1
|
Yang D, Ruan Z, He S, Tang L, Wang R, Wan C. Sulfur(IV) Chemistry-Based Peptide and Protein Late-Stage Modification. Chembiochem 2025; 26:e202500234. [PMID: 40235189 DOI: 10.1002/cbic.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/17/2025]
Abstract
The development of precise and controllable chemical modification tools for peptides and proteins represents a great challenge in elucidating their structure-activity relationships and regulatory mechanisms, as well as a powerful driver for advancing macromolecular therapeutic strategies. However, current technologies predominantly rely on irreversible covalent labeling or genetic encoding of unnatural amino acids, exhibiting significant limitations in reversible modification, in situ functional regulation, and adaptability to complex physiological environments. In recent years, breakthrough advancements in sulfur(IV) chemistry have provided a paradigm for the late-stage functionalization of peptides and proteins. Through synergistic innovations in sulfur(IV)-based reagent design, intermediate modulation, and bioorthogonal reactions, a more multifaceted modification toolbox has been progressively established, integrating site selectivity, condition responsiveness, and functional rescue. Providing current challenges and future perspectives in this field, this review focuses on sulfur(IV) chemistry-driven strategies for peptide and protein modification, as well as their applications in proximity-labeling strategies and drug delivery/therapeutic interventions.
Collapse
Affiliation(s)
- Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510230, China
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Li Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
2
|
He Z, Zhao X, Gao WY, Bao G, Li Y, Zuo Q, Song X, Mou LY, Sun W, Wang R. Controlled reversible methionine-selective sulfimidation of peptides. SCIENCE ADVANCES 2025; 11:eadv8712. [PMID: 40397727 PMCID: PMC12094199 DOI: 10.1126/sciadv.adv8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Site-selective chemical peptide manipulation is an effective strategy to understand and regulate structure and function. However, methionine-selective modification remains one of the most difficult challenges in peptide chemistry, with notable limited strategies. In this study, we report a general reversible modification strategy at methionine sites that uses the ruthenium-catalyzed sulfimidation of peptides. This method provides a convenient and effective strategy for late-stage peptide functionalization. The N═S bonds of the conjugates are reduced in the presence of glutathione, resulting the traceless releasing of corresponding peptides and amides. Practical applications are then demonstrated using precise reversible modifications of bioactive peptides, the stapling and linearization of peptides, peptide-drug conjugates, and split-and-pool synthesis. This on/off strategy through methionine-selective and reversible sulfimidation provides a unique tool for peptide chemistry and peptide-based drug discovery.
Collapse
Affiliation(s)
- Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xiufang Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wen-Yan Gao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Quan Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Ling-Yun Mou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Zhang Y, Yu H, Tang F, Zhang FH, Zhang M, Dong J, Zhao J, Huang W, Liu B. Bioinspired Methionine-Selective Desulfurization Editing of Peptides via the Photocatalysis Strategy. J Am Chem Soc 2025; 147:16379-16389. [PMID: 40323122 DOI: 10.1021/jacs.5c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
S-Adenosylmethionine (SAM) frequently functions as a cofactor or precursor for enzymes, initiating an array of radical reactions in biological systems. In contrast with the conventional 5'-deoxyadenosyl (dAdo) radical pathway, which proceeds via homolytic cleavage of the S-C(5') bond of SAM, the Dph2 enzyme provides an alternative 3-amino-3-carboxypropyl (ACP) radical pathway through breaking the S-C(γ) bond. Inspired by this distinctive bond cleavage mode, we have developed a chemically induced pathway to generate an ACP-type radical intermediate on methionine-based sulfonium. This strategy presents a novel desulfurization conjugation mode for methionine modification, diverging from previous approaches that conjugate onto the sulfur atom or the adjacent methyl group of methionine. The versatility of this strategy is demonstrated by the efficient functionalization of various peptides and peptide macrocyclizations. Density Functional Theory (DFT) calculations provide further insights into the mechanism of this desulfurization reaction, explaining the exceptional selectivity of homolytic cleavage of the S-C(γ) bond of methionine-based sulfonium. The successful implementation of this novel desulfurization strategy represents a substantial advancement in the understanding of sulfonium-based intramolecular radical substitution reactions and provides new opportunities for the functionalization of biomolecules, thereby fostering progress in interdisciplinary research.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huixin Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Feng-Hua Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Meihui Zhang
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd, Shenzhen 518055, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| |
Collapse
|
4
|
Chen Y, Dai C, Han J, Xing Y, Yin F, Li Z. Recent Chemical Biology Insights Towards Reversible Stapled Peptides. Chembiochem 2025; 26:e202500052. [PMID: 40011217 DOI: 10.1002/cbic.202500052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Peptides are increasingly recognized for their advantages over small molecules in the modulation of protein-protein interactions (PPIs), particularly in terms of potency and selectivity. "Staples" can be coupled to the amino acid residues of linear peptides to limit their conformation, improving the stability, membrane permeability, and resistance to proteolysis of peptides. However, the addition of staples can sometimes lead to the complete inactivation of the original peptide or result in extensive interactions that complicate biophysical analysis. Reversible stapled peptides provide an excellent solution to these issues. Besides, probes based on reversible stapled peptides are also indispensable tools for thoroughly investigating PPIs. Consequently, the development of diverse reversible stapling techniques for stapled peptides is crucial for broadening the applications of peptide molecules in drug discovery, drug delivery, and as tools in chemical biology research. This review aims to summarize representative chemical design strategies for reversible stapled peptides, focusing on reversible chemical stapling methods involving sulfhydryl, amino, and methylthio groups, as well as reversible modulation of the conformational states of stapled peptides. Additionally, we demonstrate some intriguing biological applications of stapled peptides and, finally, suggest future research directions in the field that will serve as references for related researchers.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, P. R. China
| | - Chuan Dai
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, P. R. China
| | - Jinyan Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, P. R. China
| |
Collapse
|
5
|
Zhang J, Li Y, Li L, Li Y, Cao Y, Lei H. Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins. ACS NANO 2025; 19:14177-14186. [PMID: 40173012 DOI: 10.1021/acsnano.5c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.
Collapse
Affiliation(s)
- Junsheng Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luofei Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Hai Lei
- School of Physics, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Sinha S, Singh PP, Kanaujia S, Singh PK, Srivastava V. Recent advances of photocatalytic biochemical transformations. Bioorg Chem 2025; 157:108320. [PMID: 40037027 DOI: 10.1016/j.bioorg.2025.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
The discovery of useful synthetic transformations has made light-mediated catalysis, a widely employed method in chemical synthesis. Since the catalyst, light source, and substrate needed to produce a photoredox reaction are the same as those needed for photosensitization, photoredox reactions are perfect for examining biological surroundings. An attempt has been made to cover the development of future-oriented catalysts and the therapeutic use of photosensitization. New applications of photoredox catalytic techniques for investigating intricate biological environments in living cells and protein bioconjugation is also discussed.
Collapse
Affiliation(s)
- Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.211010, India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.211010, India.
| | - Sudhanshu Kanaujia
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.211010, India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.211002, India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.211002, India.
| |
Collapse
|
7
|
Morrison C, Chan EP, Deming TJ. Triggered Inversion of Dual Responsive Diblock Copolypeptide Vesicles. J Am Chem Soc 2025; 147:7617-7623. [PMID: 39973289 PMCID: PMC11887448 DOI: 10.1021/jacs.4c17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
We report the synthesis of amphiphilic poly(l-methionine sulfoxide)x-b-poly(dehydroalanine)y, diblock copolypeptides, MOxADHy, and their self-assembly into submicrometer-diameter unilamellar vesicles in aqueous media. The formation of vesicles was observed over an unprecedented range of copolypeptide compositions due to the unique properties and chain conformations of ADH hydrophobic segments. These copolypeptides incorporate two distinct thiol reactive components where each segment can respond differently to a single thiol stimulus. Incubation of MO35ADH30 vesicles with glutathione under intracellular mimetic conditions resulted in vesicle disruption and release of cargo. Further, incubation of MO35ADH30 vesicles with thiolglycolic acid resulted in a reversal of amphipilicity and successful in situ inversion of the vesicle assemblies. This conversion of biomimetic polymer vesicles into stable inverted vesicles using a biologically relevant stimulus at physiological pH and temperature is unprecedented. These results provide insights toward the development of advanced functional synthetic assemblies with potential uses in biology and medicine.
Collapse
Affiliation(s)
- Casey
A. Morrison
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Ethan P. Chan
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Skakuj K, Iglhaut M, Shao Q, Garcia FJ, Huang BY, Brittain SM, Nesvizhskii AI, Schirle M, Nomura DK, Toste FD. Light-Activated Reactivity of Nitrones with Amino Acids and Proteins. Angew Chem Int Ed Engl 2025; 64:e202415976. [PMID: 39509590 PMCID: PMC11753931 DOI: 10.1002/anie.202415976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Controlled modifications of amino acids are an indispensable tool for advancing fundamental and translational research based on peptides and proteins. Yet, we still lack methods to chemically modify each naturally occurring amino acid sidechain. To help address this gap, we show that N,α-diaryl oxaziridines expand the scope of bioconjugation methods to chemically modify cysteine, methionine, and tryptophan residues with evidence for additional tyrosine labelling in a proteomic context. Conjugation primarily at tryptophan sites can be accessed by selective cleavage of modifications at other sidechains. The N,α-diaryl oxaziridine reagents are accessed through photoisomerization of nitrones, which serve as photocaged reagents, thus providing an additional level of control over reactivity. Initial guiding principles for the design of nitrone reagents are developed by exploring the impact of structure on UV/Vis absorption, photoisomerization, and reactivity. We identify a nitrone structure that maximizes photoisomerization efficiency, the aqueous stability of the oxaziridine, the extent of amino acid modification, and the stability of the resulting amino acid conjugates. We then translate nitrone reagents to modify proteins in aqueous conditions. Finally, we use nitrones to profile reactive residues across the proteome of a mammalian cell line and find that they expand the proteome coverage.
Collapse
Affiliation(s)
- Kacper Skakuj
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Maximilian Iglhaut
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Qian Shao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Bo-Yang Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Ann Arbor, Michigan, 48109, USA
| | | | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| |
Collapse
|
9
|
Sahu S, Emenike B, Beusch CM, Bagchi P, Gordon DE, Raj M. Copper(I)-nitrene platform for chemoproteomic profiling of methionine. Nat Commun 2024; 15:4243. [PMID: 38762540 PMCID: PMC11102537 DOI: 10.1038/s41467-024-48403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform's potential in profiling the cellular interactome.
Collapse
Affiliation(s)
- Samrat Sahu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
11
|
Hoare M, Tan R, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:433-440. [PMID: 38324783 PMCID: PMC10921467 DOI: 10.1021/jasms.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.
Collapse
Affiliation(s)
- Margaret Hoare
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Ruiyue Tan
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Kyle Swovick
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Deming TJ. Sulfur Switches for Responsive Peptide Materials. Acc Chem Res 2024; 57:661-669. [PMID: 38373227 PMCID: PMC10918826 DOI: 10.1021/acs.accounts.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
There is considerable recent interest in the synthesis and development of peptide-based materials as mimics of natural biological assemblies that utilize proteins and peptides to form organized structures and develop beneficial properties. Due to their potential compatibility with living organisms, synthetic peptide materials are also being developed for applications such as cell grafting, therapeutic delivery, and implantable diagnostic devices. One desirable feature for such applications is the ability to design materials that can respond to stimuli by changes in their structure or properties under biologically relevant conditions. Peptide and protein assemblies can respond to stimuli, such as changes in temperature, solution pH, ions present in media, or interactions with other biomacromolecules. An exciting area of emerging research is focused on how biology uses the chemistry of sulfur-containing amino acids as a means to regulate biological processes. These concepts have been utilized and expanded in recent years to enable the development of peptide materials with readily switchable properties.The incorporation of sulfur atoms in polypeptides, peptides, and proteins provides unique sites that can be used to alter the physical and biological properties of these materials. Sulfur-containing amino acid residues, most often cysteine and methionine, are able to undergo a variety of selective chemical and enzyme-mediated reactions, which can be broadly characterized as redox or alkylation processes. These reactions often proceed under physiologically relevant conditions, can be reversible, and are significant in that they can alter residue polarity as well as conformations of peptide chains. These sulfur-based reactions are able to switch molecular and macromolecular properties of peptides and proteins in living systems and recently have been applied to synthetic peptide materials. Naturally occurring "sulfur switches" can be reversible or irreversible and are often triggered by enzymatic activity. Sulfur switches in peptide materials can also be triggered in vitro using oxidation/reduction and alkylation as well as photochemical reactions. The application of sulfur switches to peptide materials has greatly expanded the scope of these switches due to the ability to readily incorporate a wide variety of noncanonical sulfur-containing synthetic amino acids.Sulfur switches have been shown to provide considerable potential to reversibly alter peptide material properties under mild physiologically relevant conditions. An important molecular feature of sulfur-containing amino acid residues was found to be the location of sulfur atoms in the side chains. The variation of sulfur atom positions from the backbone by single bond lengths was found to significantly affect polypeptide chain conformations upon oxidation-reduction or alkylation/dealkylation reactions. With the successful adaptation of sulfur switches to peptide materials, future studies can explore how these switches affect how these materials interact with biological systems. This Account provides an overview of the different types of sulfur switch reactions found in biology and their properties and the elaboration of these switches in synthetic systems with a focus on recent developments and applications of reversible sulfur switches in peptide materials.
Collapse
|
13
|
Li H, Hou Z, Wang Y, Zhou Z, Cai J, Xin Q, Yin F, Li Z, Xu N. Methodology of stable peptide based on propargylated sulfonium. Biochem Biophys Rep 2023; 35:101508. [PMID: 37448811 PMCID: PMC10336417 DOI: 10.1016/j.bbrep.2023.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Peptides can be used as effective molecular tool for covalent modification of proteins and play important roles in ligand directed covalent modification. Tyr-selective protein modifications exert a profound impact on protein functionality. Here, we developed a general strategy that involves nucleophilic addition of alkyne for tyrosine modification. The terminal alkyne of propargyl sulfonium is motivated by the sulfonium center to react with phenolic hydroxyl. This approach provides a straightforward method for tyrosine modification due to its high yield in aqueous solution at physiological temperature. In addition, cyclic peptides could be obtained via adjusting pH to 8.0 from peptides consisting of tyrosine and methionine modified by propargyl bromide, and the resulting cyclic peptides are proved to have better stability, excellent 2-mercaptopyridine resistance and improved cellular uptakes. Furthermore, molecules made from the propargylated sulfonium have the potential to be used as warheads against tyrosine containing biomolecules. Collectively, we develop a direct and uncomplicated technique for modifying tyrosine residues, the strategy concerned can be widely utilized to construct stable peptides and biomolecules imaging.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jin Cai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
14
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
15
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
16
|
Zhang MQ, He PY, Hu JJ, Li YM. A rapid and selective methionine oxidative modification strategy. J Pept Sci 2023; 29:e3454. [PMID: 36181422 DOI: 10.1002/psc.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Clauss ZS, Meudom R, Su B, VandenBerg MA, Saini SS, Webber MJ, Chou DHC, Kramer JR. Supramolecular Protein Stabilization with Zwitterionic Polypeptide-Cucurbit[7]uril Conjugates. Biomacromolecules 2023; 24:481-488. [PMID: 36512327 DOI: 10.1021/acs.biomac.2c01319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein aggregation is an obstacle for the development of new biopharmaceuticals, presenting challenges in shipping and storage of vital therapies. Though a variety of materials and methods have been explored, the need remains for a simple material that is biodegradable, nontoxic, and highly efficient at stabilizing protein therapeutics. In this work, we investigated zwitterionic polypeptides prepared using a rapid and scalable polymerization technique and conjugated to a supramolecular macrocycle host, cucurbit[7]uril, for the ability to inhibit aggregation of model protein therapeutics insulin and calcitonin. The polypeptides are based on the natural amino acid methionine, and zwitterion sulfonium modifications were compared to analogous cationic and neutral structures. Each polymer was end-modified with a single cucurbit[7]uril macrocycle to afford supramolecular recognition and binding to terminal aromatic amino acids on proteins. Only conjugates prepared from zwitterionic structures of sufficient chain lengths were efficient inhibitors of insulin aggregation and could also inhibit aggregation of calcitonin. This polypeptide exhibited no cytotoxicity in human cells even at concentrations that were five-fold of the intended therapeutic regime. We explored treatment of the zwitterionic polypeptides with a panel of natural proteases and found steady biodegradation as expected, supporting eventual clearance when used as a protein formulation additive.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rolande Meudom
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| | - Bo Su
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael A VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew J Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
18
|
Alcala-Torano R, Islam M, Cika J, Ho Lam K, Jin R, Ichtchenko K, Shoemaker CB, Van Deventer JA. Yeast Display Enables Identification of Covalent Single-Domain Antibodies against Botulinum Neurotoxin Light Chain A. ACS Chem Biol 2022; 17:3435-3449. [PMID: 36459441 PMCID: PMC10065152 DOI: 10.1021/acschembio.2c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
While covalent drug discovery is reemerging as an important route to small-molecule therapeutic leads, strategies for the discovery and engineering of protein-based irreversible binding agents remain limited. Here, we describe the use of yeast display in combination with noncanonical amino acids (ncAAs) to identify irreversible variants of single-domain antibodies (sdAbs), also called VHHs and nanobodies, targeting botulinum neurotoxin light chain A (LC/A). Starting from a series of previously described, structurally characterized sdAbs, we evaluated the properties of antibodies substituted with reactive ncAAs capable of forming covalent bonds with nearby groups after UV irradiation (when using 4-azido-l-phenylalanine) or spontaneously (when using O-(2-bromoethyl)-l-tyrosine). Systematic evaluations in yeast display format of more than 40 ncAA-substituted variants revealed numerous clones that retain binding function while gaining either UV-mediated or spontaneous crosslinking capabilities. Solution-based analyses indicate that ncAA-substituted clones exhibit site-dependent target specificity and crosslinking capabilities uniquely conferred by ncAAs. Interestingly, not all ncAA substitution sites resulted in crosslinking events, and our data showed no apparent correlation between detected crosslinking levels and distances between sdAbs and LC/A residues. Our findings highlight the power of yeast display in combination with genetic code expansion in the discovery of binding agents that covalently engage their targets. This platform streamlines the discovery and characterization of antibodies with therapeutically relevant properties that cannot be accessed in the conventional genetic code.
Collapse
Affiliation(s)
- Rafael Alcala-Torano
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Kwok Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States of America
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| |
Collapse
|
19
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
20
|
Zare F, Potenza A, Greschner AA, Gauthier MA. Consecutive Alkylation, "Click", and "Clip" Reactions for the Traceless Methionine-Based Conjugation and Release of Methionine-Containing Peptides. Biomacromolecules 2022; 23:2891-2899. [PMID: 35671380 DOI: 10.1021/acs.biomac.2c00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Click" reactions have revolutionized research in many areas of science. However, a disadvantage of the high stability of the Click product is that identifying simple treatments for cleanly dissociating the latter under the same guiding principles, i.e., a "Clip" reaction, remains a challenge. This study demonstrates that electron-deficient alkynes, conveniently installed on methionine residues, can participate in well-known Click (nucleophilic thiol-allene addition) and subsequent Clip reactions (radical thiol-ene addition). To illustrate this concept, a variety of bioconjugates (peptide-peptide; peptide-fluorophore; peptide-polymer; and peptide-protein) were prepared. Interestingly, the Clip reaction of these bioconjugates releases the original peptides concurrent with regeneration of their unmodified methionine residue, in minutes. Moreover, the conjugates demonstrate substantial stability toward endogenous levels of reactive species in bacteria, illustrating the potential for this chemistry in the biosciences. The reaction conditions employed in the Click and Clip steps are compatible with the preservation of the integrity of biomolecules/fluorophores and involve readily accessible reagents and the natural functional groups on peptides/proteins.
Collapse
Affiliation(s)
- Fatemeh Zare
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes J3X 1S2, Canada
| | - Alessandro Potenza
- Swiss Federal Institute of Technology Zurich (ETHZ), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich 8092, Switzerland
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes J3X 1S2, Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes J3X 1S2, Canada.,Swiss Federal Institute of Technology Zurich (ETHZ), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich 8092, Switzerland
| |
Collapse
|
21
|
Li Y, Chang R, Chen YX. Recent advances in post-polymerization modifications on polypeptides: synthesis and applications. Chem Asian J 2022; 17:e202200318. [PMID: 35576055 DOI: 10.1002/asia.202200318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Polypeptides, a kind of very promising biomaterial, have shown a wide range of applications due to their excellent biocompatibility, easy accessibility, and structural variability. To synthesize polypeptides with desired functions, post-polymerization modification (PPM) plays an important role in introducing novel chemical structure on their side-chains. The key of PPM strategy is to develop highly selective and efficient reactions that can couple the additional functional moieties with pre-installed side-chain functionalities on polypeptides. In this minireview, classic PPM reactions and especially their recent progresses are summarized, including different modification approaches for unsaturated alkyl group, oxygen-containing functional group, nitrogen-containing functional group, sulfur-containing functional group and other special functional group on side chains. In addition, this review also highlights the applications of structure-diversified polypeptides generated via PPM strategy in the field of biomaterial.
Collapse
Affiliation(s)
- Yue Li
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Rong Chang
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Haidian District, 100084, China, 100084, Beiing, CHINA
| |
Collapse
|
22
|
A bifunctional vinyl-sulfonium tethered peptide induced by thio-Michael-type addition reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Shu X, Asghar S, Yang F, Li ST, Wu H, Yang B. Uncover New Reactivity of Genetically Encoded Alkyl Bromide Non-Canonical Amino Acids. Front Chem 2022; 10:815991. [PMID: 35252115 PMCID: PMC8894327 DOI: 10.3389/fchem.2022.815991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Genetically encoded non-canonical amino acids (ncAAs) with electrophilic moieties are excellent tools to investigate protein-protein interactions (PPIs) both in vitro and in vivo. These ncAAs, including a series of alkyl bromide-based ncAAs, mainly target cysteine residues to form protein-protein cross-links. Although some reactivities towards lysine and tyrosine residues have been reported, a comprehensive understanding of their reactivity towards a broad range of nucleophilic amino acids is lacking. Here we used a recently developed OpenUaa search engine to perform an in-depth analysis of mass spec data generated for Thioredoxin and its direct binding proteins cross-linked with an alkyl bromide-based ncAA, BprY. The analysis showed that, besides cysteine residues, BprY also targeted a broad range of nucleophilic amino acids. We validated this broad reactivity of BprY with Affibody/Z protein complex. We then successfully applied BprY to map a binding interface between SUMO2 and SUMO-interacting motifs (SIMs). BprY was further applied to probe SUMO2 interaction partners. We identified 264 SUMO2 binders, including several validated SUMO2 binders and many new binders. Our data demonstrated that BprY can be effectively used to probe protein-protein interaction interfaces even without cysteine residues, which will greatly expand the power of BprY in studying PPIs.
Collapse
Affiliation(s)
- Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Sana Asghar
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shang-Tong Li
- Glbizzia Biosciences Co., Ltd, Beijing, China
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| |
Collapse
|
24
|
Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, Onoa B, Bustamante C, Kramer JR. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. Nat Commun 2021; 12:6472. [PMID: 34753949 PMCID: PMC8578664 DOI: 10.1038/s41467-021-26808-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. Synthetic mimics of glycoproteins and proteoglycans have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Here the authors show one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides to form glycopolypeptide brushes.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Austin E Schlirf
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Nathaniel S Wright
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA
| | - Carlos Bustamante
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.,Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84102, USA.
| |
Collapse
|
25
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
26
|
Zhang M, Fang Z, Zhang H, Cui M, Wang M, Liu K. Reversing tumor immunosuppressive microenvironment via targeting codelivery of CpG ODNs/PD-L1 peptide antagonists to enhance the immune checkpoint blockade-based anti-tumor effect. Eur J Pharm Sci 2021; 168:106044. [PMID: 34666183 DOI: 10.1016/j.ejps.2021.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
In order to reverse tumor immunosuppressive microenvironment and improve antitumor immune effect based on immune checkpoint blocking, a mannose-modified liposome-based CpG ODNs and PD-L1 antagonistic peptides (P) co-delivery system (HA/M-Lipo CpG-P) was constructed, in which hyaluronic acid (HA) coating was supposed to improve the systemic circulation stability and thereby promote its accumulation in tumor tissues. When the HA/M-Lipo CpG-P complexes enter the tumor tissues, HA will be hydrolyzed under the action of hyaluronidase, exposing P peptides. Then, P peptides linked by octapeptides that can be cleaved by matrix metalloproteinases (MMPs) are released into tumor tissues under the action of MMPs, exerting a blocking effect in the PD-1/PD-L1 pathway. The M-Lipo CpG complexes can recognize macrophage surface mannose receptors through its surface modified mannose molecules, and promote the intracellular delivery of CpG ODNs, thereby activating macrophages. The results showed that HA/M-Lipo CpG-P complexes successfully reversed M2-type macrophages in tumor microenvironment (TME) to M1, thereby activating anti-tumor related immune cells and inhibiting tumor growth. Moreover, the HA/M-Lipo CpG-P complexes showed a better tumor inhibitory effect than the HA/M-Lipo CpG or the HA/M-Lipo-P (monotherapy) treatment groups. Overall, HA/M-Lipo CpG-P complexes provide a promising co-delivery strategy for targeting tumors to improve the antitumor effect based on immune checkpoint blockade.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Haitao Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingfu Wang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China; School of biological sciences, University Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kehai Liu
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China.
| |
Collapse
|
27
|
Zhao R, Shi X, Shi L, Zhao H, Yin F, Li Z. Solid phase diversity-oriented lysine modification of cyclic peptides. J Pept Sci 2021; 28:e3373. [PMID: 34643009 DOI: 10.1002/psc.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022]
Abstract
Herein, we report a novel strategy for diversity-oriented lysine modification of cyclic peptides based on the orthogonal alkylation of the lysine residues. All steps can be achieved in the solid phase with satisfying conversions. Notably, we demonstrated that the tether modification could help to improve the cellular uptake of peptides.
Collapse
Affiliation(s)
- Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Linlin Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hui Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
28
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Brewster RC, Hulme AN. Halomethyl-Triazoles for Rapid, Site-Selective Protein Modification. Molecules 2021; 26:molecules26185461. [PMID: 34576931 PMCID: PMC8471731 DOI: 10.3390/molecules26185461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications (PTMs) are used by organisms to control protein structure and function after protein translation, but their study is complicated and their roles are not often well understood as PTMs are difficult to introduce onto proteins selectively. Designing reagents that are both good mimics of PTMs, but also only modify select amino acid residues in proteins is challenging. Frequently, both a chemical warhead and linker are used, creating a product that is a misrepresentation of the natural modification. We have previously shown that biotin-chloromethyl-triazole is an effective reagent for cysteine modification to give S-Lys derivatives where the triazole is a good mimic of natural lysine acylation. Here, we demonstrate both how the reactivity of the alkylating reagents can be increased and how the range of triazole PTM mimics can be expanded. These new iodomethyl-triazole reagents are able to modify a cysteine residue on a histone protein with excellent selectivity in 30 min to give PTM mimics of acylated lysine side-chains. Studies on the more complicated, folded protein SCP-2L showed promising reactivity, but also suggested the halomethyl-triazoles are potent alkylators of methionine residues.
Collapse
|
30
|
Steinritz D, Lüling R, Siegert M, Mückter H, Popp T, Reinemer P, Gudermann T, Thiermann H, John H. Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro. Arch Toxicol 2021; 95:3253-3261. [PMID: 34396457 PMCID: PMC8448711 DOI: 10.1007/s00204-021-03137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany. .,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany. .,Bundeswehr Medical Service Academy, Ingolstädter Straße 240, 80939, Munich, Germany.
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Proteros Biostructures GmbH, Bunsenstraße 7a, 82152, Planegg, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Peter Reinemer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,AM1 Ventures GmbH, Fasanenstraße 27a, 81247, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| |
Collapse
|
31
|
Abstract
Site-selective chemical bioconjugation reactions are enabling tools for the chemical biologist. Guided by a careful study of the selenomethionine (SeM) benzylation, we have refined the reaction to meet the requirements of practical protein bioconjugation. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, is selectively labile to glutathione, and embodies a broadly tunable cleavage profile. Specifically, a 4-bromomethylphenylacetyl (BrMePAA) linker has been applied for efficient conjugation of complex organic molecules to SeM-containing proteins. This expansion of the bioconjugation toolkit has broad potential in the development of chemically enhanced proteins.
Collapse
|
32
|
Abstract
Click chemistry has been established rapidly as one of the most valuable methods for the chemical transformation of complex molecules. Due to the rapid rates, clean conversions to the products, and compatibility of the reagents and reaction conditions even in complex settings, it has found applications in many molecule-oriented disciplines. From the vast landscape of click reactions, approaches have emerged in the past decade centered around oxidative processes to generate in situ highly reactive synthons from dormant functionalities. These approaches have led to some of the fastest click reactions know to date. Here, we review the various methods that can be used for such oxidation-induced "one-pot" click chemistry for the transformation of small molecules, materials, and biomolecules. A comprehensive overview is provided of oxidation conditions that induce a click reaction, and oxidation conditions are orthogonal to other click reactions so that sequential "click-oxidation-click" derivatization of molecules can be performed in one pot. Our review of the relevant literature shows that this strategy is emerging as a powerful approach for the preparation of high-performance materials and the generation of complex biomolecules. As such, we expect that oxidation-induced "one-pot" click chemistry will widen in scope substantially in the forthcoming years.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,Synaffix BV, Industrielaan 63, 5349 AE, Oss, The Netherlands
| |
Collapse
|
33
|
Clauss ZS, Kramer JR. Design, synthesis and biological applications of glycopolypeptides. Adv Drug Deliv Rev 2021; 169:152-167. [PMID: 33352223 DOI: 10.1016/j.addr.2020.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
Carbohydrates play essential structural and biochemical roles in all living organisms. Glycopolymers are attractive as well-defined biomimetic analogs to study carbohydrate-dependent processes, and are widely applicable biocompatible materials in their own right. Glycopolypeptides have shown great promise in this area since they are closer structural mimics of natural glycoproteins than other synthetic glycopolymers and can serve as carriers for biologically active carbohydrates. This review highlights advances in the area of design and synthesis of such materials, and their biomedical applications in therapeutic delivery, tissue engineering, and beyond.
Collapse
|
34
|
Kim J, Li BX, Huang RYC, Qiao JX, Ewing WR, MacMillan DWC. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis. J Am Chem Soc 2020; 142:21260-21266. [PMID: 33290649 DOI: 10.1021/jacs.0c09926] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioconjugation technologies have revolutionized the practice of biology and medicine by allowing access to novel biomolecular scaffolds. New methods for residue-selective bioconjugation are highly sought to expand the toolbox for a variety of bioconjugation applications. Herein we report a site-selective methionine bioconjugation protocol that uses photoexcited lumiflavin to generate open-shell intermediates. This reduction-potential-gated strategy enables access to residues unavailable with traditional nucleophilicity-based conjugation methods. To demonstrate the versatility and robustness of this new protocol, we have modified various proteins and further utilized this functional handle to append diverse biological payloads.
Collapse
Affiliation(s)
- Junyong Kim
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08542, United States
| | - Jennifer X Qiao
- Discovery Chemistry, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08542, United States
| | - William R Ewing
- Discovery Chemistry, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08542, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
36
|
Anaya LMB, Petitdemange R, Rosselin M, Ibarboure E, Garbay B, Garanger E, Deming TJ, Lecommandoux S. Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules 2020; 22:76-85. [PMID: 32379435 DOI: 10.1021/acs.biomac.0c00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective lectin binding and sorting was achieved using thermosensitive glycoconjugates derived from recombinant elastin-like polypeptides (ELPs) in simple centrifugation-precipitation assays. A recombinant ELP, (VPGXG)40, containing periodically spaced methionine residues was used to enable chemoselective postsynthetic modification via thioether alkylation using alkyne functional epoxide derivatives. The resulting sulfonium groups were selectively demethylated to give alkyne functionalized homocysteine residues, which were then reacted with azido-functionalized monosaccharides to obtain ELP glycoconjugates with periodic saccharide functionality. These modifications were also found to allow modulation of ELP temperature dependent water solubility. The multivalent ELP glycoconjugates were evaluated for specific recognition, binding and separation of the lectin Ricinus communis agglutinin (RCA120) from a complex protein mixture. RCA120 and ELP glycoconjugate interactions were evaluated using laser scanning confocal microscopy and dynamic light scattering. Due to the thermoresponsive nature of the ELP glycoconjugates, it was found that heating a mixture of galactose-functionalized ELP and RCA120 in complex media selectively yielded a phase separated pellet of ELP-RCA120 complexes. Based on these results, ELP glycoconjugates show promise as designer biopolymers for selective protein binding and sorting.
Collapse
Affiliation(s)
| | - Rosine Petitdemange
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France.,Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Marie Rosselin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Timothy J Deming
- Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
37
|
Leigh T, Fernandez-Trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020; 4:291-310. [PMID: 37127955 DOI: 10.1038/s41570-020-0180-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.
Collapse
|
38
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
39
|
Hou Z, Wang D, Li Y, Zhao R, Wan C, Ma Y, Lian C, Yin F, Li Z. A Sulfonium Triggered Thiol-yne Reaction for Cysteine Modification. J Org Chem 2020; 85:1698-1705. [DOI: 10.1021/acs.joc.9b02505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430043, Wuhan, China
| | - Yang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
40
|
Reddy NC, Kumar M, Molla R, Rai V. Chemical methods for modification of proteins. Org Biomol Chem 2020; 18:4669-4691. [DOI: 10.1039/d0ob00857e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of protein bioconjugation draws attention from stakeholders in chemistry, biology, and medicine. This review provides an overview of the present status, challenges, and opportunities for organic chemists.
Collapse
Affiliation(s)
- Neelesh C. Reddy
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Mohan Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Rajib Molla
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Vishal Rai
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| |
Collapse
|
41
|
Li Y, Lian C, Hou Z, Wang D, Wang R, Wan C, Zhong W, Zhao R, Wang Y, Li S, Yin F, Li Z. Intramolecular methionine alkylation constructs sulfonium tethered peptides for protein conjugation. Chem Commun (Camb) 2020; 56:3741-3744. [DOI: 10.1039/d0cc00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous efforts have been invested in the selective modification of proteins.
Collapse
|
42
|
Rosselin M, Xiao Y, Belhomme L, Lecommandoux S, Garanger E. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Lett 2019; 8:1648-1653. [PMID: 35619386 DOI: 10.1021/acsmacrolett.9b00862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective modifications at methionyl residues in proteins have attracted particular attention in recent years. Previously described methods to chemoselectively modify the methionine side chain in elastin-like polypeptides (ELPs) involved nucleophilic addition using alkyl halides or epoxides yielding a sulfonium group with a positive charge strongly affecting ELPs' physicochemical properties, in particular their thermal responsiveness. We herein explored the recently reported ReACT method (Redox-Activated Chemical Tagging) based on the use of oxaziridine derivatives, yielding an uncharged sulfimide as an alternative route for chemoselective modifications of methionine-containing ELPs in aqueous medium. The different synthetic strategies are herein compared in order to provide a furnished toolbox for further biorthogonal postmodifications of any protein polymers.
Collapse
Affiliation(s)
- Marie Rosselin
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ye Xiao
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ludovic Belhomme
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Elisabeth Garanger
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
43
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
44
|
Affiliation(s)
- Katsuya Maruyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Abstract
Methionine has been recognized as an ideal target for labeling proteins without disturbing their tasks. However, exploration in single post-transcriptional modification of methionine is sluggish. In this Highlight, we summarize some of the most exciting reports on the precise control of protein function by selectively modifying methionine residues.
Collapse
Affiliation(s)
- Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Zang J, Chen Y, Zhu W, Lin S. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Biochemistry 2019; 59:132-138. [PMID: 31592657 DOI: 10.1021/acs.biochem.9b00789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methionine is one of the most hydrophobic, redox-sensitive, and one of the only two sulfur-containing amino acids on protein. Because of these biochemical properties, the methionine residue plays a central role in a variety of biological processes, such as metal coordination, antioxidant stress, and aging. However, studies on the molecular functions of methionine are much less common than the other primary sulfur-containing amino acid, cysteine. The limited number of publications on methionine-related studies is partially due to the lack of tools for methionine modification. Methionine bioconjugation offers a new strategy to decipher the biological function of methionine and expands the toolbox for protein functionalization in the context of the application, such as synthesizing proteins with novel properties and producing new biomaterials. The purpose of this Perspective is to highlight the biochemical properties and functions of methionine, list recent progress in the development of methionine bioconjugation reagents, and briefly demonstrate the application of these reagents on polypeptides, proteins, and proteomes.
Collapse
Affiliation(s)
- Jia Zang
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Yulin Chen
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Wenxuan Zhu
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Shixian Lin
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
47
|
Deng Y, Chen H, Tao X, Cao F, Trépout S, Ling J, Li MH. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules 2019; 20:3435-3444. [DOI: 10.1021/acs.biomac.9b00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Xinfeng Tao
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Sylvain Trépout
- Institut Curie, INSERM U1196 and CNRS UMR9187, 91405 Orsay Cedex, France
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| |
Collapse
|
48
|
Wang D, Yu M, Liu N, Lian C, Hou Z, Wang R, Zhao R, Li W, Jiang Y, Shi X, Li S, Yin F, Li Z. A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem Sci 2019; 10:4966-4972. [PMID: 31183045 PMCID: PMC6530539 DOI: 10.1039/c9sc00034h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Significant efforts have been invested to develop site-specific protein modification methodologies in the past two decades. In most cases, a reactive moiety was installed onto ligands with the sole purpose of reacting with specific residues in proteins. Herein, we report a unique peptide macrocyclization method via the bis-alkylation between methionine and cysteine to generate cyclic peptides with significantly enhanced stability and cellular uptake. Notably, when the cyclized peptide ligand selectively recognizes its protein target with a proximate cysteine, a rapid nucleophilic substitution could occur between the protein Cys and the sulfonium center on the peptide to form a conjugate. The conjugation reaction is rapid, facile and selective, triggered solely by proximity. The high target specificity is further proved in cell lysate and hints at its further application in activity based protein profiling. This method enhances the peptide's biophysical properties and generates a selective ligand-directed reactive site for protein modification and fulfills multiple purposes by one modification. This proof-of-concept study reveals its potential for further broad biological applications.
Collapse
Affiliation(s)
- Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Mengying Yu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Rui Wang
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong .
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Shuiming Li
- College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , 518055 , China .
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| |
Collapse
|
49
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
50
|
Maaskant RV, Roelfes G. Bioorthogonal Metalloporphyrin-Catalyzed Selective Methionine Alkylation in the Lanthipeptide Nisin. Chembiochem 2019; 20:57-61. [PMID: 30246492 PMCID: PMC6680192 DOI: 10.1002/cbic.201800493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Bioorthogonal catalytic modification of ribosomally synthesized and post-translationally modified peptides (RiPPs) is a promising approach to obtaining novel antimicrobial peptides with improved properties and/or activities. Here, we present the serendipitous discovery of a selective and rapid method for the alkylation of methionines in the lanthipeptide nisin. Using carbenes, formed from water-soluble metalloporphyrins and diazoacetates, methionines are alkylated to obtain sulfonium ions. The formed sulfonium ions are stable, but can be further reacted to obtain functionalized methionine analogues, expanding the toolbox of chemical posttranslational modification even further.
Collapse
Affiliation(s)
- Ruben V. Maaskant
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|