1
|
Yang Y, Ning H, Zhu H, Du J, Sun W, Song K, Cheng YY, Fan J, Peng X. A Supramolecular Nanoengine Generates Nanomechanical Force on Demand for Precise Cytosolic Delivery of Anti-miRNAs and Synergistic TNBC Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419651. [PMID: 40025859 DOI: 10.1002/adma.202419651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/28/2025] [Indexed: 03/04/2025]
Abstract
Although anti-microRNA (miRNA) is capable of silencing target miRNA and regulating multiple mRNAs in diverse signaling pathways, RNA medicines still encounter numerous challenges, especially in terms of poor delivery, inefficient endo/lysosomal escape, and suboptimal treatment. Herein, we have developed a carrier-free supramolecular nanoengine, AMGA (anti-miRNA/GEM2-Azo), which significantly enhances the cytosolic delivery of anti-miRNA without requiring light irradiation, thereby facilitating precise targeting and synergistic chemo-gene therapy for triple-negative breast cancer (TNBC). AMGA can be rapidly internalized by cancer cells and specifically generate nanomechanical force to promote the efficient escape of anti-miRNAs from the endo/lysosome to the cytoplasm, simultaneously downregulating miR-21 and miR-10b. In comparison to Lipofectamine 2000, AMGA demonstrated superior efficacy in inhibiting the proliferation, migration, and invasion of cancer cells. Significantly, AMGA exhibited profound antitumor and gene silencing effects in an orthotopic human TNBC mouse model. This novel supramolecular nanoengine presents a promising strategy for cytosolic delivery of anti-miRNAs.
Collapse
Affiliation(s)
- Yuxin Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haijun Ning
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| |
Collapse
|
2
|
Aundhia C, Shah N, Talele C, Zanwar A, Kumari M, Patil S. Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery. Pharm Nanotechnol 2025; 13:55-69. [PMID: 38284710 DOI: 10.2174/0122117385271654231215064542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Nirmal Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Aarti Zanwar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Mamta Kumari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sapana Patil
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
3
|
Guan M, Cheng K, Xie XT, Li Y, Ma MW, Zhang B, Chen S, Chen W, Liu B, Fan JX, Zhao YD. Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy. Nat Commun 2024; 15:10060. [PMID: 39567558 PMCID: PMC11579316 DOI: 10.1038/s41467-024-54469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cuproptosis is an emerging mode of programmed cell death for tumor suppression but sometimes gets resisted by tumor cells resist under specific mechanisms. Inhibiting copper transporter ATPase (ATP7A) was found to disrupt copper ion homeostasis, thereby enhancing the effect of cuproptosis and eventually inhibiting tumor invasion and metastasis. In this study, we develop a multifunctional nanoplatfrom based on Cu9S8 (CAPSH), designed to enhance cuproptosis in tumor cells by specifically targeting ATP7A interference, while combining thermodynamic therapy with immune effects. The release of copper ions from CAPSH and the copper homeostasis interference by siRNA cooperatively increases the concentration of copper ions in tumor cells, which induces effectively cuproptosis and activates immune responses for suppressing development and metastasis of tumor. This nanoplatform simultaneously regulates cuproptosis from both principles of onset and development, facilitating the application of cuproptosis in tumor therapy.
Collapse
Affiliation(s)
- Meng Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Xiao-Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.
| |
Collapse
|
4
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
5
|
Singh D, Singh L, Kaur S, Arora A. Nucleic acids based integrated macromolecular complexes for SiRNA delivery: Recent advancements. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:409-432. [PMID: 38693628 DOI: 10.1080/15257770.2024.2347499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Simranjeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Hou Y, Peng J, Hong L, Wu Z, Zheng E, Li Z. Gender Control of Mouse Embryos by Activation of TLR7/8 on X Sperm via Ligands dsRNA-40 and dsRNA-DR. Molecules 2024; 29:262. [PMID: 38202845 PMCID: PMC10780660 DOI: 10.3390/molecules29010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Gender control technologies are promising for enhancing the production efficiency of the farm animal industry, and preventing sex-linked hereditary diseases in humans. It has been shown that the X sperm of mammalian animals specifically expresses X-chromosome-derived toll-like receptor 7/8 (TLR7/8), and the activation of TLR7/8 on the X sperm by their agonist, R848, can separate X and Y sperm via the specific inhibition of X sperm motility. The use of R848-preselected sperm for fertilization resulted in sex-ratio-skewed embryos or offspring. In this study, we aimed to investigate whether two other TLR7/8 ligands, double-stranded RNA-40 (dsRNA-40) and double-stranded RNA-DR (dsRNA-DR), are also effective in the separation of mouse X and Y sperm and the subsequent generation of gender-ratio-skewed in vitro fertilization (IVF) embryos. Our results indicated that cholesterol modification significantly enhances the transfection of dsRNA-40 and dsRNA-DR into sperm cells. dsRNA-40 and dsRNA-DR incubation with mouse sperm could separate X and Y sperm by the specific suppression of X sperm motility by decreasing its ATP level and mitochondrial activity. The use of a dsRNA-40- or dsRNA-DR-preselected upper layer of sperm, which predominantly contains high-motility Y sperm, for IVF caused a male-biased sex ratio shift in resulting embryos (with 65.90-74.93% of embryos being male). This study develops a simple new method for the efficient separation of mammalian X and Y sperm, enabling the selective production of male or female progenies.
Collapse
Affiliation(s)
- Yunfei Hou
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jingfeng Peng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
7
|
Khan S, Rehman U, Parveen N, Kumar S, Baboota S, Ali J. siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opin Drug Deliv 2023; 20:1167-1187. [PMID: 37642354 DOI: 10.1080/17425247.2023.2251890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Among conventional and novel therapeutic approaches, the siRNA strategy stands out for treating disease by silencing the gene responsible for the corresponding disorder. Gene silencing is supposedly intended to target any disease-causing gene, and therefore, several attempts and investments were made to exploit siRNA gene therapy and advance it into clinical settings. Despite the remarkable beneficial prospects, the applicability of siRNA therapeutics is very challenging due to various pathophysiological barriers that hamper its target reach, which is the cytosol, and execution of gene silencing action. AREAS COVERED The present review provides insights into the field of siRNA therapeutics, significant in vivo hurdles that mitigate the target accessibility of siRNA, and remedies to overcome these siRNA delivery challenges. Nonetheless, the current review also highlights the on-going clinical trials and the regulatory aspects of siRNA modalities. EXPERT OPINION The siRNAs have the potential to reach previously untreated target sites and silence the concerned gene owing to their modification as polymeric or lipidic nanoparticles, conjugates, and the application of advanced drug delivery strategies. With such mounting research attempts to improve the delivery of siRNA to target tissue, we might shortly witness revolutionary therapeutic outcomes, new approvals, and clinical implications.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Li S, Chen Y, Ma R, Du Y, Han B. Cationic lipid-assisted nanoparticles for simultaneous delivery of CD47 siRNA and R848 to promote antitumor immune responses. Front Pharmacol 2023; 14:1142374. [PMID: 37063284 PMCID: PMC10102467 DOI: 10.3389/fphar.2023.1142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Graphical AbstractThe PEG-PLGA nanoparticles effectively delivered R848 and CD47 siRNA into tumor cells, resulting in simultaneous activation of DCs and downregulation of CD47 expression on tumor cells, thereby enhancing antitumor immune responses by T cells.
Collapse
|
9
|
Fang H, Wu Y, Chen L, Cao Z, Deng Z, Zhao R, Zhang L, Yang Y, Liu Z, Chen Q. Regulating the Obesity-Related Tumor Microenvironment to Improve Cancer Immunotherapy. ACS NANO 2023; 17:4748-4763. [PMID: 36809912 DOI: 10.1021/acsnano.2c11159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.
Collapse
Affiliation(s)
- Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yicheng Wu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhiqin Cao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zheng Deng
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Shiraishi T, Sato K, Hara RI, Wada T. Properties of artificial cationic oligodiaminosaccharides and oligopeptides that bind to A-type oligonucleotide duplexes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-18. [PMID: 36850058 DOI: 10.1080/15257770.2023.2182444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A critical strategy to improve the properties of oligonucleotide therapeutics is using cationic molecules as carriers. We developed artificial cationic molecules that bind to A-type oligonucleotide duplexes, such as siRNAs, in a stoichiometric ratio. In this study, we investigated the properties of oligo 2,6-diamino-D-galactoses (ODAGals) and L-2,4-diaminobutanoic acid oligomers (Dabs) and revealed their thermal and biological stabilization effects on A-type duplexes and their chemical stability. As a result, ODAGal and Dab with the same number of amino groups had the commensurate ability for the biological stabilization effect, whereas Dab enhanced the thermal stability of A-type duplexes more effectively than ODAGal.
Collapse
Affiliation(s)
- Tomomi Shiraishi
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| | - Rintaro Iwata Hara
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan.,Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
12
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
13
|
Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022; 13:1006304. [PMID: 36339619 PMCID: PMC9626821 DOI: 10.3389/fphar.2022.1006304] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 09/12/2023] Open
Abstract
It is estimated that the human genome encodes 15% of proteins that are considered to be disease-modifying. Only 2% of these proteins possess a druggable site that the approved clinical candidates target. Due to this disparity, there is an immense need to develop therapeutics that may better mitigate the disease or disorders aroused by non-druggable and druggable proteins or enzymes. The recent surge in approved oligonucleotide therapeutics (OT) indicates the imminent potential of these therapies. Oligonucleotide-based therapeutics are of intermediate size with much-improved selectivity towards the target and fewer off-target effects than small molecules. The OTs include Antisense RNAs, MicroRNA (MIR), small interfering RNA (siRNA), and aptamers, which are currently being explored for their use in neurodegenerative disorders, cancer, and even orphan diseases. The present review is a congregated effort to present the past and present of OTs and the current efforts to make OTs for plausible future therapeutics. The review provides updated literature on the challenges and bottlenecks of OT and recent advancements in OT drug delivery. Further, this review deliberates on a newly emerging approach to personalized treatment for patients with rare and fatal diseases with OT.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Apurba Sinhari
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Hemant R. Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| |
Collapse
|
14
|
Wu F, Yang Q, Mi Y, Wang F, Cai K, Zhang Y, Wang Y, Wang X, Gui Y, Li Q. miR-29b-3p Inhibitor Alleviates Hypomethylation-Related Aberrations Through a Feedback Loop Between miR-29b-3p and DNA Methylation in Cardiomyocytes. Front Cell Dev Biol 2022; 10:788799. [PMID: 35478963 PMCID: PMC9035530 DOI: 10.3389/fcell.2022.788799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
As a member of the miR-29 family, miR-29b regulates global DNA methylation through target DNA methyltransferases (DNMTs) and acts as both a target and a key effector in DNA methylation. In this study, we found that miR-29b-3p expression was inversely correlated with DNMT expression in the heart tissues of patients with congenital heart disease (CHD), but whether it interacts with DNMTs in cardiomyocytes remains unknown. Further results revealed a feedback loop between miR-29b-3p and DNMTs in cardiomyocytes. Moreover, miR-29b-3p inhibitor relieved the deformity of hypomethylated zebrafish and restored the DNA methylation patterns in cardiomyocytes, resulting in increased proliferation and renormalization of gene expression. These results suggest mutual regulation between miR-29b-3p and DNMTs in cardiomyocytes and support the epigenetic normalization of miRNA-based therapy in cardiomyocytes.
Collapse
Affiliation(s)
- Fang Wu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Neonatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Qiang Li, ; Yonghao Gui,
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Qiang Li, ; Yonghao Gui,
| |
Collapse
|
15
|
Redox-Responsive and Electrically Neutral PLGA Nanoparticles for siRNA Delivery in Human Cervical Carcinoma Cells. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Rajeev A, Siby A, Koottungal MJ, George J, John F. Knocking Down Barriers: Advances in siRNA Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202103288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Aiswarya Siby
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Merin James Koottungal
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
17
|
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, Qi X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci 2021; 16:687-703. [PMID: 35027949 PMCID: PMC8737406 DOI: 10.1016/j.ajps.2021.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity. Currently, gene therapy drugs such as siRNA, shRNA, antisense oligonucleotide, CRISPR/Cas9 system, plasmid DNA and miRNA have shown great potential in biomedical applications. To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues, cells and organelles, the development of excellent drug delivery vehicles is of utmost importance. Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression. With the development of nanotechnology, novel nanocarriers are gradually replacing viral vectors, emerging superior performance. This review mainly illuminates the current widely used gene therapy drugs, summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs, and sums up the application of gene therapy to treat genetic diseases. Additionally, the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
Collapse
Affiliation(s)
- Xiuhua Pan
- China Pharmaceutical University, Nanjing 211198, China
| | | | - Nan Su
- China Pharmaceutical University, Nanjing 211198, China
| | - Kang Sha
- China Pharmaceutical University, Nanjing 211198, China
| | - Fenglin Jiang
- China Pharmaceutical University, Nanjing 211198, China
| | - Zhenghong Wu
- China Pharmaceutical University, Nanjing 211198, China
| | - Xiaole Qi
- China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge-Conversion Strategies for Nucleic Acid Delivery. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2011103. [PMID: 35832306 PMCID: PMC9275120 DOI: 10.1002/adfm.202011103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis 46268, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
20
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
21
|
Kitamura Y, Kandeel M, Kondo T, Tanaka A, Makino Y, Miyamoto N, Shibata A, Ikeda M, Kitade Y. Sulfonamide antibiotics inhibit RNAi by binding to human Argonaute protein 2 PAZ. Bioorg Med Chem Lett 2020; 30:127637. [PMID: 33132114 DOI: 10.1016/j.bmcl.2020.127637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
We found that sulfisomidine, a sulfonamide antibiotic, potently binds to the Piwi/Argonaute/Zwille (PAZ) domain of human Argonaute protein 2 and inhibits RNA interference (RNAi). To elucidate the effect on RNAi of strong affinity of the 3'-ends in small interfering RNA (siRNA) to the PAZ domain, chemically modified siRNAs bearing sulfisomidine at the 3'-end were synthesized.
Collapse
Affiliation(s)
- Yoshiaki Kitamura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Tomoya Kondo
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Tanaka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yohei Makino
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Noriko Miyamoto
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan
| | - Aya Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan; Institute of Nano-Life-Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan; Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan.
| |
Collapse
|
22
|
Xie N, Wang H, Quan K, Feng F, Huang J, Wang K. Self-assembled DNA-Based geometric polyhedrons: Construction and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Kor S, Erfani-Moghadam V, Sahebi R, Bahramian S, Shafiee M. WDR7 up-regulation upon knocking down of neighboring non-coding RNA using siRNAs encapsulated in polyamidoamine dendrimers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1283-1287. [PMID: 32128092 PMCID: PMC7038430 DOI: 10.22038/ijbms.2019.36135.8607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): Breast cancer is the second leading cause of cancer death in females. Understanding molecular mechanisms in cancer cells compared with normal cells is crucial for diagnostic and therapeutic strategies. Long intergenic non-protein coding RNA, a regulator of reprogramming (lincRNA-RoR) is a noncoding RNA which initially was detected in induced pluripotent stem cells, and it has an important role in cell reprogramming and highly expressed in breast cancer cells. A key point in successful gene silencing is the usage of siRNA delivery system that is safe and efficient. Materials and Methods: In this study, the fifth-generation of PAMAM dendrimer is used as a nanocarrier for entering siRNA molecules for gene silencing of lincRNA-RoR. WDR7 is the gene encoding adjacent of lincRNA-RoR, which has an important role in apoptosis and cell cycle. Gel retardation assay was used to find the best Negative/Positive (N/P) molar charge ratio of siRNA- PAMAM transfected into MDA-MB 231 cells. MTT assay was performed 24 hr after transfection revealed the IC50 value (half maximal inhibitory concentrations) about 100 nanomolar for lincRNA-ROR siRNA. Results: The lincRNA-RoR and WDR7 gene expression changes were evaluated by real-time PCR after siRNA treatment and showed an increase in the gene expression of WDR7. Conclusion: This study showed that PAMAM dendrimer G5/ siRNA could be a useful system delivery for future gene therapy approaches.
Collapse
Affiliation(s)
- Sara Kor
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shabbou Bahramian
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shafiee
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
24
|
In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110245. [PMID: 31753357 DOI: 10.1016/j.msec.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
The recent discovery of small interfering RNAs (siRNAs) has opened new avenues for designing personalized treatment options for various diseases. However, the therapeutic application of siRNAs has been confronted with many challenges because of short half-life in circulation, poor membrane penetration, difficulty in escaping from endosomes, and insufficient release into the cytosol. To overcome these challenges, we designed a diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA)-modified polyamidoamine dendrimer generation 4.5 (PDG4.5), and characterized it using 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy (COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), and Fourier transform infrared (FTIR) spectroscopy followed by conjugation with siRNA. The PDG4.5-DETA and PDG4.5-TEPA polyplexes exhibited spherical nanosize, ideal zeta potential, and effective siRNA binding ability, protected the siRNA from nuclease attack, and revealed less cytotoxicity of PDG4.5-DETA and PDG4.5-TEPA in HeLa cells. More importantly, the polyplexes also revealed good cellular internalization and facilitated translocation of the siRNA into the cytosol. Thus, PDG4.5-DETA and PDG4.5-TEPA can act as potential siRNA carriers in future medical and pharmaceutical applications.
Collapse
|
25
|
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019; 13:961. [PMID: 31537986 PMCID: PMC6753017 DOI: 10.3332/ecancer.2019.961] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year, cancer is responsible for millions of deaths worldwide and, even though much progress has been achieved in medicine, there are still many issues that must be addressed in order to improve cancer therapy. For this reason, oncological research is putting a lot of effort towards finding new and efficient therapies which can alleviate critical side effects caused by conventional treatments. Different technologies are currently under evaluation in clinical trials or have been already introduced into clinical practice. While nanomedicine is contributing to the development of biocompatible materials both for diagnostic and therapeutic purposes, bioengineering of extracellular vesicles and cells derived from patients has allowed designing ad hoc systems and univocal targeting strategies. In this review, we will provide an in-depth analysis of the most innovative advances in basic and applied cancer research.
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
26
|
Dutta K, Bochicchio D, Ribbe AE, Alfandari D, Mager J, Pavan GM, Thayumanavan S. Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24971-24983. [PMID: 31264399 DOI: 10.1021/acsami.9b04731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel "symbiotic self-assembly" strategy that integrates the advantages of biocompatible lipids with a structurally robust polymer to efficiently encapsulate and deliver siRNAs is reported. The assembly process is considered to be symbiotic because none of the assembling components are capable of self-assembly but can form well-defined nanostructures in the presence of others. The conditions of the self-assembly process are simple but have been chosen such that it offers the ability to arrive at a system that is noncationic for mitigating carrier-based cytotoxicity, efficiently encapsulate siRNA to minimize cargo loss, be effectively camouflaged to protect the siRNA from nuclease degradation, and efficiently escape the endosome to cause gene knockdown. The lipid-siRNA-polymer (L-siP) nanoassembly formation and its disassembly in the presence of an intracellular trigger have been extensively characterized experimentally and through computational modeling. The complexes have been evaluated for the delivery of four different siRNA molecules in six different cell lines, where an efficient gene knockdown is demonstrated. The reported generalized strategy has the potential to make an impact on the development of a safe and effective delivery agent for RNAi-mediated gene therapy that holds the promise of targeting several hard-to-cure diseases.
Collapse
Affiliation(s)
| | - Davide Bochicchio
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , CH-6928 Manno , Switzerland
| | | | | | | | - Giovanni M Pavan
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , CH-6928 Manno , Switzerland
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| | | |
Collapse
|
27
|
Ai L, Lin S, Huang C, Gao L, Zhou J, Chen C, Ye J. Simultaneous interference of SP1 and HIF1α retarding the proliferation, migration, and invasion of human microvascular endothelial cells (HMEC-1) under hypoxia. J Cell Biochem 2019; 120:17912-17925. [PMID: 31135072 DOI: 10.1002/jcb.29059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the regulation of special protein 1 (SP1) and hypoxia-inducible factor-1α (HIF1α) on human microvascular endothelial cells (HMEC-1) under hypoxic conditions. METHODS The expression of SP1 and HIF1α under normoxia and hypoxic conditions were assessed by Western blot. SP1 and HIF1α were knocked down by small interfering RNA (siRNA) under hypoxic conditions. The proliferation, migration, and invasion of HMEC-1 were measured by cell counting kit 8, 5-ethynyl-2'-deoxyuridine and Transwell coculture system. Western blot analysis and Immunofluorescence were carried out to study the mechanisms of simultaneously inhibiting the adenosine triphosphatase (CD39), 5'-nucleotidase (CD73), adenosine, and vascular endothelial growth factor (VEGF). We compared the inhibitory effects between groups concurrently interfering SP1, HIF-1α, and ranibizumab under hypoxic conditions. RESULTS Under hypoxic conditions, the protein expression of SP1 and HIF1α was increased in HMEC-1, contrarily, SP1 siRNA and HIF1α siRNA downregulated the expression. Simultaneous inhibition of SP1 and HIF1α demonstrated a much greater restraint of proliferation, migration, and invasion characteristics on HMEC-1 than respectively knocking down SP1 or HIF1α and anti-VEGF drugs (0.5 mg/mL ranibizumab) (siRNA and the VEGF inhibitor were applied separately in different groups). Meanwhile, simultaneous inhibition of SP1 and HIF1α effectively reduced the expression of CD39, CD73, adenosine, and VEGF on HMEC-1 under hypoxic conditions. CONCLUSIONS Our study demonstrated that both SP1 and HIF1α played important roles in HMEC-1 under hypoxia condition. Simultaneous inhibition of SP1 and HIF1α effectively decreased the activity of HMEC-1 under hypoxic conditions through the CD39-CD73-adenosine and VEGF angiogenesis pathways. Our study may provide a new approach to the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Liqianyu Ai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chanjuan Huang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Gao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunlin Chen
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Sonotaki S, Noguchi K, Yohda M, Murakami Y. A zeolite as a tool for successful refolding of PEGylated proteins and their reassembly with tertiary structures. Biotechnol Prog 2019; 35:e2853. [PMID: 31132320 DOI: 10.1002/btpr.2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
In the present study, we demonstrated zeolites' potential contribution to establish a method for preparing successfully refolded and reassembled PEGylated protein nanoparticles without the use of protein denaturants through the proteins' reassembly process. At first, the PEGylated nanoparticles are disassembled into identical PEGylated protein subunits by means of protein denaturants, and then the denatured subunits are adsorbed to zeolites. After the complete removal of denaturants, high-molecular-weight poly(ethylene glycol) (PEG) molecules are added to a solution where the zeolites suspend. Consequently, the PEGylated proteins are gradually reassembled into nanoparticles because the subunits are desorbed from the zeolites by the steric hindrance of the added PEG molecules. The present study reveals that PEGylated encapsulin was reassembled and hollow encapsulin nanoparticles were obtained. The results clearly demonstrate the usefulness of zeolites as a tool for the successful refolding of PEGylated proteins and their reassembly with tertiary structures.
Collapse
Affiliation(s)
- Seiichi Sonotaki
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshihiko Murakami
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
29
|
Tajik-Ahmadabad B, Chollet L, White J, Separovic F, Polyzos A. Metallo-Cubosomes: Zinc-Functionalized Cubic Nanoparticles for Therapeutic Nucleotide Delivery. Mol Pharm 2019; 16:978-986. [PMID: 30648870 DOI: 10.1021/acs.molpharmaceut.8b00890] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of an effective and potent RNA delivery system remains a challenge for the clinical application of RNA therapeutics. Herein, we describe the development of an RNA delivery platform derived from self-assembled bicontinuous cubic lyotropic liquid crystalline phases, functionalized with zinc coordinated lipids. These metallo-cubosomes were prepared from a series of novel lipidic zinc(II)-bis(dipicolylamine) (Zn2BDPA)) complexes admixed with glycerol monooleate (GMO). The zinc metallo-cubosomes showed the high affinity to siRNA through interaction between Zn2BDPA and the phosphate groups of RNA molecules. Using a combination of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM), we demonstrated that a variety of Zn2BDPA lipid derivatives can be loaded into GMO cubosomes and the introduction of Zn2BDPA lipids effected an internal cubic phase transition of the resulting metallo-cubosomes. The findings of this study lay the foundations for the development of a new class of noncationic lipid-based encapsulation systems, metallo-cubosomes for RNA therapeutic delivery.
Collapse
Affiliation(s)
- Behnoosh Tajik-Ahmadabad
- School of Chemistry, Bio21 Institute , University of Melbourne , Melbourne , Victoria 3010 , Australia.,CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Lucas Chollet
- CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - Jacinta White
- School of Chemistry, Bio21 Institute , University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute , University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Anastasios Polyzos
- School of Chemistry, Bio21 Institute , University of Melbourne , Melbourne , Victoria 3010 , Australia.,CSIRO Manufacturing , Bayview Avenue , Clayton , Victoria 3168 , Australia
| |
Collapse
|
30
|
Xue H, Ding F, Zhang J, Guo Y, Gao X, Feng J, Zhu X, Zhang C. DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chem Commun (Camb) 2019; 55:4222-4225. [DOI: 10.1039/c9cc00175a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA tetrahedra are employed as building blocks to construct a novel DNA-based nanogel for intracellular siRNA delivery.
Collapse
Affiliation(s)
- Han Xue
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Fei Ding
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Jiao Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
| | - Jing Feng
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
- Shanghai
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus
| |
Collapse
|
31
|
Biniuri Y, Albada B, Willner I. Probing ATP/ATP-Aptamer or ATP-Aptamer Mutant Complexes by Microscale Thermophoresis and Molecular Dynamics Simulations: Discovery of an ATP-Aptamer Sequence of Superior Binding Properties. J Phys Chem B 2018; 122:9102-9109. [PMID: 30188731 DOI: 10.1021/acs.jpcb.8b06802] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microscale thermophoresis (MST) is used to follow the dissociation constants corresponding to ATTO 488-labeled adenosine triphosphate (ATP) and the ATP-aptamer or ATP-aptamer mutants that include two binding sites for the ATP ligand. A set of eight ATP-aptamer mutants, where the thymidine bases, within the reported ATP binding aptamer sites, are substituted with cytosine bases, are examined. The MST-derived dissociation constant of ATP to the reported aptamer is Kd = 31 ± 3 μM, whereas most of the aptamer mutants show lower affinity (higher Kd values) toward the ATP ligand. One aptamer mutant reveals, however, a higher affinity toward the ATP ligand, as compared to the reported ATP-aptamer. Molecular dynamics and docking simulations identify the structural features that control the affinities of binding of the ATP ligand to the two binding sites associated with the ATP-aptamer or the ATP-aptamer mutants. The simulated structures suggest that H-bonds between the ATP ligand and G9 and G11 bases, within one binding domain, and the π-π interactions between G6 and the ATP purine moiety and the pyrimidine ring, in the second binding domain, control the affinity of binding interactions between the ATP ligand and the ATP-aptamer or ATP-aptamer mutant. Very good correlation between the computed Kd values and the MST-derived Kd values is found. The ATP-aptamer mutant (consisting of A1→ G, T4 → C, T12 → C, A24 → G, and T27 → C mutations) reveals superior binding affinities toward the ATP ligands ( Kd = 15 ± 1 μM) as compared to the binding affinity of ATP to the reported aptamer. These features of the mutant are supported by molecular dynamics simulations.
Collapse
Affiliation(s)
- Yonatan Biniuri
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Bauke Albada
- Laboratory of Organic Chemistry , Wageningen University & Research , Stippeneng 4 , 6708 WE , The Netherlands
| | - Itamar Willner
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
32
|
Kano T, Katsuragi Y, Maeda Y, Ueno Y. Synthesis and properties of 4′-C-aminoalkyl-2′-fluoro-modified RNA oligomers. Bioorg Med Chem 2018; 26:4574-4582. [DOI: 10.1016/j.bmc.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/16/2023]
|
33
|
Sonotaki S, Takami T, Noguchi K, Odaka M, Yohda M, Murakami Y. Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomater Sci 2018; 5:1082-1089. [PMID: 28429809 DOI: 10.1039/c7bm00207f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We developed a hollow PEGylated encapsulin nanoparticle from Rhodococcus erythropolis N771. The hollow engineered encapsulin nanoparticles with His-Tag and Lys residues on the surface were constructed by means of genetic recombination. The Lys residues on the particle surface were successfully PEGylated with a PEG derivative, methoxy-PEG-SCM. Consequently, we demonstrated that the hollow PEGylated engineered encapsulin nanoparticle could successfully disassemble or reassemble even after PEGylation in the presence or absence of a protein denaturing agent. The nanoparticle obtained in the present study has the potential to incorporate hydrophilic compounds in the internal cavity of the particle by reversibly controllable disassembly and reassembly. The hollow PEGylated encapsulin nanoparticle can be used as a drug carrier for the delivery of hydrophilic biopolymers in future medical applications.
Collapse
Affiliation(s)
- Seiichi Sonotaki
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today 2018; 23:900-911. [DOI: 10.1016/j.drudis.2018.01.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
|
35
|
Shen J, Zhang W, Qi R, Mao ZW, Shen H. Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics. Chem Soc Rev 2018; 47:1969-1995. [PMID: 29417968 PMCID: PMC5861001 DOI: 10.1039/c7cs00479f] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer treatment still faces a lot of obstacles such as tumor heterogeneity, drug resistance and systemic toxicities. Beyond the traditional treatment modalities, exploitation of RNA interference (RNAi) as an emerging approach has immense potential for the treatment of various gene-caused diseases including cancer. The last decade has witnessed enormous research and achievements focused on RNAi biotechnology. However, delivery of small interference RNA (siRNA) remains a key challenge in the development of clinical RNAi therapeutics. Indeed, functional nanomaterials play an important role in siRNA delivery, which could overcome a wide range of sequential physiological and biological obstacles. Nanomaterial-formulated siRNA systems have potential applications in protection of siRNA from degradation, improving the accumulation in the target tissues, enhancing the siRNA therapy and reducing the side effects. In this review, we explore and summarize the role of functional inorganic-organic hybrid systems involved in the siRNA therapeutic advancements. Additionally, we gather the surface engineering strategies of hybrid systems to optimize for siRNA delivery. Major progress in the field of inorganic-organic hybrid platforms including metallic/non-metallic cores modified with organic shells or further fabrication as the vectors for siRNA delivery is discussed to give credit to the interdisciplinary cooperation between chemistry, pharmacy, biology and medicine.
Collapse
Affiliation(s)
- Jianliang Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China. and School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325001, China and Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA.
| | - Wei Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ruogu Qi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China. and Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA. and Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
36
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
37
|
Smith JA, Braga A, Verheyen J, Basilico S, Bandiera S, Alfaro-Cervello C, Peruzzotti-Jametti L, Shu D, Haque F, Guo P, Pluchino S. RNA Nanotherapeutics for the Amelioration of Astroglial Reactivity. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:103-121. [PMID: 29499926 PMCID: PMC5738063 DOI: 10.1016/j.omtn.2017.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
In response to injuries to the CNS, astrocytes enter a reactive state known as astrogliosis, which is believed to be deleterious in some contexts. Activated astrocytes overexpress intermediate filaments including glial fibrillary acidic protein (GFAP) and vimentin (Vim), resulting in entangled cells that inhibit neurite growth and functional recovery. Reactive astrocytes also secrete inflammatory molecules such as Lipocalin 2 (Lcn2), which perpetuate reactivity and adversely affect other cells of the CNS. Herein, we report proof-of-concept use of the packaging RNA (pRNA)-derived three-way junction (3WJ) motif as a platform for the delivery of siRNAs to downregulate such reactivity-associated genes. In vitro, siRNA-3WJs induced a significant knockdown of Gfap, Vim, and Lcn2 in a model of astroglial activation, with a concomitant reduction in protein expression. Knockdown of Lcn2 also led to reduced protein secretion from reactive astroglial cells, significantly impeding the perpetuation of inflammation in otherwise quiescent astrocytes. Intralesional injection of anti-Lcn2-3WJs in mice with contusion spinal cord injury led to knockdown of Lcn2 at mRNA and protein levels in vivo. Our results provide evidence for siRNA-3WJs as a promising platform for ameliorating astroglial reactivity, with significant potential for further functionalization and adaptation for therapeutic applications in the CNS.
Collapse
Affiliation(s)
- Jayden A Smith
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Alice Braga
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Department of Diagnostics and Public Health, University of Verona, Verona 37134, Italy
| | - Jeroen Verheyen
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Silvia Basilico
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Sara Bandiera
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Clara Alfaro-Cervello
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Dan Shu
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Farzin Haque
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
39
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
40
|
Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm 2017; 525:313-333. [DOI: 10.1016/j.ijpharm.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
41
|
siRNA delivery using polyelectrolyte-gold nanoassemblies in neuronal cells for BACE1 gene silencing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:18-28. [PMID: 28866154 DOI: 10.1016/j.msec.2017.05.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) mediated RNA interference is a versatile therapeutic tool for many intractable genetic disorders. Various nanoassemblies specifically designed to deliver the siRNAs could be utilized for efficient siRNA delivery which is one of the major concern for the success of this therapeutic. Thus, in the present study, polyelectrolyte-gold nanoassemblies (PE-Gold NAs) were selected for siRNA delivery of an in vitro verified siRNA. Three different polyelectrolytes (polyethyleneimine, citraconic anhydride modified poly (allylamine) hydrochloride and poly l-arginine) were used to formulate the PE-Gold NAs using the layer-by-layer technique. Successful physico-chemical characterizations of these PE-Gold NAs were performed using UV-Visible, FTIR, 1H-NMR spectroscopies, XRD, TEM, DLS and Zeta potential measurements. In vitro studies for the cytotoxicity, the uptake of these nanoassemblies and the gene silencing were carried out using these PE-Gold NAs in N2a and NB4 1A3 (murine neuronal) cell lines. The three selected PE-Gold NAs showed significant BACE1 (β-site APP cleaving enzyme 1) gene silencing (50-60%). This work demonstrates the potential of PE-Gold NAs to deliver siRNA targeting BACE1 in neuronal cells. Finally, it was concluded that different polyelectrolytes used in the PE-Gold NAs achieve different gene silencing due to the variation in their delivery efficiencies.
Collapse
|
42
|
Cheng Y, Sellers DL, Tan JKY, Peeler DJ, Horner PJ, Pun SH. Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials 2017; 127:89-96. [PMID: 28284104 DOI: 10.1016/j.biomaterials.2017.02.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Cationic polymer gene delivery vehicles that effectively resist premature serum degradation often have difficulty releasing their nucleic acid cargoes. In this work, we report a pH-sensitive polymer (SP), poly(oligo(ethylene glycol) monomethyl ether methacrylate)-co-poly(2-(dimethylamino)ethyl methacrylate)-block- poly(propargyl methacrylate-graft-propyl-(4-methoxy-benzylidene)-amine) (p(PMA-PMBA)-b-(p(OEGMA-DMAEMA)), for successful in vitro and in vivo gene transfer. In the physiological condition, the hydrophobization of p(OEGMA-DMAEMA) polycations by p(PMA-PMBA) significantly enhanced the stability of its polyplexes counterpart. In endosomes, the polymer undergoes an acid-triggered hydrophilic transition through the cleavage of benzoic imines, thus allowing the vector to quickly release nucleic acid cargo due to the loss of hydrophobic functionalization. Compared to a pH-insensitive polymer (IP), SP exhibited more significant luciferase plasmid delivery efficiency with HeLa cells in vitro and with in vivo intraventricular brain injections. Therefore, the polymer designed here is a good solution to address the dilemma of stability and cargo release in gene delivery, and may have broad potential applications in therapeutic agent delivery.
Collapse
Affiliation(s)
- Yilong Cheng
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - David J Peeler
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Philip J Horner
- Center for Neuroregeneration and Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, United States.
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
43
|
Sakurai Y, Hada T, Harashima H. Scalable preparation of poly(ethylene glycol)-grafted siRNA-loaded lipid nanoparticles using a commercially available fluidic device and tangential flow filtration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1086-1096. [PMID: 28157422 DOI: 10.1080/09205063.2017.1291297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While a number of siRNA delivery systems have been developed, the methods used in their preparation are not suitable for large-scale production. We herein report on methodology for the large-scale preparation of liposomal siRNA using a fluidic device and tangential flow filtration (TFF). A number of studies have appeared on the use of fluidic devices for preparing and purifying liposomes, but no systematic information regarding appropriate membrane type of commercially available apparatus is available. The findings reported herein indicate that, under optimized conditions, a microfluidic device and TFF can be used to produce siRNA lipid nanoparticles with the same characteristics as traditional ones'. The in vivo silencing efficiency of these lipid nanoparticles in the liver was comparable to laboratory-produced nanoparticles. In addition, con-focal laser scanning microscopy analyses revealed that they accumulated in the liver accumulation at the same levels as particles produced by batch-type and continuous-type procedures. This methodology has the potential to contribute to the advancement of this process from basic research to clinical studies of liposomal DDS.
Collapse
Affiliation(s)
- Yu Sakurai
- a Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| | - Tomoya Hada
- a Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| | - Hideyoshi Harashima
- a Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| |
Collapse
|
44
|
Baumann V, Lorenzer C, Thell M, Winkler AM, Winkler J. RNAi-Mediated Knockdown of Protein Expression. Methods Mol Biol 2017; 1654:351-360. [PMID: 28986804 DOI: 10.1007/978-1-4939-7231-9_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference is an essential method for studying genomic functions of single genes by loss-of-function experiments. Short interfering siRNAs are efficiently transfected into cultured cells to enable RISC-mediated mRNA cleavage and inhibition of translation in a sequence-specific manner. RNAi enables knockdown of single genes and screening for specific cellular processes or outcomes. In this chapter, we describe a detailed universal protocol for lipoplex-mediated siRNA transfection for cell cultures and cell lysis for subsequent RNA or protein analysis. The experimental procedure is described for verification of knockdown and includes cell lysis for mRNA or protein quantification. Important aspects for specific gene silencing and potential pitfalls are discussed.
Collapse
Affiliation(s)
- Volker Baumann
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Cornelia Lorenzer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Michael Thell
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Anna-Maria Winkler
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Johannes Winkler
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
- Department of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
45
|
Zhao K, Tang Y, Wang Z, Zhang J, Lei C, Wang H, Li H, Huang Y, Nie Z, Yao S. Surface charge tuneable fluorescent protein-based logic gates for smart delivery of nucleic acids. Chem Commun (Camb) 2017; 53:11326-11329. [DOI: 10.1039/c7cc06833f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile bio-logic system based on H39GFP is operated in living cells with transfection of functional nucleic acids as the readout.
Collapse
|
46
|
Pereira P, Queiroz JA, Figueiras A, Sousa F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27882692 DOI: 10.1002/wrna.1409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs)-based therapy has recently emerged as a promising strategy in the treatments of neurodegenerative diseases. Thus, in this review, the most recent and important challenges and advances on the development of miRNA therapeutics for brain targeting are discussed. In particular, this review highlights current knowledge and progress in the field of manufacturing, recovery, isolation, purification, and analysis of these therapeutic oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis is presented in what concerns to the current challenges that have to be addressed to ensure their specificity and efficacy. Overall, it is intended to provide a perspective on the future of miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. WIREs RNA 2017, 8:e1409. doi: 10.1002/wrna.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrícia Pereira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Figueiras
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Coimbra, Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
47
|
Pereira P, Barreira M, Queiroz JA, Veiga F, Sousa F, Figueiras A. Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin Drug Deliv 2016; 14:353-371. [DOI: 10.1080/17425247.2016.1214567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Nothisen M, Bagilet J, Behr JP, Remy JS, Kotera M. Structure Tuning of Cationic Oligospermine-siRNA Conjugates for Carrier-Free Gene Silencing. Mol Pharm 2016; 13:2718-28. [PMID: 27398779 DOI: 10.1021/acs.molpharmaceut.6b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligospermine-siRNA conjugates are able to induce efficient luciferase gene silencing upon carrier-free transfection. These conjugates are readily accessible by a versatile automated chemistry that we developed using a DMT-spermine phosphoramidite reagent. In this article, we used this chemistry to study a wide range of structural modifications of the oligospermine-siRNA conjugates, i.e., variation of conjugate positions and introduction of chemical modifications to increase nuclease resistance. At first we examined gene silencing activity of a series of siRNA-tris(spermine) conjugates with and without chemical modifications in standard carrier assisted conditions. The three spermine units attached at one of the two ends of the sense strand or at the 3'-end of the antisense strand are compatible with gene silencing activity whereas attachment of spermine units at the 5'-end of the antisense strand abolished the activity. 2'-O-Methylated nucleotides introduced in the sense strand are compatible while not in the antisense strand. Thiophosphate links could be used without activity loss at the 3'-end of both strands and at the 5'-end of the sense strand to conjugate oligospermine. Consequently a series of oligospermine-siRNA conjugates containing 15 to 45 spermines units in various configurations were chosen, prepared, and examined in carrier-free conditions. Attachment of 30 spermine units singly at the 5'-end of the sense strand provides the most potent carrier-free siRNA. Longevity of luciferase gene silencing was studied using oligospermine-siRNA conjugates. Five day long efficiency with more than 80% gene expression knockdown was observed upon transfection without vector. Oligospermine-siRNA conjugates targeting cell-constitutive natural lamin A/C gene were prepared. Efficient gene silencing was observed upon carrier-free transfection of siRNA conjugates containing 20 or 30 spermine residues grafted at the 5'-end of the sense strand.
Collapse
Affiliation(s)
- Marc Nothisen
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jérémy Bagilet
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jean-Paul Behr
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jean-Serge Remy
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Mitsuharu Kotera
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| |
Collapse
|
49
|
Zhang W, Müller K, Kessel E, Reinhard S, He D, Klein PM, Höhn M, Rödl W, Kempter S, Wagner E. Targeted siRNA Delivery Using a Lipo-Oligoaminoamide Nanocore with an Influenza Peptide and Transferrin Shell. Adv Healthc Mater 2016; 5:1493-504. [PMID: 27109317 DOI: 10.1002/adhm.201600057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Developing RNA-interference-based therapeutic approaches with efficient and targeted cytosolic delivery of small interfering RNA (siRNA) is remaining a critical challenge since two decades. Herein, a multifunctional transferrin receptor (TfR)-targeted siRNA delivery system (Tf&INF7) is designed based on siRNA complexes formed with the cationic lipo-oligoamino amide 454, sequentially surface-modified with polyethylene glycol-linked transferrin (Tf) for receptor targeting and the endosomolytic peptide INF7 for efficient cytosolic release of the siRNA. Effective Tf&INF7 polyplex internalization and target gene silencing are demonstrated for the TfR overexpressing tumor cell lines (K562, D145, and N2a). Treatment with antitumoral EG5 siRNA results in a block of tumor cell growth and triggered apoptosis. Tf-modified polyplexes are far more effective than the corresponding albumin- (Alb) or nonmodified 454 polyplexes. Competition experiments with excess of Tf demonstrate TfR target specificity. As alternative to the ligand Tf, an anti-murine TfR antibody is incorporated into the polyplexes for specific targeting and gene silencing in the murine N2a cell line. In vivo distribution studies not only demonstrate an enhanced tumor residence of siRNA in N2a tumor-bearing mice with the Tf&INF7 as compared to the 454 polyplex group but also a reduced siRNA nanoparticle stability limiting the in vivo performance.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Sören Reinhard
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
| | - Susanne Kempter
- Department of Physics Ludwig‐Maximilians‐Universität München Geschwister‐Scholl‐Platz 1 80539 Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology Department of Pharmacy Ludwig‐Maximilians‐Universität München (LMU) Butenandtstrasse 5‐13 D‐81377 Munich Germany
- Nanosystems Initiative Munich Schellingstrasse 4 D‐80799 Munich Germany
| |
Collapse
|
50
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|