1
|
Megarity CF, Herold RA, Armstrong FA. Extending protein-film electrochemistry across enzymology and biological inorganic chemistry to investigate, track and control the reactions of non-redox enzymes and spectroscopically silent metals. J Biol Inorg Chem 2025; 30:209-219. [PMID: 40025220 PMCID: PMC11965204 DOI: 10.1007/s00775-025-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Protein film electrochemistry has helped to unravel many complex reactivities of electron-transferring proteins and enzymes. A versatile descendant, the 'Electrochemical Leaf', offers new opportunities to extend electrochemical control to myriad enzymes that neither transfer electrons nor catalyse any redox reaction, including those dependent on spectroscopically limited, labile or other challenging metal ions. By embedding a cascade comprised of several enzymes-one of which electrochemically recycles NAD(P)(H), a second being a dehydrogenase-within a porous electrode formed from fused nanoparticles, the interconnected reactions are tightly channeled to transmit energy and information, rapidly and interactively. Under nanoconfinement, nicotinamide cofactors and cascade intermediates serve as specific current carriers, far beyond the electron itself.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
2
|
Zhang M, Wang X, Liu W, Cui X, Wang Y, Fan L, Cui H, Shen Y, Cui H, Zhang L. Engineering a Binding Peptide for Oriented Immobilization and Efficient Bioelectrocatalytic Oxygen Reduction of Multicopper Oxidases. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2355-2364. [PMID: 39693326 DOI: 10.1021/acsami.4c12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in E. coli CueO through semirational design. The first phase of engineering focused on the structural characteristics of MetRich, pinpointing fragment N394-H406 (SBP 1.0, corresponding to variant CueO-M12) as the key region dominating the binding. Subsequent site-saturation mutagenesis, combined with electrochemical screening, yielded three variants, and among them, the variant CueO-M12-1 (CueO-M12 H398I) exhibited a more uniform favorable orientation with a 1.38-fold increase in current density. Further electrocatalytic kinetics analysis revealed a significant 21.2-fold improvement in kinetics current density (Jk) compared with that of CueO-WT, leading to the development of SBP 2.0. When SBPs were fused to laccase from Bacillus pumilus (BpL) and fungal bilirubin oxidase from Myrothecium verrucaria (MvBOD), respectively, they transformed a sluggish adsorption process into a rapid and oriented one. In addition, compared with SBP 1.0, SBP 2.0 endows BpL and MvBOD with enhanced electrocatalytic capabilities for oxygen reduction and glucose/O2 EFC performance. The engineered SBPs are promising for serving as a versatile "glue" to enable the immobilization of oxidoreductases in an oriented manner, which leads to a breakthrough in bioelectrocatalysis and thereby overcoming the current bottleneck of EFCs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Xiufeng Wang
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyu Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanming Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Fan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Yanbing Shen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
4
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
5
|
Reuillard B, Costentin C, Artero V. Deciphering Reversible Homogeneous Catalysis of the Electrochemical H 2 Evolution and Oxidation: Role of Proton Relays and Local Concentration Effects. Angew Chem Int Ed Engl 2023; 62:e202302779. [PMID: 37073946 DOI: 10.1002/anie.202302779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Nickel bisdiphosphine complexes bearing pendant amines form a unique series of catalysts (so-called DuBois' catalysts) capable of bidirectional/reversible electrocatalytic oxidation and production of dihydrogen. This unique behaviour is directly linked to the presence of proton relays installed close to the metal center. We report here for the arginine derivative [Ni(P2 Cy N2 Arg )2 ]6+ on a mechanistic model and its kinetic treatment that may apply to all DuBois' catalysts and show that it allows for a good fit of experimental data measured at different pH values, catalyst concentrations and partial hydrogen pressures. The bidirectionality of catalysis results from balanced equilibria related to hydrogen uptake/evolution on one side and (metal)-hydride installation/capture on the other side, both controlled by concentration effects resulting from the presence of proton relays and connected by two square schemes corresponding to proton-coupled electron transfer processes. We show that the catalytic bias is controlled by the kinetic of the H2 uptake/evolution step. Reversibility does not require that the energy landscape be flat, with redox transitions occurring at potentials up to 250 mV away for the equilibrium potential, although such large deviations from a flat energy landscape can negatively impacts the rate of catalysis when coupled with slow interfacial electron transfer kinetics.
Collapse
Affiliation(s)
| | | | - Vincent Artero
- Univ Grenoble Alpes, CNRS, CEA, IRIG, LCBM, 38000, Grenoble, France
| |
Collapse
|
6
|
Contaldo U, Padrosa DR, Jamet H, Albrecht M, Paradisi F, Le Goff A. Optimising Electrical Interfacing between the Trimeric Copper Nitrite Reductase and Carbon Nanotubes. Chemistry 2023; 29:e202301351. [PMID: 37310888 DOI: 10.1002/chem.202301351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.
Collapse
Affiliation(s)
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hélène Jamet
- Univ. Grenoble Alpes, CNRS DCM, 38000, Grenoble, France
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS DCM, 38000, Grenoble, France
| |
Collapse
|
7
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
8
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
9
|
Ruiz-Rodríguez MA, Cooper CD, Rocchia W, Casalegno M, López de los Santos Y, Raos G. Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode. J Phys Chem B 2022; 126:8777-8790. [PMID: 36269122 PMCID: PMC9639099 DOI: 10.1021/acs.jpcb.2c05371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hydrogenases are a group of enzymes that have caught the interest of researchers in renewable energies, due to their ability to catalyze the redox reaction of hydrogen. The exploitation of hydrogenases in electrochemical devices requires their immobilization on the surface of suitable electrodes, such as graphite. The orientation of the enzyme on the electrode is important to ensure a good flux of electrons to the catalytic center, through an array of iron-sulfur clusters. Here we present a computational approach to determine the possible orientations of a [NiFe] hydrogenase (PDB 1e3d) on a planar electrode, as a function of pH, salinity, and electrode potential. The calculations are based on the solution of the linearized Poisson-Boltzmann equation, using the PyGBe software. The results reveal that electrostatic interactions do not truly immobilize the enzyme on the surface of the electrode, but there is instead a dynamic equilibrium between different orientations. Nonetheless, after averaging over all thermally accessible orientations, we find significant differences related to the solution's salinity and pH, while the effect of the electrode potential is relatively weak. We also combine models for the protein adsoption-desorption equilibria and for the electron transfer between the proteins and the electrode to arrive at a prediction of the electrode's activity as a function of the enzyme concentration.
Collapse
Affiliation(s)
| | - Christopher D. Cooper
- Department
of Mechanical Engineering and Centro Científico Tecnológico
de Valparaíso, Universidad Técnica
Federico Santa María, Valparaíso, 2340000, Chile
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, 16163Genova, Italy
| | - Mosè Casalegno
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy
| | - Yossef López de los Santos
- Centre
Armand-Frappier Santé, Biotechnologie, Institut national de
la recherche scientifique (INRS), Université
du Québec, Laval, QuébecHV7 1B7, Canada
| | - Guido Raos
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy,
| |
Collapse
|
10
|
Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Contaldo U, Curtil M, Pérard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO 2 RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Int Ed Engl 2022; 61:e202117212. [PMID: 35274429 PMCID: PMC9401053 DOI: 10.1002/anie.202117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm-2 towards electroenzymatic CO2 reduction and a high stability of more than 6×106 TON when integrated on a gas-diffusion bioelectrode.
Collapse
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
| |
Collapse
|
12
|
contaldo U, curtil M, perard J, cavazza C, Le Goff A. A pyrene‐triazacyclononane anchor affords high operational stability for CO2RR by a CNT‐supported histidine‐tagged CODH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- umberto contaldo
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - mathieu curtil
- Université Grenoble Alpes: Universite Grenoble Alpes DCM FRANCE
| | - Julien perard
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - christine cavazza
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble LCBM FRANCE
| | - Alan Le Goff
- Universite Grenoble Alpes/CNRS Département de Chimie Moléculaire 570 rue de la chimie 38041 Grenoble FRANCE
| |
Collapse
|
13
|
Le T, Lasseux D, Zhang L, Carucci C, Gounel S, Bichon S, Lorenzutti F, Kuhn A, Šafarik T, Mano N. Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Wang Y, Kang Z, Zhang L, Zhu Z. Elucidating the Interactions between a [NiFe]-hydrogenase and Carbon Electrodes for Enhanced Bioelectrocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanming Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Zepeng Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Lingling Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, People’s Republic of China
| |
Collapse
|
15
|
Sekretareva A, Tian S, Gounel S, Mano N, Solomon EI. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases. J Am Chem Soc 2021; 143:17236-17249. [PMID: 34633193 PMCID: PMC9137402 DOI: 10.1021/jacs.1c08456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-potential multicopper oxidases (MCOs) are excellent catalysts able to perform the oxygen reduction reaction (ORR) at remarkably low overpotentials. Moreover, MCOs are able to interact directly with the electrode surfaces via direct electron transfer (DET), that makes them the most commonly used electrocatalysts for oxygen reduction in biofuel cells. The central question in MCO electrocatalysis is whether the type 1 (T1) Cu is the primary electron acceptor site from the electrode, or whether electrons can be transferred directly to the trinuclear copper cluster (TNC), bypassing the rate-limiting intramolecular electron transfer step from the T1 site. Here, using site-directed mutagenesis and electrochemical methods combined with data modeling of electrode kinetics, we have found that there is no preferential superexchange pathway for DET to the T1 site. However, due to the high reorganization energy of the fully oxidized TNC, electron transfer from the electrode to the TNC does occur primarily through the T1 site. We have further demonstrated that the lower reorganization energy of the TNC in its two-electron reduced, alternative resting, form enables DET to the TNC, but this only occurs in the first turnover. This study provides insight into the factors that control the kinetics of electrocatalysis by the MCOs and a guide for the design of more efficient biocathodes for the ORR.
Collapse
Affiliation(s)
- Alina Sekretareva
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Shiliang Tian
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Université de Bordeaux, CRPP, UMR5031, 33600 Pessac, France
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Stanford University, California 94025, United States
| |
Collapse
|
16
|
Armstrong FA. Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes. Electrochim Acta 2021; 390:138836. [PMID: 34511630 PMCID: PMC8386245 DOI: 10.1016/j.electacta.2021.138836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023]
Abstract
This article outlines examples of where electrochemical investigations of electrocatalysis by proteins immobilised on an electrode reveal fundamental information about electron-proton coupling in catalysis and provide a new way to energise, control and observe multi-enzyme cascades.
Collapse
|
17
|
Megarity CF, Siritanaratkul B, Herold RA, Morello G, Armstrong FA. Electron flow between the worlds of Marcus and Warburg. J Chem Phys 2021; 153:225101. [PMID: 33317312 DOI: 10.1063/5.0024701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Living organisms are characterized by the ability to process energy (all release heat). Redox reactions play a central role in biology, from energy transduction (photosynthesis, respiratory chains) to highly selective catalyzed transformations of complex molecules. Distance and scale are important: electrons transfer on a 1 nm scale, hydrogen nuclei transfer between molecules on a 0.1 nm scale, and extended catalytic processes (cascades) operate most efficiently when the different enzymes are under nanoconfinement (10 nm-100 nm scale). Dynamic electrochemistry experiments (defined broadly within the term "protein film electrochemistry," PFE) reveal details that are usually hidden in conventional kinetic experiments. In PFE, the enzyme is attached to an electrode, often in an innovative way, and electron-transfer reactions, individual or within steady-state catalytic flow, can be analyzed in terms of precise potentials, proton coupling, cooperativity, driving-force dependence of rates, and reversibility (a mark of efficiency). The electrochemical experiments reveal subtle factors that would have played an essential role in molecular evolution. This article describes how PFE is used to visualize and analyze different aspects of biological redox chemistry, from long-range directional electron transfer to electron/hydride (NADPH) interconversion by a flavoenzyme and finally to NADPH recycling in a nanoconfined enzyme cascade.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | | | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Giorgio Morello
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
18
|
González J, Sequí J. Analysis of the Electrochemical Response of Surface‐confined Bidirectional Molecular Electrocatalysts in the Presence of Intermolecular Interactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joaquín González
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - José‐Alfonso Sequí
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
19
|
Lloyd-Laney HO, Yates NDJ, Robinson MJ, Hewson AR, Firth JD, Elton DM, Zhang J, Bond AM, Parkin A, Gavaghan DJ. Using Purely Sinusoidal Voltammetry for Rapid Inference of Surface-Confined Electrochemical Reaction Parameters. Anal Chem 2021; 93:2062-2071. [PMID: 33417431 DOI: 10.1021/acs.analchem.0c03774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternating current (AC) voltammetric techniques are experimentally powerful as they enable Faradaic current to be isolated from non-Faradaic contributions. Finding the best global fit between experimental voltammetric data and simulations based on reaction models requires searching a substantial parameter space at high resolution. In this paper, we estimate parameters from purely sinusoidal voltammetry (PSV) experiments, investigating the redox reactions of a surface-confined ferrocene derivative. The advantage of PSV is that a complete experiment can be simulated relatively rapidly, compared to other AC voltammetric techniques. In one example involving thermodynamic dispersion, a PSV parameter inference effort requiring 7,500,000 simulations was completed in 7 h, whereas the same process for our previously used technique, ramped Fourier transform AC voltammetry (ramped FTACV), would have taken 4 days. Using both synthetic and experimental data with a surface confined diazonium substituted ferrocene derivative, it is shown that the PSV technique can be used to recover the key chemical and physical parameters. By applying techniques from Bayesian inference and Markov chain Monte Carlo methods, the confidence, distribution, and degree of correlation of the recovered parameters was visualized and quantified.
Collapse
Affiliation(s)
- Henry O Lloyd-Laney
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD United Kingdom
| | - Nicholas D J Yates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Martin J Robinson
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD United Kingdom
| | - Alice R Hewson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Jack D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Darrell M Elton
- School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jie Zhang
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Alan M Bond
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - David J Gavaghan
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD United Kingdom
| |
Collapse
|
20
|
Suzuki Y, Kano K, Shirai O, Kitazumi Y. Diffusion-limited electrochemical d-fructose sensor based on direct electron transfer-type bioelectrocatalysis by a variant of d-fructose dehydrogenase at a porous gold microelectrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Torrinha Á, Jiyane N, Sabela M, Bisetty K, Montenegro MCBSM, Araújo AN. Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Sci Rep 2020; 10:16535. [PMID: 33024205 PMCID: PMC7539011 DOI: 10.1038/s41598-020-73635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022] Open
Abstract
This work describes a simple method for the fabrication of an enzymatic electrode with high sensitivity to oxygen and good performance when applied as biocathode. Pencil graphite electrodes (PGE) were chosen as disposable transducers given their availability and good electrochemical response. After electrochemical characterization regarding hardness and surface pre-treatment suited modification with carbon-based nanostructures, namely with reduced graphene, MWCNT and carbon black for optimal performance was proceeded. The bioelectrode was finally assembled through immobilization of bilirubin oxidase (BOx) lashed on the modified surface of MWCNT via π-π stacking and amide bond functionalization. The high sensitivity towards dissolved oxygen of 648 ± 51 µA mM-1 cm-2, and a LOD of 1.7 µM, was achieved for the PGE with surface previously modified with reduced graphene (rGO), almost the double registered for direct anchorage on the bare PGE surface. Polarization curves resulted in an open circuit potential (OCP) of 1.68 V (vs Zn electrode) and generated a maximum current density of about 650 μA cm-2 in O2 saturated solution.
Collapse
Affiliation(s)
- Álvaro Torrinha
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Nomnotho Jiyane
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Myalowenkosi Sabela
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
22
|
The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proc Natl Acad Sci U S A 2020; 117:20520-20529. [PMID: 32796105 DOI: 10.1073/pnas.2007090117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As paradigms for proton-coupled electron transfer in enzymes and benchmarks for a fully renewable H2 technology, [FeFe]-hydrogenases behave as highly reversible electrocatalysts when immobilized on an electrode, operating in both catalytic directions with minimal overpotential requirement. Using the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1) we have conducted site-directed mutagenesis and protein film electrochemistry to determine how efficient catalysis depends on the long-range coupling of electron and proton transfer steps. Importantly, the electron and proton transfer pathways in [FeFe]-hydrogenases are well separated from each other in space. Variants with conservative substitutions (glutamate to aspartate) in either of two positions in the proton-transfer pathway retain significant activity and reveal the consequences of slowing down proton transfer for both catalytic directions over a wide range of pH and potential values. Proton reduction in the variants is impaired mainly by limiting the turnover rate, which drops sharply as the pH is raised, showing that proton capture from bulk solvent becomes critical. In contrast, hydrogen oxidation is affected in two ways: by limiting the turnover rate and by a large overpotential requirement that increases as the pH is raised, consistent with the accumulation of a reduced and protonated intermediate. A unique observation having fundamental significance is made under conditions where the variants still retain sufficient catalytic activity in both directions: An inflection appears as the catalytic current switches direction at the 2H+/H2 thermodynamic potential, clearly signaling a departure from electrocatalytic reversibility as electron and proton transfers begin to be decoupled.
Collapse
|
23
|
Zhang L, Morello G, Carr SB, Armstrong FA. Aerobic Photocatalytic H2 Production by a [NiFe] Hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay. J Am Chem Soc 2020; 142:12699-12707. [DOI: 10.1021/jacs.0c04302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liyun Zhang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| | - Giorgio Morello
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, Oxfordshire United Kingdom
| |
Collapse
|
24
|
KAIDA Y, HIBINO Y, KITAZUMI Y, SHIRAI O, KANO K. Discussion on Direct Electron Transfer-Type Bioelectrocatalysis of Downsized and Axial-Ligand Exchanged Variants of d-Fructose Dehydrogenase. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yuya KAIDA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuya HIBINO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
25
|
Gentil S, Rousselot-Pailley P, Sancho F, Robert V, Mekmouche Y, Guallar V, Tron T, Le Goff A. Efficiency of Site-Specific Clicked Laccase-Carbon Nanotubes Biocathodes towards O 2 Reduction. Chemistry 2020; 26:4798-4804. [PMID: 31999372 DOI: 10.1002/chem.201905234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/27/2020] [Indexed: 12/23/2022]
Abstract
A maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions. Homogeneous populations of alkyne-modified laccases are obtained through the reductive amination of a unique surface-accessible lysine residue selectively engineered near either one or the other of the two copper centers in enzyme variants. Immobilization of the site-specific alkynated enzymes is achieved by copper-catalyzed click reaction on azido-modified CNTs. A highly efficient reduction of O2 at low overpotential and catalytic current densities over -3 mA cm-2 are obtained by minimizing the distance from the electrode surface to the trinuclear cluster.
Collapse
Affiliation(s)
- Solène Gentil
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
- CNRS, BIG-LCBM, Université Grenoble Alpes, CEA, 38000, Grenoble, France
| | | | - Ferran Sancho
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Centre, Jordi Girona 29, 08034, Barcelona, Spain
| | - Viviane Robert
- Centrale Marseille, CNRS, Aix Marseille Université, iSm2 UMR 7313, 13397, Marseille, France
| | - Yasmina Mekmouche
- Centrale Marseille, CNRS, Aix Marseille Université, iSm2 UMR 7313, 13397, Marseille, France
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Centre, Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Thierry Tron
- Centrale Marseille, CNRS, Aix Marseille Université, iSm2 UMR 7313, 13397, Marseille, France
| | - Alan Le Goff
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
26
|
Zigah D, Lojou E, Poulpiquet A. Micro‐ and Nanoscopic Imaging of Enzymatic Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201901065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dodzi Zigah
- Univ. Bordeaux, CNRSBordeaux INP ISM UMR 5255 33400 Talence France
| | - Elisabeth Lojou
- Aix-Marseille Univ., CNRSBIP, UMR 7281 31 Chemin Aiguier 13009 Marseille France
| | - Anne Poulpiquet
- Aix-Marseille Univ., CNRSBIP, UMR 7281 31 Chemin Aiguier 13009 Marseille France
| |
Collapse
|
27
|
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E. Advancing Techniques for Investigating the Enzyme-Electrode Interface. Acc Chem Res 2019; 52:1439-1448. [PMID: 31042353 PMCID: PMC6533600 DOI: 10.1021/acs.accounts.9b00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Enzymes are the essential catalytic components of biology and adsorbing
redox-active enzymes on electrode surfaces enables the direct probing
of their function. Through standard electrochemical measurements,
catalytic activity, reversibility and stability, potentials of redox-active
cofactors, and interfacial electron transfer rates can be readily
measured. Mechanistic investigations on the high electrocatalytic
rates and selectivity of enzymes may yield inspiration for the design
of synthetic molecular and heterogeneous electrocatalysts. Electrochemical
investigations of enzymes also aid in our understanding of their activity
within their biological environment and why they evolved in their
present structure and function. However, the conventional array of
electrochemical techniques (e.g., voltammetry and chronoamperometry)
alone offers a limited picture of the enzyme–electrode interface. How many enzymes are loaded onto an electrode? In which orientation(s)
are they bound? What fraction is active, and are single or multilayers
formed? Does this static picture change over time, applied voltage,
or chemical environment? How does charge transfer through various
intraprotein cofactors contribute to the overall performance and catalytic
bias? What is the distribution of individual enzyme activities within
an ensemble of active protein films? These are central questions for
the understanding of the enzyme–electrode interface, and a
multidisciplinary approach is required to deliver insightful answers. Complementing standard electrochemical experiments with an orthogonal
set of techniques has recently allowed to provide a more complete
picture of enzyme–electrode systems. Within this framework,
we first discuss a brief history of achievements and challenges in
enzyme electrochemistry. We subsequently describe how the aforementioned
challenges can be overcome by applying advanced electrochemical techniques,
quartz-crystal microbalance measurements, and spectroscopic, namely,
resonance Raman and infrared, analysis. For example, rotating ring
disk electrochemistry permits the simultaneous determination of reaction
kinetics and quantification of generated products. In addition, recording
changes in frequency and dissipation in a quartz crystal microbalance
allows to shed light into enzyme loading, relative orientation, clustering,
and denaturation at the electrode surface. Resonance Raman spectroscopy
yields information on ligation and redox state of enzyme cofactors,
whereas infrared spectroscopy provides insights into active site states
and the protein secondary and tertiary structure. The development
of these emerging methods for the analysis of the enzyme–electrode
interface is the primary focus of this Account. We also take a critical
look at the remaining gaps in our understanding and challenges lying
ahead toward attaining a complete mechanistic picture of the enzyme–electrode
interface.
Collapse
Affiliation(s)
- Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Khoa H. Ly
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Fakultät für Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - William E. Robinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nina Heidary
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Jenny Z. Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
28
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part IV. Canonical, non-canonical and hybrid iron-sulfur proteins. J Struct Biol 2019; 205:103-120. [PMID: 30677521 DOI: 10.1016/j.jsb.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
A plethora of proteins are able to express iron-sulfur clusters, but have a clear picture of the different types of proteins and the different iron-sulfur clusters they harbor it is not easy. In the last five years we have reviewed structure/electrochemistry of metalloproteins expressing: (i) single types of iron-sulfur clusters (namely: {Fe(Cys)4}, {[Fe2S2](Cys)4}, {[Fe2S2](Cys)3(X)} (X = Asp, Arg, His), {[Fe2S2](Cys)2(His)2}, {[Fe3S4](Cys)3}, {[Fe4S4](Cys)4} and {[Fe4S4](Cys)3(nonthiolate ligand)} cores); (ii) metalloproteins harboring iron-sulfur centres of different nuclearities (namely: [4Fe-4S] and [2Fe-2S], [4Fe-4S] and [3Fe-4S], and [4Fe-4S], [3Fe-4S] and [2Fe-2S] clusters. Our target is now to review structure and electrochemistry of proteins harboring canonical, non-canonical and hybrid iron-sulfur proteins.
Collapse
Affiliation(s)
- Piero Zanello
- Dipartimento di Biotecnologie, Chimica e Farmacia dell'Università di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
29
|
HIBINO Y, KAWAI S, KITAZUMI Y, SHIRAI O, KANO K. Protein-Engineering Improvement of Direct Electron Transfer-Type Bioelectrocatalytic Properties of d-Fructose Dehydrogenase. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.18-00068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuya HIBINO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Shota KAWAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
30
|
Evans RM, Siritanaratkul B, Megarity CF, Pandey K, Esterle TF, Badiani S, Armstrong FA. The value of enzymes in solar fuels research – efficient electrocatalysts through evolution. Chem Soc Rev 2019; 48:2039-2052. [DOI: 10.1039/c8cs00546j] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes which evolved more than 2 billion years ago set exceptional standards for electrocatalysts being sought today.
Collapse
Affiliation(s)
- Rhiannon M. Evans
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Clare F. Megarity
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Kavita Pandey
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Thomas F. Esterle
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Selina Badiani
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Fraser A. Armstrong
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
31
|
Hitaishi VP, Mazurenko I, Harb M, Clément R, Taris M, Castano S, Duché D, Lecomte S, Ilbert M, de Poulpiquet A, Lojou E. Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03443] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ievgen Mazurenko
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Malek Harb
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Romain Clément
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Marion Taris
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Sabine Castano
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - David Duché
- Aix Marseille Univ, CNRS, University of Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Sophie Lecomte
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Marianne Ilbert
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Anne de Poulpiquet
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Elisabeth Lojou
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| |
Collapse
|
32
|
Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O2-Tolerant [NiFe]-Hydrogenase. J Am Chem Soc 2018; 140:10208-10220. [DOI: 10.1021/jacs.8b04798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rhiannon M. Evans
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen E. Beaton
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Emily J. Brooke
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Fraser A. Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
33
|
Gentil S, Carrière M, Cosnier S, Gounel S, Mano N, Le Goff A. Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae
on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes. Chemistry 2018; 24:8404-8408. [DOI: 10.1002/chem.201800774] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM; 38000 Grenoble France
| | | | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
| | - Sébastien Gounel
- CRPP, CNRS UMR 5031, Univ Bordeaux; 115 Avenue du Docteur Schweitzer 33600 Pessac France
| | - Nicolas Mano
- CRPP, CNRS UMR 5031, Univ Bordeaux; 115 Avenue du Docteur Schweitzer 33600 Pessac France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
| |
Collapse
|
34
|
Sakai K, Xia HQ, Kitazumi Y, Shirai O, Kano K. Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. The structure of hydrogenase-2 from Escherichia coli: implications for H 2-driven proton pumping. Biochem J 2018; 475:1353-1370. [PMID: 29555844 PMCID: PMC5902676 DOI: 10.1042/bcj20180053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
Abstract
Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex.
Collapse
Affiliation(s)
- Stephen E Beaton
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Rhiannon M Evans
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Alexander J Finney
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, U.K.
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
36
|
Mazurenko I, Clément R, Byrne-Kodjabachian D, de Poulpiquet A, Tsujimura S, Lojou E. Pore size effect of MgO-templated carbon on enzymatic H2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Armstrong FA, Evans RM, Megarity CF. Protein Film Electrochemistry of Iron–Sulfur Enzymes. Methods Enzymol 2018; 599:387-407. [DOI: 10.1016/bs.mie.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
PEREIRA ANDRESSAR, SEDENHO GRAZIELAC, SOUZA JOÃOCPDE, CRESPILHO FRANKN. Advances in enzyme bioelectrochemistry. ACTA ACUST UNITED AC 2018; 90:825-857. [DOI: 10.1590/0001-3765201820170514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
|
39
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
40
|
Adamson H, Bond AM, Parkin A. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem Commun (Camb) 2017; 53:9519-9533. [PMID: 28804798 PMCID: PMC5708363 DOI: 10.1039/c7cc03870d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
Abstract
Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
41
|
Adamson H, Robinson M, Wright JJ, Flanagan LA, Walton J, Elton D, Gavaghan DJ, Bond AM, Roessler MM, Parkin A. Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site. J Am Chem Soc 2017; 139:10677-10686. [PMID: 28697596 PMCID: PMC5562392 DOI: 10.1021/jacs.7b03611] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Martin Robinson
- Department of Computer Science, University of Oxford , Oxford, OX1 3QD, U.K
| | - John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Lindsey A Flanagan
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Julia Walton
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | - Darrell Elton
- Department of Engineering, School of Engineering and Mathematical Sciences, La Trobe University , Melbourne, Victoria 3086, Australia
| | - David J Gavaghan
- Department of Computer Science, University of Oxford , Oxford, OX1 3QD, U.K
| | - Alan M Bond
- School of Chemistry, Monash University , Clayton, Victoria 3800, Australia
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, U.K
| | - Alison Parkin
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| |
Collapse
|
42
|
Artz JH, Mulder DW, Ratzloff MW, Lubner CE, Zadvornyy OA, LeVan AX, Williams SG, Adams MWW, Jones AK, King PW, Peters JW. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis. J Am Chem Soc 2017. [PMID: 28635269 DOI: 10.1021/jacs.7b02099] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.
Collapse
Affiliation(s)
- Jacob H Artz
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| | - Axl X LeVan
- Department of Chemistry and Biochemistry, Montana State University , 224 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - S Garrett Williams
- School of Molecular Sciences, Arizona State University , P.O. Box 871604, Tempe, Arizona 85287, United States
| | - Michael W W Adams
- B216B Life Sciences Complex, Department of Biochemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University , P.O. Box 871604, Tempe, Arizona 85287, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| |
Collapse
|
43
|
Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K. Construction of a protein-engineered variant of d -fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Proc Natl Acad Sci U S A 2017; 114:3843-3848. [PMID: 28348243 DOI: 10.1073/pnas.1619961114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The kinetics of hydrogen oxidation and evolution by [FeFe]-hydrogenases have been investigated by electrochemical impedance spectroscopy-resolving factors that determine the exceptional activity of these enzymes, and introducing an unusual and powerful way of analyzing their catalytic electron transport properties. Attached to an electrode, hydrogenases display reversible electrocatalytic behavior close to the 2H+/H2 potential, making them paradigms for efficiency: the electrocatalytic "exchange" rate (measured around zero driving force) is therefore an unusual parameter with theoretical and practical significance. Experiments were carried out on two [FeFe]-hydrogenases, CrHydA1 from the green alga Chlamydomonas reinhardtii, which contains only the active-site "H cluster," and CpI from the fermentative anaerobe Clostridium pasteurianum, which contains four low-potential FeS clusters that serve as an electron relay in addition to the H cluster. Data analysis yields catalytic exchange rates (at the formal 2H+/H2 potential, at 0 °C) of 157 electrons (78 molecules H2) per second for CpI and 25 electrons (12 molecules H2) per second for CrHydA1. The experiments show how the potential dependence of catalytic electron flow comprises frequency-dependent and frequency-independent terms that reflect the proficiencies of the catalytic site and the electron transfer pathway in each enzyme. The results highlight the "wire-like" behavior of the Fe-S electron relay in CpI and a low reorganization energy for electron transfer on/off the H cluster.
Collapse
|
45
|
Wilson GS. Native glucose oxidase does not undergo direct electron transfer. Biosens Bioelectron 2017; 82:vii-viii. [PMID: 27137704 DOI: 10.1016/j.bios.2016.04.083] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Gentil S, Lalaoui N, Dutta A, Nedellec Y, Cosnier S, Shaw WJ, Artero V, Le Goff A. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
- Laboratoire de Chimie et Biologie des Métaux; Univ. Grenoble Alpes, CNRS UMR5249, CEA; 38000 Grenoble France
| | - Noémie Lalaoui
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Arnab Dutta
- Pacific Northwest National Laboratory; Richland WA 99532 USA
- Current address: Chemistry Department; IIT Gandhinagar; Gujarat 382355 India
| | - Yannig Nedellec
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Wendy J. Shaw
- Pacific Northwest National Laboratory; Richland WA 99532 USA
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux; Univ. Grenoble Alpes, CNRS UMR5249, CEA; 38000 Grenoble France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| |
Collapse
|
47
|
Gentil S, Lalaoui N, Dutta A, Nedellec Y, Cosnier S, Shaw WJ, Artero V, Le Goff A. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angew Chem Int Ed Engl 2017; 56:1845-1849. [DOI: 10.1002/anie.201611532] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
- Laboratoire de Chimie et Biologie des Métaux; Univ. Grenoble Alpes, CNRS UMR5249, CEA; 38000 Grenoble France
| | - Noémie Lalaoui
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Arnab Dutta
- Pacific Northwest National Laboratory; Richland WA 99532 USA
- Current address: Chemistry Department; IIT Gandhinagar; Gujarat 382355 India
| | - Yannig Nedellec
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Wendy J. Shaw
- Pacific Northwest National Laboratory; Richland WA 99532 USA
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux; Univ. Grenoble Alpes, CNRS UMR5249, CEA; 38000 Grenoble France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| |
Collapse
|
48
|
Brooke EJ, Evans RM, Islam STA, Roberts GM, Wehlin SAM, Carr SB, Phillips SEV, Armstrong FA. Importance of the Active Site “Canopy” Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry 2016; 56:132-142. [DOI: 10.1021/acs.biochem.6b00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Gerri M. Roberts
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Stephen B. Carr
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | - Simon E. V. Phillips
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | | |
Collapse
|
49
|
Influence of haem environment on the catalytic properties of the tetrathionate reductase TsdA from Campylobacter jejuni. Biosci Rep 2016; 36:BSR20160457. [PMID: 27789780 PMCID: PMC5146829 DOI: 10.1042/bsr20160457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/21/2023] Open
Abstract
In the present study, we provide a detailed analysis of the catalytic properties of the bifunctional thiosulfate dehydrogenases/tetrathionate reductases (TsdA) of the human food-borne pathogen Campylobacter jejuni. Structural differences in the immediate environment of Haem 2 were shown to influence the reaction directionality. Bifunctional dihaem cytochrome c thiosulfate dehydrogenases/tetrathionate reductases (TsdA) exhibit different catalytic properties depending on the source organism. In the human food-borne intestinal pathogen Campylobacter jejuni, TsdA functions as a tetrathionate reductase enabling respiration with tetrathionate as an alternative electron acceptor. In the present study, evidence is provided that Cys138 and Met255 serve as the sixth ligands of Haem 1 and Haem 2 respectively, in the oxidized CjTsdA wt protein. Replacement of Cys138 resulted in a virtually inactive enzyme, confirming Haem 1 as the active site haem. Significantly, TsdA variants carrying amino acid exchanges in the vicinity of the electron-transferring Haem 2 (Met255, Asn254 and Lys252) exhibited markedly altered catalytic properties of the enzyme, showing these residues play a key role in the physiological function of TsdA. The growth phenotypes and tetrathionate reductase activities of a series of ΔtsdA/*tsdA complementation strains constructed in the original host C. jejuni 81116, showed that in vivo, the TsdA variants exhibited the same catalytic properties as the pure, recombinantly produced enzymes. However, variants that catalysed tetrathionate reduction more effectively than the wild-type enzyme did not allow better growth.
Collapse
|
50
|
Shleev S, Andoralov V, Pankratov D, Falk M, Aleksejeva O, Blum Z. Oxygen Electroreduction versus Bioelectroreduction: Direct Electron Transfer Approach. ELECTROANAL 2016. [DOI: 10.1002/elan.201600280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society; Malmö University, Skåne; 20506 Malmö Sweden
- Kurchatov NBICS Centre; National Research Centre “Kurchatov Institute”; 123182 Moscow Russia
| | | | - Dmitry Pankratov
- Department of Biomedical Science, Faculty of Health and Society; Malmö University, Skåne; 20506 Malmö Sweden
- Kurchatov NBICS Centre; National Research Centre “Kurchatov Institute”; 123182 Moscow Russia
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society; Malmö University, Skåne; 20506 Malmö Sweden
- NanoFlex Limited, iTac, Daresbury Laboratory; Sci-Tech Daresbury; Keckwick Lane Daresbury WA4 4AD United Kingdom
| | - Olga Aleksejeva
- Department of Biomedical Science, Faculty of Health and Society; Malmö University, Skåne; 20506 Malmö Sweden
| | - Zoltan Blum
- Department of Biomedical Science, Faculty of Health and Society; Malmö University, Skåne; 20506 Malmö Sweden
| |
Collapse
|