1
|
Zhong Z, Gan L, Feng Z, Wang W, Pan X, Wu C, Huang Y. Hydrogel local drug delivery systems for postsurgical management of tumors: Status Quo and perspectives. Mater Today Bio 2024; 29:101308. [PMID: 39525397 PMCID: PMC11550774 DOI: 10.1016/j.mtbio.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Surgery is one of the primary treatments for solid tumors. However, the incomplete resection of tumor cells and the immunosuppressive microenvironment make the issue of postsurgical tumor recurrence a great challenge. Furthermore, a wide range of requirements, including ensuring effective hemostasis, implementing prophylactic measures against infection, and promoting wound healing, were also raised in the postsurgical management of tumors. To fulfill these demands, multiple hydrogel local drug delivery systems (HLDDS) were developed recently. These HLDDS are expected to offer numerous advantages in the postsurgical management of tumors, such as achieving high local drug concentrations at the lesion, efficient delivery to surgical microcavities, mitigating systemic side effects, and addressing the diverse demand. Thus, in this review, a detailed discussion of the diverse demands of postsurgical management of tumors is provided. And the current publication trend on HLDDS in the postsurgical management of tumors is analyzed and discussed. Then, the applications of different types of HLDDS, in-situ HLDDS and non-in-situ HLDDS, in postsurgical management of tumors were introduced and summarized. Besides, the current problems and future perspectives are discussed. The review is expected to provide an overview of HLDDS in postsurgical management of tumors and promote their clinical application.
Collapse
Affiliation(s)
- Ziqiao Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511443, PR China
| | - Lu Gan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511443, PR China
| | - Ziyi Feng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511443, PR China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511443, PR China
| | - Ying Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511443, PR China
| |
Collapse
|
2
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
3
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Terbinafine Nanohybrid: Proposing a Hydrogel Carrying Nanoparticles for Topical Release. Pharmaceutics 2023; 15:pharmaceutics15030841. [PMID: 36986702 PMCID: PMC10056099 DOI: 10.3390/pharmaceutics15030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A poloxamer 407 (P407)—Casein hydrogel was chosen to carry polycaprolactone nanoparticles carrying terbinafine (PCL-TBH-NP). In this study, terbinafine hydrochloride (TBH) was encapsulated into polycaprolactone (PCL) nanoparticles, which were further incorporated into a poloxamer-casein hydrogel in a different addition order to evaluate the effect of gel formation. Nanoparticles were prepared by the nanoprecipitation technique and characterized by evaluating their physicochemical characteristics and morphology. The nanoparticles had a mean diameter of 196.7 ± 0.7 nm, PDI of 0.07, negative ζ potential (−0.713 mV), high encapsulation efficiency (>98%), and did not show cytotoxic effects in primary human keratinocytes. PCL-NP modulated terbinafine was released in artificial sweat. Rheological properties were analyzed by temperature sweep tests at different addition orders of nanoparticles into hydrogel formation. The rheological behavior of nanohybrid hydrogels showed the influence of TBH-PCL nanoparticles addition in the mechanical properties of the hydrogel and a long-term release of the nanoparticles from it.
Collapse
|
5
|
Sarkar K, Torregrossa-Allen SE, Elzey BD, Narayanan S, Langer MP, Durm GA, Won YY. Effect of Paclitaxel Stereochemistry on X-ray-Triggered Release of Paclitaxel from CaWO 4/Paclitaxel-Coloaded PEG-PLA Nanoparticles. Mol Pharm 2022; 19:2776-2794. [PMID: 35834797 PMCID: PMC11975462 DOI: 10.1021/acs.molpharmaceut.2c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 μg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 μg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.
Collapse
Affiliation(s)
- Kaustabh Sarkar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Bennett D. Elzey
- Purdue University Center of Cancer Research, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjeev Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Mark P. Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gregory A. Durm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center of Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
7
|
Sompalli NK, Mohanty A, Mohan AM, Deivasigamani P. Visible-light harvesting innovative W 6+/Yb 3+/TiO 2 materials as a green methodology photocatalyst for the photodegradation of pharmaceutical pollutants. Photochem Photobiol Sci 2021; 20:401-420. [PMID: 33721273 DOI: 10.1007/s43630-021-00028-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
In this work, we report on the synthesis of a new-age reusable visible-light photocatalyst using a heterojunction nanocomposite of W6+/Yb3+ on a mixed-phase mesoporous network of monolithic TiO2. The structural properties of the monolithic photocatalysts are characterized using p-XRD, SEM-EDAX, TEM-SAED, XPS, PLS, UV-Vis-DRS, FT-IR, micro-Raman, TG-DTA, and N2 isotherm analysis. The electron microscopic analysis reveals a mesoporous network of ordered worm-like monolithic design, with a polycrystalline mixed-phase (anatase/rutile) TiO2 composite, as indicated by diffraction studies. The UV-Vis-DRS analysis reveals a redshift in the light absorption characteristics of the mixed-phase TiO2 monolith as a function of W6+/Yb3+ co-doping. It is observed that the use of (8.0 mol%)W6+/0.4 (mole%)Yb3+ co-doped monolithic TiO2 photocatalyst, with an energy bandgap of 2.77 eV demonstrates superior visible-light photocatalysis, which corroborates with the PLS studies in terms of voluminous e-/h+ pair formation. The practical application of the photocatalyst has been investigated through a time-dependent dissipation of enrofloxacin, a widely employed antimicrobial drug, and its degradation pathway has been monitored by LC-MS-ESI and TOC analysis. The impact of physio-chemical parameters such as solution pH, sensitizers, drug concentration, dopant/codopant stoichiometry, catalyst quantity, and light intensity has been comprehensively studied to monitor the process efficiency.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Ankita Mohanty
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Roy P, Mignet N, Pocard M, Boudy V. Drug delivery systems to prevent peritoneal metastasis after surgery of digestives or ovarian carcinoma: A review. Int J Pharm 2021; 592:120041. [DOI: 10.1016/j.ijpharm.2020.120041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
|
9
|
Brachi G, Ruiz-Ramírez J, Dogra P, Wang Z, Cristini V, Ciardelli G, Rostomily RC, Ferrari M, Mikheev AM, Blanco E, Mattu C. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. NANOSCALE 2020; 12:23838-23850. [PMID: 33237080 PMCID: PMC8062960 DOI: 10.1039/d0nr05053a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/24/2020] [Indexed: 05/07/2023]
Abstract
Intratumoral drug delivery is a promising approach for the treatment of glioblastoma multiforme (GBM). However, drug washout remains a major challenge in GBM therapy. Our strategy, aimed at reducing drug clearance and enhancing site-specific residence time, involves the local administration of a multi-component system comprised of nanoparticles (NPs) embedded within a thermosensitive hydrogel (HG). Herein, our objective was to examine the distribution of NPs and their cargo following intratumoral administration of this system in GBM. We hypothesized that the HG matrix, which undergoes rapid gelation upon increases in temperature, would contribute towards heightened site-specific retention and permanence of NPs in tumors. BODIPY-containing, infrared dye-labeled polymeric NPs embedded in a thermosensitive HG (HG-NPs) were fabricated and characterized. Retention and distribution dynamics were subsequently examined over time in orthotopic GBM-bearing mice. Results demonstrate that the HG-NPs system significantly improved site-specific, long-term retention of both NPs and BODIPY, with co-localization analyses showing that HG-NPs covered larger areas of the tumor and the peri-tumor region at later time points. Moreover, NPs released from the HG were shown to undergo uptake by surrounding GBM cells. Findings suggest that intratumoral delivery with HG-NPs has immense potential for GBM treatment, as well as other strategies where site-specific, long-term retention of therapeutic agents is warranted.
Collapse
Affiliation(s)
- Giulia Brachi
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Javier Ruiz-Ramírez
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Prashant Dogra
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Zhihui Wang
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Gianluca Ciardelli
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
| | - Robert C. Rostomily
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Mauro Ferrari
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Andrei M. Mikheev
- Department of Neurosurgery
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Elvin Blanco
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| | - Clara Mattu
- Politecnico di Torino
, DIMEAS
,
C.so Duca degli Abruzzi 24
, 10129 Torino
, Italy
.
; Tel: +390110906792
- Department of Nanomedicine
, Houston Methodist Research Institute
,
6670 Bertner Ave
, Houston
, TX 77030
, USA
| |
Collapse
|
10
|
Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W. Synthetic Polymeric Antibacterial Hydrogel for Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing: Nanoantimicrobial Self-Assembly, Drug- and Cytokine-Free Strategy. ACS NANO 2020; 14:12905-12917. [PMID: 32946218 DOI: 10.1021/acsnano.0c03855] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibacterial hydrogels are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected-wound healing. The abuse of antibiotics leads to drug resistance. Recent developments have demonstrated that the delivery of inorganic bactericidal agents in hydrogels can drive the wound healing process; however, this approach is complicated by external light stimuli, cytotoxicity, nondegradability, and sophisticated fabrication. Herein, an inherent antibacterial, bioresorbable hydrogel was developed by the spontaneous self-aggregation of amphiphilic, oxadiazole-group-decorated quaternary ammonium salts (QAS)-conjugated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC-QAS) micellar nanoantimicrobials for methicillin-resistant Staphylococcus aureus (MRSA)-infected cutaneous wound healing. The PCEC-QAS hydrogel showed a stable gel state within the temperature range of 5-50 °C and antibacterial efficacy against both Gram-negative and -positive bacteria in vitro and in vivo. Additionally, the PCEC-QAS hydrogel facilitated the cell spreading, proliferation, and migration without cytotoxicity. An in vivo degradation and skin defect healing study suggested the PCEC-QAS hydrogel was totally absorbed without local or systemic toxicity and could promote wound repair in the absence of drugs, cytokines, or cells. Significantly, this hydrogel accelerated the regeneration of a MRSA-infected full-thickness impaired skin wound by successfully reconstructing an intact and thick epidermis similar to normal mouse skin. Collectively, a self-assembling PCEC-QAS antibacterial hydrogel is a promising dressing material to promote skin regeneration and prevent bacterial infection without additional drugs, cells, light irradiation, or delivery systems, providing a simple but effective strategy for treating dermal wounds.
Collapse
Affiliation(s)
- Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
11
|
Guo J, Feng Z, Liu X, Wang C, Huang P, Zhang J, Deng L, Wang W, Dong A. An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. SOFT MATTER 2020; 16:5750-5758. [PMID: 32529197 DOI: 10.1039/d0sm00147c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized amino-modified poly(ε-caprolactone) PCN-b-PEG-b-PCN (PECN) triblock copolymers and studied the contribution of the introduced amino groups to the drug delivery efficiency of PECN nanoparticles (NPs) and their injectable thermosensitive hydrogels. PECN15 with an optimal amino group content was obtained. Firstly, the hydrophobic drug paclitaxel (PTX) was loaded into PECN15 up to 5.91% and formed PTX/PECN NPs 90 nm in size and with a slightly positive charge (7.3 mV). Furthermore, the injectable PTX/PECN NPs aqueous solution (25 wt%) at ambient temperature could undergo fast gelation at 37 °C and sustainedly release PTX/PECN NPs in 10 days. More importantly, compared with our previously reported PECT NPs, the PECN NPs without an increase in toxicity could improve the cell uptake and enhance intracellular drug release by responding to the acidic environment of the endosome. Thus, the PTX/PECN NPs presented a lower IC50 of 3.14 μg mL-1 than that of the PTX/PECT NPs (7.67 μg mL-1) and free PTX (4.65 μg mL-1). Moreover, through peritumoral injection, the PTX/PECNGel showed 94.27% inhibition rate of tumor growth on day 19, higher than PTX/PECTGel (72.28%) and Taxol® (47.03%). Therefore, the PECN NPs hydrogel provided a more effective injectable platform to enhance local cancer chemotherapy, and also provided the possibility of further functionalization by the reactive amino groups.
Collapse
Affiliation(s)
- Jinxuan Guo
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiang Liu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Changrong Wang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, Huang P, Liang XJ, Dong A, Kong D, Wang W. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials 2020; 230:119649. [DOI: 10.1016/j.biomaterials.2019.119649] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
|
13
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
14
|
Misra R, Sarkar K, Lee J, Pizzuti VJ, Lee DS, Currie MP, Torregrosa-Allen SE, Long DE, Durm GA, Langer MP, Elzey BD, Won YY. Radioluminescent nanoparticles for radiation-controlled release of drugs. J Control Release 2019; 303:237-252. [PMID: 31026550 DOI: 10.1016/j.jconrel.2019.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30-40 fractions of 2-3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle ("PEG-PLA/CWO/PTX") formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.
Collapse
Affiliation(s)
- Rahul Misra
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Kaustabh Sarkar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Jaewon Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Vincenzo J Pizzuti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Deborah S Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Melanie P Currie
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Sandra E Torregrosa-Allen
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - David E Long
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gregory A Durm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mark P Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
15
|
Liu H, Shi X, Wu D, Kahsay Khshen F, Deng L, Dong A, Wang W, Zhang J. Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19700-19711. [PMID: 31070356 DOI: 10.1021/acsami.9b01987] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High locoregional recurrence of breast cancer after surgery remains a clinically appealing challenge. Local chemotherapy, especially sustainable delivery of chemotherapeutics at tumor sites by implantable hydrogels, has shown great potential to prevent cancer recurrence. However, the applications of conventional hydrogels are often limited by their intrinsic poor drug penetration into solid tumors and nonspecific drug accumulation in adjacent normal tissues. Herein, we developed a novel modular coassembly strategy to prepare a kind of pH-sensitive, tumor-specific targeting, and penetrating peptide (CRGDK)-modified doxorubicin-based prodrug nanoparticles (PDNPs), whose aqueous dispersion can undergo sol-gel transition after in vivo injection by thermo-induced self-aggregation to in situ form biodegradable hydrogel depot (PDNPs-gel), anchoring high amounts of PDNPs at tumor sites. Because of CRGDK-mediated targeting to overexpressed neuropilin-1 receptors on tumor vessels and tumor cells, PDNPs released from PDNPs-gel can effectively penetrate into tumor tissues, specifically enter tumor cells and finally realize intracellular acid-triggered drug release. In an in vivo incomplete resection of breast cancer model, a single peritumoral administration of PDNP-gel can achieve high inhibition efficacy against tumor recurrence. In addition, the administration of PDNP-gel only involves simple redispersion of PDNPs in water without any pretreatment for gelation, providing great convenience for storage, dosage, and prescription in practical use. Collectively, the reported multifunctional nanoparticles self-aggregated hydrogel system possesses great potential for efficient postsurgical prevention of tumor recurrence.
Collapse
Affiliation(s)
| | | | | | | | | | - Anjie Dong
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | | |
Collapse
|
16
|
Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J Control Release 2019; 297:60-70. [PMID: 30684513 DOI: 10.1016/j.jconrel.2019.01.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Injectable in situ thermosensitive hydrogels have potential applications in tissue engineering and drug delivery. The hydrogel formulations exist as aqueous solutions at room temperature but rapidly solidify into gels at 37 °C in situ, making them highly suitable for administering drugs in a minimally invasive manner to the target organ(s). The hydrogel formed with nanoparticles assembled with amphiphilic polymer blocks of polyethyleneglycol (PEG) and biodegradable polycaprolactone (PCL) have been tested as platforms for targeted and sustained drug delivery, and have shown encouraging results. In this review, we summarize the influence of the molecular weight, PEG/PCL ratio and functional structure of hydrophobic PCL blocks on the critical gelation temperature, gelling behavior and drug release kinetics of the hydrogels. The current studies on the biomedical applications of thermosensitive PEG/PCL hydrogels have also been discussed.
Collapse
|
17
|
Zhai Y, Zhou X, Zhang Z, Zhang L, Wang D, Wang X, Sun W. Design, Synthesis, and Characterization of Schiff Base Bond-Linked pH-Responsive Doxorubicin Prodrug Based on Functionalized mPEG-PCL for Targeted Cancer Therapy. Polymers (Basel) 2018; 10:E1127. [PMID: 30961052 PMCID: PMC6404085 DOI: 10.3390/polym10101127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
The side effects of doxorubicin (DOX) extremely limit its application in the treatment of malignant tumors. Nano-sized polymeric drugs based on the acidic microenvironment of tissular- or intra- tumor have attracted ample attention because of their potential in reducing side effects. In this research, an amphiphilic diblock copolymer based on poly (ethylene glycol) (PEG) and functionalized polycaprolactone (PCL) was synthesized and utilized as the drug carrier. DOX was chemically conjugated with the polymer via acid-cleavable imine bonds to obtain a novel pH-sensitive DOX prodrug (mPEG-PCL-Imi-DOX). mPEG-PCL-Imi-DOX (24.2 wt % DOX content) formed micelles with an average diameter of 125 nm through a simple solvent evaporation method. The in vitro release profile demonstrated that DOX release of the prodrug micelles was pH-responsive and able to be accelerated with the decrease of pH. In vitro cytotoxicity assay tests revealed that the pH-sensitive DOX prodrug micelles exhibited relatively lower toxicity and similar antitumor efficacy towards MCF-7 cells compared with free DOX. Hence, the DOX prodrug micelles with imine bonds can offer a carrier with great potential for chemo-therapeutics.
Collapse
Affiliation(s)
- Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Zhou
- Hainan Institute of Materia Medica, Haikou 570311, China.
| | - Zhiqiang Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lei Zhang
- Shanghai Pharma Group (Benxi) Northern Pharmaceutical Co., Ltd., Benxi 117004, China.
| | - Dianyu Wang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xinhui Wang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei Sun
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
18
|
Leconet W, Liu H, Guo M, Le Lamer-Déchamps S, Molinier C, Kim S, Vrlinic T, Oster M, Liu F, Navarro V, Batra JS, Noriega AL, Grizot S, Bander NH. Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation. Mol Cancer Ther 2018; 17:1927-1940. [DOI: 10.1158/1535-7163.mct-17-1138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/05/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
|
19
|
Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci 2018; 5:67-76. [PMID: 27819087 DOI: 10.1039/c6bm00656f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.
Collapse
Affiliation(s)
- Goksu Cinar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse Ozdemir
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
20
|
Kitagawa M, Maeda T, Hotta A. PEG-based nanocomposite hydrogel: Thermo-responsive sol-gel transition and degradation behavior controlled by the LA/GA ratio of PLGA-PEG-PLGA. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Ning P, Lü S, Bai X, Wu X, Gao C, Wen N, Liu M. High encapsulation and localized delivery of curcumin from an injectable hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:121-129. [PMID: 29208269 DOI: 10.1016/j.msec.2017.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Most chemotherapy currently available for cancer treatment has limited potential to successful clinical cancer therapy, mainly due to low encapsulating capacity of drugs and unavailable pharmacologically beneficial concentrations at the tumor site. Herein, a novel yet simple strategy is developed to enhance drug encapsulating capacity and localized drug concentration using an injectable hydrogel based on thiolated chitosan (TCS) and poly(ethylene glycol) diacrylate (PEGDA). Almost 100% of encapsulating capacity is achieved when anti-cancer drug curcumin is encapsulated in the system. The interaction of curcumin with PEGDA is determined by fluorescence spectroscopy and the binding constant is calculated, followed by a simulation by a docking study using AutoDock. To improve the anti-tumor activity and achieve effective local concentrations, lysozyme is introduced into the system. Sustained curcumin release in a controlled lysozyme-responsive behaviour is observed, which enables the drug concentration to reach the therapeutic threshold promptly. The system displays efficient intracellular curcumin release to promote cancer cells apoptosis in vitro. In addition, the system effectively delays the tumor growth and reduces adverse effects in tumor-bearing nude mice. The strategy of localized, high encapsulation of drug by using an injectable hydrogel would be particularly beneficial with many insoluble anti-cancer drugs.
Collapse
Affiliation(s)
- Piao Ning
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Xiao Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chunmei Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Na Wen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
22
|
Huang P, Song H, Zhang Y, Liu J, Cheng Z, Liang XJ, Wang W, Kong D, Liu J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017; 145:81-91. [PMID: 28858720 DOI: 10.1016/j.biomaterials.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/02/2023]
Abstract
Thermosensitive "micellar hydrogel" is prepared based on poly(ε-caprolactone-co- 1,4,8-trioxa[4.6]spiro-9-undecanone)-b-poly(ethylene glycol)- b-poly(ε-caprolactone- co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) triblock copolymer. Fluorescence resonance energy transfer (FRET) is adopted to explore its assembly (formation) and disassembly (degradation) mechanism within the range of 10 nm. Results prove that the thermosensitive non-covalent aggregation of micelles facilitates the hydrogel formation and the sustained shedding of cognate micelles induces the hydrogel degradation, during which polymers are steadily incorporated in micelles without any micelle disassembly or reassembly. It is confirmed that using multiple-tags based imaging technology, such as FRET imaging, the fate of macro biodegradable materials in vitro and in vivo can be followed at a precise nano even molecular level. Such an unique hydrogel composed of nothing more than PECT micelles can act as not only an injectable nanomedicine reservoir by subcutaneous or peri-tissue administration, but also an advanced "combo" macroscale platform for co-delivery of multi-modal therapeutic agents. Our findings also indicate that biological stimuli (e.g., temperature, enzymes)-induced non-covalent micelle self-assembly may provide us an effective strategy to prepare a macroscale device from nanoscale subunits.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
23
|
Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater 2017; 54:307-320. [PMID: 28274767 DOI: 10.1016/j.actbio.2017.03.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/04/2017] [Accepted: 03/03/2017] [Indexed: 01/24/2023]
Abstract
Localized cancer treatment with combination therapy has attracted increasing attention for effective inhibition of tumor growth. In this work, we introduced diffusion molecular retention (DMR) tumor targeting effect, a new strategy that employed transferrin (Tf) modified hollow mesoporous CuS nanoparticles (HMCuS NPs) to undergo extensive diffuse through the interstitium and tumor retention after a peritumoral (PT) injection. Herein, HMCuS NPs with strong near-infrared (NIR) absorption and photothermal conversion efficiency could serve as not only a drug carrier but also a powerful contrast agent for photoacoustic imaging to guide chemo-phototherapy. The iron-dependent artesunate (AS), which possessed profound cytotoxicity against tumor cell, was used as model drug. As a result, this AS loaded Tf-HMCuS NPs (AS/Tf-HMCuS NPs) system could specially target to tumor cells and synchronously deliver AS as well as irons into tumor to achieve enhanced antitumor activity. It was found that AS/Tf-HMCuS NPs was taken up by MCF-7 cells via Tf-mediated endocytosis, and could effectively convert NIR light into heat for photothermal therapy as well as generated high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, in vivo antitumor efficacy studies showed that tumor-bearing mice treated with AS/Tf-HMCuS NPs through peritumoral (PT) injection under NIR laser irradiation displayed the strongest inhibition rate of about 74.8%, even with the reduced frequency of administration. Furthermore, to demonstrate DMR, the optical imaging, photoacoustic tomography and immunofluorescence after PT injection were adopted to track the behavior of AS/Tf-HMCuS NPs in vivo. The results exhibited that Tf-HMCuS NPs prolonged the local accumulation and retention together with slow vascular uptake and extensive interstitial diffusion, which was consistent with the biodistribution studies of AS/Tf-HMCuS NPs. Therefore, the approach of localized delivery through DMR combined with multi-mechanism therapy may be a promising method for cancer treatment. STATEMENT OF SIGNIFICANCE In recent years, localized cancer treatment using different biomaterials has attracted increasing attention for effective inhibition of tumor growth. However, it is still challenging for this kind of system to achieve a high drug loading, overcome biological barriers from the site of injection to the site of action, and combine synergetic therapy with diagnosis without adversely affecting the formation process. This study provides a localized diffusion molecular retention (DMR) tumor targeting drug delivery system based on hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) entrapment of anticancer drug for the first time, which can achieve high drug loading, improve local drug accumulation and retention, accomplish synergistic combination of chemo-phototherapy, and finally enhance antitumor effect. In addition, HMCuS NPs also possesses the property suitable for photoacoustic imaging, which could offer us a theranostic platform.
Collapse
|
24
|
Zhang Y, Huang F, Ren C, Yang L, Liu J, Cheng Z, Chu L, Liu J. Targeted Chemo-Photodynamic Combination Platform Based on the DOX Prodrug Nanoparticles for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13016-13028. [PMID: 28378992 DOI: 10.1021/acsami.7b00927] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemo-photodynamic combination therapy has been received widespread attention in cancer treatment due to its excellent characteristics, such as reducing the adverse side effects of chemo-drugs and improving the therapeutic effects for various cancers. In this study, RGD and DOX was conjugated to PEG by thiol-ene addition and Schiff's base reaction, respectively, to prepare the targeted and pH-sensitive antitumor prodrug nanoparticles (RGD-PEG-DOX NPs, RGD-NPs). Subsequently, the photosensitizer chlorin e6 (Ce6) was encapsulated into RGD-NPs, thus obtaining a simple and efficient chemo-photodynamic combination platform (RGD-PEG-DOX/Ce6 NPs, RGD-NPs/Ce6). This nanoparticle possessed high drug loading property of both the chemo-drug and photosensitizer and could simultaneously release them under the mild acidic microenvironment of cancer cells, which was expected to realize the synchronization therapy of chemotherapy and photodynamic therapy (PDT). Compared with free DOX and Ce6, RGD-NPs/Ce6 could significantly improve the cellular uptake capacities of DOX and Ce6, resulting in the increased contents of ROS in cancer cells and effective cytotoxicity for tumor cells (MDA-MB-231 cells and MCF-7 cells) upon a laser radiation. The in vivo experiment showed that RGD-NPs/Ce6 displayed superior tumor targeting, accumulation, and retention ability than the other groups (free DOX, free Ce6 and NPs/Ce6), and thus significantly enhancing the antitumor effect in vivo with a laser radiation. In addition, the cardiotoxicity induced by DOX was thoroughly wiped out after being loaded and delivered by the nanoparticles according to the pathological analysis. Therefore, the targeted chemo-photodynamic combination therapeutic platform may be a promising candidate for enhanced cancer therapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P.R. China
| |
Collapse
|
25
|
Liang Y, Dong C, Zhang J, Deng L, Dong A. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Drug Dev Ind Pharm 2017; 43:972-979. [DOI: 10.1080/03639045.2017.1287718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yanqin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chengxia Dong
- Department of Laboratory, People’s Hospital of Jiyang County, Shandong, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Zhang Y, Song H, Zhang H, Huang P, Liu J, Chu L, Liu J, Wang W, Cheng Z, Kong D. Fine tuning the assembly and gel behaviors of PEGylated polypeptide conjugates by the copolymerization ofl-alanine and γ-benzyl-l-glutamateN-carboxyanhydrides. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Hao Zhang
- Ningbo Academy of Agricultural Sciences; Zhejiang 315040 China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program; Canary Center at Stanford for Cancer Early Detection, Stanford University; Stanford California 94305 United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|
27
|
Yin L, Xu S, Feng Z, Deng H, Zhang J, Gao H, Deng L, Tang H, Dong A. Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Biomater Sci 2017; 5:698-706. [DOI: 10.1039/c6bm00889e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel injectable and high-solid-content drug-loaded supramolecular hydrogel (PTX-mPECT NP/α-CDgel) was prepared by self-assembly of inclusion complexes based on PTX-loaded mPECT nanoparticles and α-cyclodextrin.
Collapse
Affiliation(s)
- Li Yin
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Shuxin Xu
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Zujian Feng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hongzhang Deng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Jianhua Zhang
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences Tianjin Medical University
- Tianjin 300070
- China
| | - Liandong Deng
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences Tianjin Medical University
- Tianjin 300070
- China
| | - Anjie Dong
- Department of Polymer Science and Technology
- Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
28
|
Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis - Mission possible? Adv Drug Deliv Rev 2017; 108:13-24. [PMID: 27422808 DOI: 10.1016/j.addr.2016.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal carcinomatosis (PC). Over the past decade, a lot of effort has been put both in the academia and clinic in developing IP therapeutic approaches that maximize local efficacy while limiting systemic side effects. Also nanomedicines are under investigation for the treatment of tumors confined to the peritoneal cavity, due to their potential to increase the peritoneal retention and to target drugs to the tumor sites as compared to free drugs. Despite the progress reported by multiple clinical studies, there are no FDA approved drugs or formulations for specific use in the IP cavity yet. This review discusses the current clinical management of PC, as well as recent advances in nanomedicine-based IP delivery. We address important challenges to be overcome towards designing optimal nanocarriers for IP therapy in vivo.
Collapse
|
29
|
Guan Z, Yang L, Wang W, Zhang J, Liu J, Ren C, Wang S, Gao Y, Huang P. Thermosensitive micellar hydrogel for enhanced anticancer therapy through redox modulation mediated combinational effects. RSC Adv 2017. [DOI: 10.1039/c7ra06357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Illustration of the design and action pathway of the PECT/DOX micelle and PECT/ZnPP micelle in situ formed thermosensitive micellar hydrogel.
Collapse
Affiliation(s)
- Zhiyu Guan
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Jun Zhang
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Shuo Wang
- Department of Thoracic Surgery
- The Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- P. R. China
| |
Collapse
|
30
|
Lin Z, Xu S, Gao W, Hu H, Chen M, Wang Y, He B, Dai W, Zhang H, Wang X, Dong A, Yin Y, Zhang Q. A comparative investigation between paclitaxel nanoparticle- and nanocrystal-loaded thermosensitive PECT hydrogels for peri-tumoural administration. NANOSCALE 2016; 8:18782-18791. [PMID: 27801924 DOI: 10.1039/c6nr05498f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For in situ thermosensitive hydrogels, it is a big challenge to achieve high drug loading, long-term local retention, and effective drug release simultaneously. To address these issues, we combined the strategy of drug nanocrystals (NCs) and thermosensitive hydrogels with higher gel strength. In particular, we developed paclitaxel NC-based hydrogels using PECT, a thermosensitive polymer synthesized by us (PTX-NC-PECT), and a nanoparticle-based system was used as the control (PTX-NP-PECT). First, high levels of PTX could be loaded in both PECT hydrogels. Moreover, in vivo near infrared fluorescence (NIRF) imaging showed that both hydrogel systems were able to maintain the payloads of 1,1-dioctadecyltetramethyl indotricarbocyanine iodide (DiR) at a peri-tumoural site for at least 21 days, much longer than that achieved with the control hydrogel of Pluronic® F127. Furthermore, we observed that PTX-NCs released free PTX more effectively and homogeneously than PTX-NPs in vitro. It was further verified in vivo that the release of DiR from DiR-NC-PECT was more complete than that from DiR-NP-PECT. Finally, PTX-NC-PECT gel demonstrated the strongest anti-tumour efficacy on MCF-7 breast cancer. In conclusion, PTX-NC-PECT hydrogel might be a high-performance thermosensitive hydrogel for local cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China. and Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shuxin Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hongxiang Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Anjie Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
31
|
Huang P, Song H, Zhang Y, Liu J, Zhang J, Wang W, Liu J, Li C, Kong D. Bridging the Gap between Macroscale Drug Delivery Systems and Nanomedicines: A Nanoparticle-Assembled Thermosensitive Hydrogel for Peritumoral Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29323-29333. [PMID: 27731617 DOI: 10.1021/acsami.6b10416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to investigate the spatiotemporal delivery of nanomedicines by an injectable, thermosensitive, and nanoparticle-self-aggregated hydrogel for peritumoral chemotherapy. Doxorubicin (Dox) was taken as the model medicine, which was encapsulated into poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) nanoparticles (PECT/Dox NPs). Macroscale hydrogel was formed by thermosensitive self-aggregation of PECT/Dox NPs in aqueous solution. Drug release from the hydrogel formulation was dominated by sustained shedding of PECT/Dox NPs and the following drug diffusion from these NPs. The hydrogel retention and release pattern of NPs in vivo was further confirmed by fluorescence resonance energy transfer (FRET) imaging. A single treatment with the hydrogel formulation possessed similar cytotoxicity against HepG2 cells compared to triple administrations of free Dox or PECT/Dox NPs in vitro due to enhanced uptake of PECT/Dox NPs and sustained intracellular drug release. Importantly, single peritumoral injection of drug-encapsulated hydrogel in vivo showed advantages over multiple intravenous administrations of PECT/Dox NPs and free Dox, including preferential and prolonged local drug accumulation and retention in tumors, resulting in superior cancer chemotherapy efficiency. Collectively, such a unique thermosensitive and nanoparticle-shedding hydrogel could effectively combine the advantages of nanomedicines and macroscale drug delivery systems, demonstrating great potential in the local nanodrugs' delivery. It will open a new promising path for cancer chemotherapy with enhanced treatment efficacy and minimized side effects.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| |
Collapse
|
32
|
Feng Z, Zhao J, Li Y, Xu S, Zhou J, Zhang J, Deng L, Dong A. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG. Biomater Sci 2016; 4:1493-1502. [PMID: 27546028 DOI: 10.1039/c6bm00408c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Zujian Feng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016; 21:1835-1849. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023]
Abstract
Common chemotherapy is often associated with adverse effects in normal cells and tissues. As an alternative approach, localized chemotherapy can diminish the toxicity of systemic chemotherapy while providing a sustained release of the chemotherapeutics at the target tumor site. Therefore, injectable biodegradable hydrogels as drug delivery systems for chemotherapeutics have become a matter of importance. Here, we review the application of a variety of injectable hydrogel-based drug delivery systems, including thermosensitive, pH-sensitive, photosensitive, dual-sensitive, as well as active targeting hydrogels, for the treatment of different types of cancer. Generally, injectable hydrogel-based drug delivery systems are found to be more efficacious than the conventional systemic chemotherapy in terms of cancer treatment.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
Xu S, Fan H, Yin L, Zhang J, Dong A, Deng L, Tang H. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur J Pharm Biopharm 2016; 104:251-9. [PMID: 27185379 DOI: 10.1016/j.ejpb.2016.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Intraperitoneal (IP) chemotherapy is a preferable treatment option for peritoneal carcinomatosis of malignancies by delivering chemotherapeutic drugs into the abdominal cavity. A persistent major challenge in IP chemotherapy is the need to provide effective drug concentration in the peritoneal cavity for an extended period of time. In the present work, the thermosensitive hydrogel system (PTX/PECT(gel)) assembled by PTX (paclitaxel)-loaded amphiphilic copolymer (PECT, poly (ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly (ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)) nanoparticles was developed for sustained IP chemotherapy of peritoneal carcinomatosis model. Cytotoxicity assay indicated that PECT hydrogel was biocompatible with very low cytotoxicity and PTX/PECT(gel) had enhanced cytotoxicity than free PTX. In vivo toxicity study demonstrated the biocompatibility and biosafety of PECT hydrogel as an IP chemotherapy carrier. The fluorescence imaging method was employed to monitor the intraperitoneal degradation of PECT hydrogel by labeling PECT with rhodamine B. PECT hydrogel with the dose of 200μL showed about 8days' retention time and most of the injected hydrogel was located in the intestine. The anti-tumor efficacy study was carried out in mice bearing CT26 intraperitoneal ascites fluid as colorectal peritoneal carcinomatosis model. The result showed that intraperitoneal administration of PTX/PECT(gel) could effectively suppress growth and metastasis of CT26 peritoneal carcinomatosis in vivo, compared with Taxol® group. The pharmacokinetic studies demonstrated that PTX/PECT(gel) could improve the bioavailability of PTX by being formulated in PECT hydrogel. Overall, sustained drug concentration at peritoneal levels in combination with drug in the form of nanoparticle contributes to the enhanced anti-tumor efficacy. Thus, our results suggested that PTX/PECT(gel) may have great potential applications in IP chemotherapy.
Collapse
Affiliation(s)
- Shuxin Xu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hongxia Fan
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Yin
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
35
|
Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, Chu L, Gao H, Li C, Kong D, Liu Q, Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 2016; 6:21225. [PMID: 26876480 PMCID: PMC4753416 DOI: 10.1038/srep21225] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff's base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff's base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Honglin Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| |
Collapse
|
36
|
Mao Y, Li X, Chen G, Wang S. Thermosensitive Hydrogel System With Paclitaxel Liposomes Used in Localized Drug Delivery System for In Situ Treatment of Tumor: Better Antitumor Efficacy and Lower Toxicity. J Pharm Sci 2016; 105:194-204. [PMID: 26580704 DOI: 10.1002/jps.24693] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/07/2022]
Abstract
Intratumoral delivery of chemotherapeutic agents may provide drug localization within the tumor and divert the drug from nontarget organs to improve toxicity and increase efficacy. Thermosensitive injectable hydrogel system may be suitable for the treatment of pancreatic cancer. A study was carried out to examine the efficacy and toxicity of paclitaxel (PTX) liposome gel as a local chemotherapy system against pancreatic cancer in tumor-bearing mice model. The thermosensitive hydrogel we prepared had an appropriate sol-to-gel transition temperature and particle size and morphology study showed this new dosage form possessed physical stability of drug without precipitation and particle size growth of liposome. PTX-lip-gel release in vitro showed a much more slowly release than PTX-lip. The PTX-lip-gel system was proven to have a good retention inside of tumor tissue by intratumoral retention experiments. The in vivo trials showed a better balance between antitumor efficacy and systemic safety in PTX-lip-gel group than in other groups at the equal drug dose. In conclusion, the PTX-lip-gel we prepared in this study provided a high local PTX concentration, sustained and stable drug release, extend drug retention inside of tumor, and low toxicity to normal tissues.
Collapse
|
37
|
Huang P, Zhang Y, Wang W, Zhou J, Sun Y, Liu J, Kong D, Liu J, Dong A. Co-delivery of doxorubicin and 131I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J Control Release 2015; 220:456-464. [DOI: 10.1016/j.jconrel.2015.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/13/2015] [Accepted: 11/07/2015] [Indexed: 01/27/2023]
|
38
|
Wang W, Song H, Zhang J, Li P, Li C, Wang C, Kong D, Zhao Q. An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. J Control Release 2015; 203:57-66. [DOI: 10.1016/j.jconrel.2015.02.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
39
|
Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C, Chassande O, Barthélémy P. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew Chem Int Ed Engl 2015; 54:4517-21. [PMID: 25693962 DOI: 10.1002/anie.201409134] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/05/2014] [Indexed: 11/12/2022]
Abstract
Controlling the behavior of stem cells through the supramolecular architecture of the extracellular matrix remains an important challenge in the culture of stem cells. Herein, we report on a new generation of low-molecular-weight gelators (LMWG) for the culture of isolated stem cells. The bola-amphiphile structures derived from nucleolipids feature unique rheological and biological properties suitable for tissue engineering applications. The bola-amphiphile-based hydrogel scaffold exhibits the following essential properties: it is nontoxic, easy to handle, injectable, and features a biocompatible rheology. The reported glycosyl-nucleoside bola-amphiphiles (GNBA) are the first examples of LMWG that allow the culture of isolated stem cells in a gel matrix. The results (TEM observations and rheology) suggest that the supramolecular organizations of the matrix play a role in the behavior of stem cells in 3D environments.
Collapse
|
40
|
Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C, Chassande O, Barthélémy P. Control of Stem-Cell Behavior by Fine Tuning the Supramolecular Assemblies of Low-Molecular-Weight Gelators. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Xu S, Wang W, Li X, Liu J, Dong A, Deng L. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. Eur J Pharm Sci 2014; 62:267-73. [PMID: 24931190 DOI: 10.1016/j.ejps.2014.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022]
|
42
|
Wang W, Liu J, Li C, Zhang J, Liu J, Dong A, Kong D. Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel. J Mater Chem B 2014; 2:4185-4192. [PMID: 32261752 DOI: 10.1039/c4tb00275j] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The real-time monitoring of materials degradation is crucial to determine the in vivo retention time and the design or screening of degradable biomaterials. However, in vivo performance cannot always be predicted through the traditional determination of in vitro erosion and current standard methods sacrifice samples or animals, preventing the sequential measurement of the same specimen. Herein, a non-invasive fluorescence imaging method was developed to sequentially follow in vivo loss of fluorescence signal to simultaneously characterize the hydrolytic and enzymatic degradation of PEGlyated polyester hydrogel. Rhodamine B was conjugated to thermosensitive amphiphilic triblock copolymer based on cyclic ether modified PCL and PEG (abbreviated as PECT) and no obvious influence on gelation time or gel strength was observed with the conjugation content under 0.121% (w/w). Both in vitro and in vivo degradation profiles followed linear fittings while in vivo and in vitro hydrogel degradation rates correlated in an exponential mathematical model, enabling the general prediction of in vivo erosion trends of new biomaterial formulations from in vitro data. This methodology possibly enabled rational design and rapid in vitro screening of degradable materials, and might be potentially extended to simultaneously determine the material erosion and speculate the drug release from a drug-incorporated scaffold, or the cell growth profile in tissue-engineering formulations.
Collapse
Affiliation(s)
- Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Peng M, Xu S, Zhang Y, Zhang L, Huang B, Fu S, Xue Z, Da Y, Dai Y, Qiao L, Dong A, Zhang R, Meng W. Thermosensitive Injectable Hydrogel Enhances the Antitumor Effect of Embelin in Mouse Hepatocellular Carcinoma. J Pharm Sci 2014; 103:965-73. [DOI: 10.1002/jps.23885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
|
44
|
Baral A, Roy S, Dehsorkhi A, Hamley IW, Mohapatra S, Ghosh S, Banerjee A. Assembly of an injectable noncytotoxic peptide-based hydrogelator for sustained release of drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:929-36. [PMID: 24397440 DOI: 10.1021/la4043638] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A new synthetic tripeptide-based hydrogel has been discovered at physiological pH and temperature. This hydrogel has been thoroughly characterized using different techniques including field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, small- and wide-angle X-ray diffraction analyses, FT-IR, circular dichroism, and rheometric analyses. Moreover, this gel exhibits thixotropy and injectability. This hydrogel has been used for entrapment and sustained release of an antibiotic vancomycin and vitamin B12 at physiological pH and temperature for about 2 days. Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.
Collapse
Affiliation(s)
- Abhishek Baral
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Lin Z, Gao W, Hu H, Ma K, He B, Dai W, Wang X, Wang J, Zhang X, Zhang Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release 2014; 174:161-70. [DOI: 10.1016/j.jconrel.2013.10.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/19/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
46
|
Wang W, Deng L, Huang P, Xu S, Li X, Lv N, Wang L, Hu R, Zhang J, Dong A. Toxicity andin vivobiological effect of the nanoparticular self-supported hydrogel of a thermosensitive copolymer for non-invasive drug delivery. J Biomed Mater Res A 2013; 102:17-29. [PMID: 23475810 DOI: 10.1002/jbm.a.34694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Weiwei Wang
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Liandong Deng
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Pingsheng Huang
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Shuxin Xu
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Xu Li
- Tianjin Institute of Medical and Pharmaceutical Science; Tianjin 300020 China
| | - Nan Lv
- Tianjin Institute of Medical and Pharmaceutical Science; Tianjin 300020 China
| | - Lei Wang
- Tianjin Institute of Medical and Pharmaceutical Science; Tianjin 300020 China
| | - Renjie Hu
- Tianjin Institute of Medical and Pharmaceutical Science; Tianjin 300020 China
| | - Jianhua Zhang
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Anjie Dong
- Department of polymer science and engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Key Laboratory of Systems Bioengineering; Ministry of Education of China; Tianjin 300072 China
| |
Collapse
|