1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Ngubane S, Permaul K, Kudanga T. Characterisation of inhibition and thermodynamic properties of Trametes pubescens laccase and application in the synthesis of hybrid antioxidants. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
4
|
Palladium Nanoparticle-Modified Carbon Spheres @ Molybdenum Disulfide Core-Shell Composite for Electrochemically Detecting Quercetin. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quercetin (QR), abundant in plants, is used to treat colitis and gastric ulcer and is also a promising anticancer agent. To quantificationally detect QR, a sensitive electrochemical sensor was fabricated by palladium nanoparticles loaded on carbon sphere @ molybdenum disulfide nanosheet core-shell composites (Cs@MoS2-Pd NPs). The Cs@MoS2-Pd NPs worked to remedy the shortcomings of MoS2 and exhibited good catalytic activity to QR. The oxidation reaction of QR on Cs@MoS2-Pd NPs/GCE involved two electrons and two protons. Furthermore, the molecular surface for electrostatic potential, Laplacian bond order, and Gibbs free energy were computationally simulated to speculate the order and site of the oxidation of QR. The results showed that the 4′ O–H and 3′ O–H broke successively during the oxidation reaction. When the concentration of QR was within 0.5 to 12 μM, the fabricated sensor could achieve linear detection, and the detection limit was 0.02 μM (S/N = 3). In addition, the sensor possessed good selectivity, repeatability, and stability, which has a broad prospect in practical application.
Collapse
|
5
|
Aluminum(III), iron(III) and copper(II) complexes of luteolin: Stability, antioxidant, and anti-inflammatory properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
7
|
Anitha S, Krishnan S, Senthilkumar K, Sasirekha V. A comparative investigation on the scavenging of 2,2-diphenyl-1-picrylhydrazyl radical by the natural antioxidants (+) catechin and (-) epicatechin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
A Statistically Supported Antioxidant Activity DFT Benchmark-The Effects of Hartree-Fock Exchange and Basis Set Selection on Accuracy and Resources Uptake. Molecules 2021; 26:molecules26165058. [PMID: 34443645 PMCID: PMC8398206 DOI: 10.3390/molecules26165058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenolic compounds are now widely studied using computational chemistry approaches, the most popular of which is Density Functional Theory. To ease this process, it is critical to identify the optimal level of theory in terms of both accuracy and resource usage—a challenge we tackle in this study. Eleven DFT functionals with varied Hartree–Fock exchange values, both global and range-separated hybrids, were combined with 14 differently augmented basis sets to calculate the reactivity indices of caffeic acid, a phenolic acid representative, and compare them to experimental data or a high-level of theory outcome. Aside from the main course, a validation of the widely used Janak’s theorem in the establishment of vertical ionization potential and vertical electron affinity was evaluated. To investigate what influences the values of the properties under consideration, linear regression models were developed and thoroughly discussed. The results were utilized to compute the scores, which let us determine the best and worst combinations and make broad suggestions on the final option. The study demonstrates that M06–2X/6–311G(d,p) is the best fit for such research, and, curiously, it is not necessarily essential to include a diffuse function to produce satisfactory results.
Collapse
|
9
|
Martínez AG, Gómez PC, de la Moya S, Siehl HU. Revealing the mechanism of the water autoprotolysis on the basis of Marcus theory and TD-DFT methodology. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Energy of the CH⋯O H-bonds and others specific contacts in the quercetin molecule: QM/QTAIM approximation formulas. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen GRMM. The Flow of the Redox Energy in Quercetin during Its Antioxidant Activity in Water. Int J Mol Sci 2020; 21:E6015. [PMID: 32825576 PMCID: PMC7504380 DOI: 10.3390/ijms21176015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Erik Hursel
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| |
Collapse
|
12
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
13
|
Anitha S, Krishnan S, Senthilkumar K, Sasirekha V. Theoretical investigation on the structure and antioxidant activity of (+) catechin and (−) epicatechin – a comparative study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1745917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- S. Anitha
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - S. Krishnan
- Department of Physics, Bharathiar University, Coimbatore, India
| | - K. Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore, India
| | - V. Sasirekha
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
14
|
Li Z, Moalin M, Zhang M, Vervoort L, Mommers A, Haenen GR. Delocalization of the Unpaired Electron in the Quercetin Radical: Comparison of Experimental ESR Data with DFT Calculations. Int J Mol Sci 2020; 21:E2033. [PMID: 32188142 PMCID: PMC7139295 DOI: 10.3390/ijms21062033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q•) by delocalization of the unpaired electron (UE) in Q• is pivotal. The aim of this study is to further examine the delocalization of the UE in Q•, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q• and structurally related radicals both suggest that the UE of Q• is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3' and 4') of Q• have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q• indicate that the negatively charged oxygen at 4' has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3'. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2-C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q• is generated, which is pivotal in the antioxidant activity of Q.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Guido R.M.M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| |
Collapse
|
15
|
A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The quercetin molecule is known to be an effective pharmaceutical compound of a plant origin. Its chemical structure represents two aromatic A and B rings linked through the C ring containing oxygen and five OH hydroxyl groups attached to the 3, 3′, 4′, 5, and 7 positions. In this study, a novel conformational mobility of the quercetin molecule was explored due to the turnings of the O3′H and O4′H hydroxyl groups, belonging to the B ring, around the exocyclic C-O bonds. It was established that the presence of only three degrees of freedom of the conformational mobility of the O3′H and O4′H hydroxyl groups is connected with their concerted behavior, which is controlled by the non-planar (in the case of the interconverting planar conformers) or locally non-planar (in other cases) TSsO3′H/O4′H transition states, in which O3′H and O4′H hydroxyl groups are oriented by the hydrogen atoms towards each other. We also explored the number of the physico-chemical and electron-topological characteristics of all intramolecular-specific contacts—hydrogen bonds and attractive van der Waals contacts at the conformers and also at the transition states. Long-terms perspectives for the investigations of the structural bases of the biological activity of this legendary molecule have been shortly described.
Collapse
|
16
|
A Hidden Side of the Conformational Mobility of the Quercetin Molecule Caused by the Rotations of the O3H, O5H and O7H Hydroxyl Groups: In Silico Scrupulous Study. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of quantum-mechanical theory it was explored conformational variety of the isolated quercetin molecule due to the mirror-symmetrical hindered turnings of the O3H, O5H and O7H hydroxyl groups, belonging to the A and C rings, around the exocyclic C–O bonds. These dipole active conformational transformations proceed through the 72 transition states (TSs; C1 point symmetry) with non-orthogonal orientation of the hydroxyl groups relatively the plane of the A or C rings of the molecule (HO7C7C8/HO7C7C6 = ±(89.9–93.3), HO5C5C10 = ±(108.9–114.4) and HO3C3C4 = ±(113.6–118.8 degrees) (here and below signs ‘±’ corresponds to the enantiomers)) with Gibbs free energy barrier of activation ΔΔGTS in the range 3.51–16.17 kcal·mol−1 under the standard conditions (T = 298.1 K and pressure 1 atm): ΔΔGTSO7H (3.51–4.27) < ΔΔGTSO3H (9.04–11.26) < ΔΔGTSO5H (12.34–16.17 kcal mol−1). Conformational dynamics of the O3H and O5H groups is partially controlled by the intramolecular specific interactions O3H…O4, C2′/C6′H…O3, O3H…C2′/C6′, O5H…O4 and O4…O5, which are flexible and cooperative. Dipole-active interconversions of the enantiomers of the non-planar conformers of the quercetin molecule (C1 point symmetry) is realized via the 24 TSs with C1 point symmetry (HO3C3C2C1 = ±(11.0–19.1), HC2′/C6′C1′C2 = ±(0.6–2.9) and C3C2C1′C2′/C3C2C1′C6′ = ±(1.7–9.1) degree; ΔΔGTS = 1.65–5.59 kcal·mol−1), which are stabilized by the participation of the intramolecular C2′/C6′H…O1 and O3H…HC2′/C6′ H-bonds. Investigated conformational rearrangements are rather quick processes, since the time, which is necessary to acquire thermal equilibrium does not exceed 6.5 ns.
Collapse
|
17
|
Corso M, García de la Torre VS. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020; 12:840-859. [DOI: 10.1039/d0mt00043d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trace metal elements are essential for plant growth but become toxic at high concentrations, while some non-essential elements, such as Cd and As, show toxicity even in traces.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin
- Université Paris-Saclay
- INRAE
- AgroParisTech
- 78000 Versailles
| | - Vanesa S. García de la Torre
- Molecular Genetics and Physiology of Plants
- Faculty of Biology and Biotechnology
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
18
|
Brovarets’ OO, Hovorun DM. Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study. PLoS One 2019; 14:e0224762. [PMID: 31751372 PMCID: PMC6874073 DOI: 10.1371/journal.pone.0224762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
Quercetin molecule (3, 3', 4', 5, 7-pentahydroxyflavone, C15H10O7) is an important flavonoid compound of natural origin, consisting of two aromatic A and B rings linked through the C ring with endocyclic oxygen atom and five hydroxyl groups attached to the 3, 3', 4', 5 and 7 positions. This molecule is found in many foods and plants, and is known to have a wide range of therapeutic properties, like an anti-oxidant, anti-toxic, anti-inflammatory etc. In this study for the first time we have revealed and investigated the pathways of the tautomeric transformations for the most stable conformers of the isolated quercetin molecule (Brovarets' & Hovorun, 2019) via the intramolecular proton transfer. Energetic, structural, dynamical and polar characteristics of these transitions, in particular relative Gibbs free and electronic energies, characteristics of the intramolecular specific interactions-H-bonds and attractive van der Waals contacts, have been analysed in details. It was demonstrated that the most probable process among all investigated is the proton transfer from the O3H hydroxyl group of the C ring to the C2' carbon atom of the C2'H group of the B ring along the intramolecular O3H…C2' H-bond with the further formation of the C2'H2 group. It was established that the proton transfer from the hydroxyl groups to the carbon atoms of the neighboring CH groups is assisted at the transition states by the strong intramolecular HCH…O H-bond (~28.5 kcal∙mol-1). The least probable path of the proton transfer-from the C8H group to the endocyclic O1 oxygen atom-causes the decyclization of the C ring in some cases. It is shortly discussed the biological importance of the obtained results.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
19
|
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:135-143. [PMID: 31563754 DOI: 10.1016/j.plaphy.2019.09.039] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 05/29/2023]
Abstract
Due to the negative impact of reactive species (including free radicals) on humans and animals, the investigations to find effective substances (antioxidants), which protect living organisms against their damaging influence are carried out throughout the world. As most widespread synthetic antioxidants are suspected of having a noxious effect on the human body, more and more attention is paid to natural antioxidant compounds found in plants (especially phenolic compounds). The aim of this paper is to present the data about antioxidant activity of polyphenolic compounds with the emphasis on the main factors having influence on their antioxidant activity: chemical structure, ability to form hydrogen bonds, capability of metal ions chelation and reduction, adduct formation, kinetic solvents effect, mechanism of antioxidant reaction, capability of antioxidant enzyme activation and reduction potential.
Collapse
Affiliation(s)
- Małgorzata Olszowy
- Faculty of Chemistry, Maria Curie Sklodowska University, 20-031, Lublin, Pl. Marii Curie Sklodowskiej 3, Poland.
| |
Collapse
|
20
|
Brovarets’ OO, Hovorun DM. Conformational diversity of the quercetin molecule: a quantum-chemical view. J Biomol Struct Dyn 2019; 38:2817-2836. [DOI: 10.1080/07391102.2019.1656671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
21
|
Brovarets’ OO, Hovorun DM. Conformational transitions of the quercetin molecule via the rotations of its rings: a comprehensive theoretical study. J Biomol Struct Dyn 2019; 38:2865-2883. [DOI: 10.1080/07391102.2019.1645734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
22
|
Jakovljević K, Joksović MD, Botta B, Jovanović LS, Avdović E, Marković Z, Mihailović V, Andrić M, Trifunović S, Marković V. Novel 1,3,4-thiadiazole conjugates derived from protocatechuic acid: Synthesis, antioxidant activity, and computational and electrochemical studies. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Thermodynamics of primary antioxidant action of flavonols in polar solvents. ACTA CHIMICA SLOVACA 2019. [DOI: 10.2478/acs-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Very recently, a report on the antioxidant activity of flavonoids has appeared, where authors concluded that Hydrogen Atom Transfer mechanism represents the thermodynamically preferred mechanism in polar media (https://doi.org/10.1016/j.foodres.2018.11.018). Unfortunately, serious errors in the theoretical part of the paper led to incorrect conclusions. For six flavonols (galangin, kaempferol, quercetin, morin, myricetin, and fisetin), reaction enthalpies related to three mechanisms of the primary antioxidant action were computed. Based on the obtained results, the role of intramolecular hydrogen bonds (IHB) in the thermodynamics of the antioxidant effect is presented. Calculations and the role of solvation enthalpies of proton and electron in the determination of thermodynamically preferred mechanism is also briefly explained and discussed. The obtained results are in accordance with published works considering the Sequential Proton-Loss Electron-Transfer thermodynamically preferred reaction pathway.
Collapse
|
24
|
Vo QV, Nam PC, Thong NM, Trung NT, Phan CTD, Mechler A. Antioxidant Motifs in Flavonoids: O-H versus C-H Bond Dissociation. ACS OMEGA 2019; 4:8935-8942. [PMID: 31459981 PMCID: PMC6648838 DOI: 10.1021/acsomega.9b00677] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
Flavonoids provide potential health benefits due to their antioxidant properties. The antioxidant activity of natural flavonoids is primarily exerted by phenolic hydroxyl groups; however, C-H bonds also contribute to these properties. In this study, the contributions of phenolic groups and C-H bonds to the antioxidant properties of 13 flavonoids were investigated by using the (RO)B3LYP/6-311++G(2df,2p)//B3LYP/6-311G(d,p) model chemistry in the gas phase and water and ethanol solvents. It was found that the C-H bonds have lower bond dissociation energies than O-H bonds in the 4-carbonyl and/or 3-hydroxyl group containing flavonoids and hence define antioxidant activity. The HOO· radical scavenging of the selected flavonoids is also investigated in detail through the potential energy surface, natural bond orbitals, and kinetic calculations. It was found that the favored radical scavenging mechanism of the flavonoids is hydrogen atom transfer, with the gas phase rate constants in the range of 7.23 × 103-2.07 × 109 L·mol-1·s-1. The results suggest that the flavonoids, isomelacacidin, isoteracacidin, melacacidin, and teracacidin, have antioxidant properties as high as typical phenolic compounds such as quercetin, trans-resveratrol, trolox, and ascorbic acid.
Collapse
Affiliation(s)
- Quan V. Vo
- Department
for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 7000000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 7000000, Vietnam
| | - Pham Cam Nam
- Department
of Chemical Engineering, The University
of Danang - University of Science and Technology, Da Nang 550000, Vietnam
| | - Nguyen Minh Thong
- The
University of Danang, Campus in Kon Tum, 704 Phan Dinh Phung, Kon
Tum 580000, Vietnam
| | - Nguyen Tien Trung
- Department
of Chemistry, Quy Nhon University, Quy Nhon 591300, Vietnam
| | - Cam-Tu D. Phan
- Department
of Chemistry, Quy Nhon University, Quy Nhon 591300, Vietnam
| | - Adam Mechler
- Department
of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
25
|
Shameera Ahamed TK, Rajan VK, Sabira K, Muraleedharan K. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Comput Biol Chem 2019; 80:66-78. [PMID: 30928870 DOI: 10.1016/j.compbiolchem.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
In this study, the structural and antioxidant behavior of the three lichen-derived natural compounds such as atranorin (AT), evernic acid (EV) and diffractaic acid (DF) has been investigated in the gas and water phase using both B3LYP and M06-2X functional level of density functional theory (DFT) with two different basis sets 6-31+G (d, p) and 6-311++G (d, p). The intramolecular H-bonds (IHB) strength, aromaticity and noncovalent interactions (NCI) have been computed with the help of the quantum theory of atoms in molecules (QTAIM). This calculation gives major structural characteristics that indirectly influence the antioxidant behavior of the investigated compounds. The spin density (SD) delocalization of the unpaired electron is found to be the main stabilizing factor of neutral and cationic radical species. The main mechanisms, recommended in the literature, for the antioxidant action of polyphenols as radical scavengers such as hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), were examined. The result shows that the HAT and SPLET mechanism are the most conceivable one for the antioxidant action of this class of compounds in gas and water phase respectively. Preference of SPLET over HAT in water phase is due to the significantly lower value of proton affinity (PA) compared to the bond dissociation enthalpy (BDE) value. This study reveals that O2-H3, O9-H26 and O4-H45 respectively are the most favored site of AT, EV and DF for homolytic as well as heterolytic OH bond breaking.
Collapse
Affiliation(s)
| | - Vijisha K Rajan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - K Sabira
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - K Muraleedharan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India.
| |
Collapse
|
26
|
Anastassova NO, Yancheva DY, Mavrova AT, Kondeva-Burdina MS, Tzankova VI, Hristova-Avakumova NG, Hadjimitova VA. Design, synthesis, antioxidant properties and mechanism of action of new N,N′-disubstituted benzimidazole-2-thione hydrazone derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Tošović J, Marković S. Reactivity of chlorogenic acid toward hydroxyl and methyl peroxy radicals relative to trolox in nonpolar media. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Yu S, Wang Y, Ma Y, Wang L, Zhu J, Liu S. Structure, thermal stability, antioxidant activity and DFT studies of trisphenols and related phenols. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Jomova K, Lawson M, Drostinova L, Lauro P, Poprac P, Brezova V, Michalik M, Lukes V, Valko M. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food Chem Toxicol 2017; 110:340-350. [PMID: 29107026 DOI: 10.1016/j.fct.2017.10.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/27/2023]
Abstract
The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Michael Lawson
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Lenka Drostinova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, 949 74 Nitra, Slovakia
| | - Patrik Poprac
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Martin Michalik
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Vladimir Lukes
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia.
| |
Collapse
|
30
|
Amić A, Marković Z, Marković JMD, Jeremić S, Lučić B, Amić D. Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach. Comput Biol Chem 2016; 65:45-53. [DOI: 10.1016/j.compbiolchem.2016.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
|
31
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
32
|
Ivanović N, Jovanović L, Marković Z, Marković V, Joksović MD, Milenković D, Djurdjević PT, Ćirić A, Joksović L. Potent 1,2,4-Triazole-3-thione Radical Scavengers Derived from Phenolic Acids: Synthesis, Electrochemistry, and Theoretical Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nevena Ivanović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Ljiljana Jovanović
- Faculty of Sciences; University of Novi Sad; Trg D. Obradovića 3 21000 Novi Sad Serbia
| | - Zoran Marković
- Department of Chemical-Technological Sciences; State University of Novi Pazar; Vuka Karadžića bb 36300 Novi Pazar Serbia
| | - Violeta Marković
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Milan D. Joksović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Dejan Milenković
- Bioengineering Research and Development Center; 34000 Kragujevac Serbia
| | - Predrag T. Djurdjević
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Andrija Ćirić
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Ljubinka Joksović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
33
|
Klein E, Rimarčík J, Senajová E, Vagánek A, Lengyel J. Deprotonation of flavonoids severely alters the thermodynamics of the hydrogen atom transfer. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
35
|
|
36
|
Mazzone G, Russo N, Toscano M. Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Amić A, Marković Z, Dimitrić Marković JM, Lučić B, Stepanić V, Amić D. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
MARKOVIC Z, DOROVIC J, DIMITRIC MARKOVIC JM, BIOCANIN R, AMIC D. Comparative density functional study of antioxidative activity of the hydroxybenzoic acids and their anions. Turk J Chem 2016. [DOI: 10.3906/kim-1503-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Barata-Vallejo S, Yerien DE, Postigo A. Benign Perfluoroalkylation of Aniline Derivatives through Photoredox Organocatalysis under Visible-Light Irradiation. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals. J Mol Model 2015; 21:293. [PMID: 26508294 DOI: 10.1007/s00894-015-2840-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.
Collapse
|
41
|
QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Petrović ZD, Đorović J, Simijonović D, Petrović VP, Marković Z. Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv 2015. [DOI: 10.1039/c5ra02134k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A set of ten phenolic Schiff bases was evaluated for their antioxidative properties. Two of them, one salicylaldehyde and one vanillic, showed high activity. Parameters obtained by DFT supported the experimental findings.
Collapse
Affiliation(s)
- Zorica D. Petrović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Jelena Đorović
- Bioengineering Research and Development Center
- 34000 Kragujevac
- Republic of Serbia
| | - Dušica Simijonović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Vladimir P. Petrović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Zoran Marković
- Bioengineering Research and Development Center
- 34000 Kragujevac
- Republic of Serbia
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
| |
Collapse
|
43
|
Tu B, Liu ZJ, Chen ZF, Ouyang Y, Hu YJ. Understanding the structure–activity relationship between quercetin and naringenin: in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra22551e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interactions of quercetin and naringenin with DNA have been studied at molecular level, which may throw light on their structure–activity relationships, helpful for the design of analogs flavonoids and their application in drug industries.
Collapse
Affiliation(s)
- Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Juan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Zhi-Feng Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yu Ouyang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| |
Collapse
|
44
|
Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J Mol Model 2014; 20:2538. [DOI: 10.1007/s00894-014-2538-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
|
45
|
Reaction enthalpies of OH bonds splitting-off in flavonoids: The role of non-polar and polar solvent. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
León-Carmona JR, Martínez A, Galano A. New Free Radicals to Measure Antiradical Capacity: A Theoretical Study. J Phys Chem B 2014; 118:10092-100. [DOI: 10.1021/jp505586k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge Rafael León-Carmona
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Ext. s/n, Ciudad Universitaria, P.O. Box 70-360, Coyoacán, C.P. 04510, México
| | - Ana Martínez
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Ext. s/n, Ciudad Universitaria, P.O. Box 70-360, Coyoacán, C.P. 04510, México
| | - Annia Galano
- Departamento
de Química. Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, México
| |
Collapse
|
47
|
Inagaki T, Yamamoto T. Critical Role of Deep Hydrogen Tunneling to Accelerate the Antioxidant Reaction of Ubiquinol and Vitamin E. J Phys Chem B 2014; 118:937-50. [DOI: 10.1021/jp410263f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Taichi Inagaki
- Department of
Chemistry, Graduate School of
Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Yamamoto
- Department of
Chemistry, Graduate School of
Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|