic carbene complexes derived from unsymmetrical azolium cyclophane salts: potential probes for live cell imaging applications. Dalton Trans 2018; 45:12221-36. [PMID: 27426282 DOI: 10.1039/c6dt01409g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have synthesized a new series of azolium cyclophanes and used them as precursors of inherently luminescent dinuclear Au(i)-N-heterocyclic carbene (NHC) complexes. The azolium cyclophanes contained two azolium groups (either imidazolium or benzimidazolium), an o-xylyl group, and an alkyl linker chain (either C2, C3 or C4). All of the azolium cyclophanes were characterised by X-ray diffraction studies and VT NMR studies, and all were fluxional in solution on the NMR timescale. The C3- and C4-linked azolium cyclophanes served as precursors of Au2L2(2+) complexes (L is a cyclophane bis(NHC) ligand). Due to the unsymmetrical nature of the azolium cyclophanes, the Au2L2(2+) complexes each existed as cis and trans isomers. X-ray diffraction studies showed that the Au2L2(2+) complexes had short intramolecular AuAu distances, in the range 2.9-3.3 Å, suggestive of an aurophilic attraction, presumably as a consequence of the geometrical constraints imposed by the cyclophane bis(NHC) ligands. The complexes having the shortest AuAu distances (i.e., those based on C3-linked cyclophanes) exhibited intense luminescence in solution. The uptake of one of the dinuclear Au-NHC complexes by tumorigenic cells, and its subsequent distribution and toxicity in the cells, was monitored by luminescence microscopy over 6 h and proliferation measurements, respectively.
Collapse
Affiliation(s)
- Louise E Wedlock
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Peter J Barnard
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Aleksandra Filipovska
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Brian W Skelton
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Centre for Microscopy, Characterisation, and Analysis M310, The University of Western Australia, Perth, WA 6009, Australia
| | - Susan J Berners-Price
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Murray V Baker
- School of Chemistry and Biochemistry M310, The University of Western Australia, Perth, WA 6009, Australia. and Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan, ROC
| |
Collapse
|
40
|
Waag-Hiersch L, Mößeler J, Schatzschneider U. Electronic Influences on the Stability and Kinetics of Cp* Rhodium(III) Azide Complexes in the iClick Reaction with Electron-Poor Alkynes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luisa Waag-Hiersch
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
41
|
Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes. Chemistry 2017; 23:6048-6055. [DOI: 10.1002/chem.201700588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 11/07/2022]
|
42
|
Streciwilk W, Terenzi A, Misgeld R, Frias C, Jones PG, Prokop A, Keppler BK, Ott I. Metal NHC Complexes with Naphthalimide Ligands as DNA-Interacting Antiproliferative Agents. ChemMedChem 2017; 12:214-225. [PMID: 27997743 DOI: 10.1002/cmdc.201600557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Indexed: 01/08/2023]
Abstract
Naphthalimide-based N-heterocyclic carbene (NHC) complexes of the type [(1,5-cyclooctadiene)(NHC)RhCl)] (4 a-c), [(p-cymene)(NHC)RuCl2 )] (5 a-c), and [(NHC)CuBr] (6 a-c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely driven by the naphthalimide structure, which is a DNA-intercalating moiety. Regarding the metal center, the highest activities were observed with the rhodium complexes, and cytotoxic activity was significantly lower for the ruthenium derivatives. The stable coordination of the NHC ligands of selected complexes 4 b and 5 b in solution was confirmed, and their DNA binding properties were studied by UV/Vis spectroscopy, mass spectrometry, and circular dichroism. Stable intercalative binding into the DNA for all selected naphthalimide-based complexes is indicated by high DNA binding constants. Particularly efficient binding was observed in the case of the rhodium complex 4 b. More detailed biological studies on 4 b showed promising activities against multidrug-resistant Nalm-6 cells and confirmed an important role for mitochondrial pathways in 4 b-induced apoptosis.
Collapse
Affiliation(s)
- Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Rainer Misgeld
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Corazon Frias
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Peter G Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Postfach 3329, 38023, Braunschweig, Germany
| | - Aram Prokop
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| |
Collapse
|
43
|
Rendón-Nava D, Mendoza-Espinosa D, Negrón-Silva GE, Téllez-Arreola JL, Martínez-Torres A, Valdez-Calderón A, González-Montiel S. Chrysin functionalized NHC–Au(i) complexes: synthesis, characterization and effects on the nematode Caenorhabditis elegans. NEW J CHEM 2017. [DOI: 10.1039/c6nj03299k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and biological effects on the nematodeCaenorhabditis elegansof chrysin functionalized Au(i)–NHC complexes are reported.
Collapse
Affiliation(s)
- David Rendón-Nava
- Departamento de Ciencias Básicas
- Universidad Autónoma Metropolitana-Azcapotzalco
- México D.F
- Mexico
| | - Daniel Mendoza-Espinosa
- Departamento de Ciencias Básicas
- Universidad Autónoma Metropolitana-Azcapotzalco
- México D.F
- Mexico
| | | | - José Luis Téllez-Arreola
- Laboratorio de Neurobiología Molecular y Celular
- Instituto de Neurobiología
- Universidad Nacional Autónoma de México
- Campus Juriquilla
- C.P. 76215 Juriquilla
| | - Ataúlfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular
- Instituto de Neurobiología
- Universidad Nacional Autónoma de México
- Campus Juriquilla
- C.P. 76215 Juriquilla
| | - Alejandro Valdez-Calderón
- Área Académica de Química
- Centro de Investigaciones Químicas
- Universidad Autónoma del Estado de Hidalgo
- Mexico
| | - Simplicio González-Montiel
- Área Académica de Química
- Centro de Investigaciones Químicas
- Universidad Autónoma del Estado de Hidalgo
- Mexico
| |
Collapse
|
44
|
Williams M, Green AI, Fernandez-Cestau J, Hughes DL, O'Connell MA, Searcey M, Bertrand B, Bochmann M. (C^Npz^C)AuIII complexes of acyclic carbene ligands: synthesis and anticancer properties. Dalton Trans 2017; 46:13397-13408. [DOI: 10.1039/c7dt02804k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of amino ester conjugated (C^Npz^C)Au acyclic carbene complexes with low micromolar cytotoxicity on human cancer cells.
Collapse
Affiliation(s)
| | - Adam I. Green
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | | | | | - Mark Searcey
- School of Chemistry
- University of East Anglia
- Norwich
- UK
- School of Pharmacy
| | | | | |
Collapse
|
45
|
Deka B, Sarkar T, Banerjee S, Kumar A, Mukherjee S, Deka S, Saikia KK, Hussain A. Novel mitochondria targeted copper(ii) complexes of ferrocenyl terpyridine and anticancer active 8-hydroxyquinolines showing remarkable cytotoxicity, DNA and protein binding affinity. Dalton Trans 2017; 46:396-409. [DOI: 10.1039/c6dt03660k] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mixed-ligand ferrocenyl copper(ii) complexes target the mitochondria of cancer cells showing remarkable cytotoxicity against HeLa and MCF-7 cancer cells while being much less toxic to MCF-10A normal cells.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| | - Tukki Sarkar
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Sanjoy Mukherjee
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Sasanka Deka
- Department of Chemistry
- University of Delhi
- New Delhi 110007
- India
| | - Kandarpa K. Saikia
- Department of Bioengineering and Technology
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| |
Collapse
|
46
|
Albada B, Metzler-Nolte N. Organometallic–Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem Rev 2016; 116:11797-11839. [DOI: 10.1021/acs.chemrev.6b00166] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nils Metzler-Nolte
- Inorganic
Chemistry I − Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780-D Bochum, Germany
| |
Collapse
|
47
|
|
48
|
Santini C, Marinelli M, Pellei M. Boron-Centered Scorpionate-Type NHC-Based Ligands and Their Metal Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carlo Santini
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| | - Marika Marinelli
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| | - Maura Pellei
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| |
Collapse
|
49
|
Atrián-Blasco E, Gascón S, Rodríguez-Yoldi MJ, Laguna M, Cerrada E. Synthesis of Gold(I) Derivatives Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane as Selective Anticancer Metallodrugs. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Atrián-Blasco
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-C.S.I.C.; Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Sonia Gascón
- Departamento de Farmacología y Fisiología, Unidad de Fisiología; Facultad de Veterinaria; Universidad de Zaragoza; CIBERobn 50013 Zaragoza Spain
| | - M. Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología; Facultad de Veterinaria; Universidad de Zaragoza; CIBERobn 50013 Zaragoza Spain
| | - Mariano Laguna
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-C.S.I.C.; Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea; Universidad de Zaragoza-C.S.I.C.; Pedro Cerbuna, 12 50009 Zaragoza Spain
| |
Collapse
|
50
|
Simpson PV, Skelton BW, Raiteri P, Massi M. Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj03301b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium NHC complexes bound to azide anions readily react with alkynes to form the corresponding triazolate complexes, a new class of photochemically active species.
Collapse
Affiliation(s)
- Peter V. Simpson
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley 6009 WA
- Australia
| | - Paolo Raiteri
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Massimiliano Massi
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| |
Collapse
|