1
|
Zhong C, Qu G, Wang J, Xu B, Cui B, Shi Y, Cao C. One-Pot Synthesis of Benzoxazoles and Sulfoxides: Complete Utilization of Diaryl Sulfoxides. J Org Chem 2025; 90:6208-6218. [PMID: 40300105 DOI: 10.1021/acs.joc.5c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Synthesis of 2-aryl benzoxazoles and aryl sulfoxide derivatives in a one-pot process has been developed via the palladium-catalyzed cross-coupling of diaryl sulfoxides with benzoxazoles, followed by trapping the remaining sulfenate anions with different electrophilic reagents. The reaction involves the C-S and C-H bond activation and the C-C and C-S bond formation. The protocol allows a broad scope of substrates, functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Chuntao Zhong
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jingdi Wang
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoshan Xu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Leuci R, Brunetti L, Tufarelli V, Cerini M, Paparella M, Puvača N, Piemontese L. Role of copper chelating agents: between old applications and new perspectives in neuroscience. Neural Regen Res 2025; 20:751-762. [PMID: 38886940 PMCID: PMC11433910 DOI: 10.4103/nrr.nrr-d-24-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 06/20/2024] Open
Abstract
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper (II) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases (such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Marco Cerini
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Paparella
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Novi Sad, Serbia
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Lin S, Wu B, Xu Y, Gu H, Xiao X, Xie Y, Jiang B. Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6357-6365. [PMID: 39831474 DOI: 10.1021/acsami.4c19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers. To address this issue, a template-free, step-by-step assembly strategy has been proposed for the synthesis of planar crystalline carbon nitride (CCN) incorporated with a nitrogen vacancy (Nv). In contrast to the simultaneous assembly method, the sequential assembly process encompasses a progressive crystallization mechanism. This method is conducive to the mitigation of the incidence of structural disarray, thereby precluding the genesis of non-ordered defects throughout the whole bulk phase. The ordered in-plane arrangement facilitates the spatial segregation of electrons and holes, thereby decoupling the redox active sites. This separation minimizes the likelihood of back reactions and suppresses the recombination process, which is advantageous for the efficiency of photocatalytic coupling reactions. Certified by multiscale characterization and theoretical simulations, the incorporation of Nv enhances the energy band structure and provides sites with unsaturated coordination for the adsorption and activation of ethanol molecules. This interfacial synergistic effect of Nv and co-catalyst Pt as the Lewis site achieves efficient activation of both coupling partners. The obtained CCN demonstrates significant bifunctional photocatalytic activity, achieving a yield of benzimidazole at 5.0 mmol g-1 with a conversion and selectivity rate of 99%. Simultaneously, the hydrogen evolution rate of CCN is measured at 9.1 mmol g-1 within 4 h. The template-free, step-by-step assembled strategy utilized in this study provides new perspectives on developing highly efficient photocatalysts at the molecular level.
Collapse
Affiliation(s)
- Siying Lin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Baogang Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yachao Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Huiquan Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
- Postdoctoral Workstation of Zhejiang Fomay Technology Company, Limited, Linhai 317099, People's Republic of China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| |
Collapse
|
4
|
Debia N, Da Luz LC, de Araújo BB, Gonçalves PFB, Rodembusch FS, Lüdtke DS. Chiral Oxazoline-Triazole-Benzothiazole Molecular Triads: Photoactive Sensors for Enantioselective Carbohydrate Recognition in Solution. JACS AU 2025; 5:353-362. [PMID: 39886569 PMCID: PMC11775706 DOI: 10.1021/jacsau.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Understanding the mechanism of drug action in biological systems is facilitated by the interactions between small molecules and target chiral biomolecules. In this context, focusing on the enantiomeric recognition of carbohydrates in solution through steady-state fluorescence emission spectroscopy is noteworthy. To this end, we have developed a third generation of chiral optical sensors for carbohydrates, distinct from all of those previously presented, which interact with carbohydrates to form non-covalent probe-analyte interactions. The proposed sensor is based on 2-oxazolines bearing a fluorophoric benzothiazole unit. We evaluated their photophysical properties in the presence of enantiomeric pairs of arabinose, mannose, xylose, and glucose in solution. Our primary findings indicate that the compounds outlined in this study were able to distinguish between enantiomeric pairs in solution, demonstrating good to excellent enantioselectivity through simple intermolecular interactions. To achieve the best enantioselectivity results, theoretical calculations were performed to better understand the observed interactions between the sensors and the analytes.
Collapse
Affiliation(s)
- Natalí
P. Debia
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Lilian C. Da Luz
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno B. de Araújo
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo F. B. Gonçalves
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano S. Rodembusch
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo S. Lüdtke
- Instituto de Química,
Universidade Federal do Rio Grande do Sul—UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Saha N, Kumar A, Debnath BB, Sarkar A, Chakraborti AK. Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles. Curr Top Med Chem 2025; 25:581-644. [PMID: 39844549 DOI: 10.2174/0115680266347975241217112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.
Collapse
Affiliation(s)
- Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Asim Kumar
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, India-122413
| | - Bibhuti Bhusan Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Anirban Sarkar
- Department of Chemistry, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, West Bengal 700006, India
| | - Asit K Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
6
|
Li T, Li K, Yu J, Sun Q, Wang Z. Precisive Incorporation of Multiple Nitrogen Sources into Benzoxazoles via an Iodine-Mediated Electrochemical Four-Component Reaction. Org Lett 2024; 26:10809-10815. [PMID: 39526794 DOI: 10.1021/acs.orglett.4c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An iodine-mediated electrochemical four-component reaction was developed to construct aromatic C-N bonds by making use of a simple nitrogen source, such as NH4+ and formamide. By virtue of this reaction, a variety of benzoxazoles bearing different substituents can be selectively modulated by using different bases. This protocol features a broad substrate scope and good scalability, is transition metal-free and chemical oxidant-free, and exhibits controlled product distribution. Additionally, it also enables a versatile platform for various isotope-labeled (15N and CD3) benzoxazoles.
Collapse
Affiliation(s)
- Tong Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kai Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiajia Yu
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qi Sun
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyong Wang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Huang ZS, Wang YF, Qi MY, Conte M, Tang ZR, Xu YJ. Interface Synergy of Exposed Oxygen Vacancy and Pd Lewis Acid Sites Enabling Superior Cooperative Photoredox Synthesis. Angew Chem Int Ed Engl 2024; 63:e202412707. [PMID: 39136931 DOI: 10.1002/anie.202412707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/13/2024] [Indexed: 10/15/2024]
Abstract
Photo-driven cross-coupling of o-arylenediamines and alcohols has emerged as an alternative for the synthesis of bio-active benzimidazoles. However, tackling the key problem related to efficient adsorption and activation of both coupling partners over photocatalysts towards activity enhancement remains a challenge. Here, we demonstrate an efficient interface synergy strategy by coupling exposed oxygen vacancies (VO) and Pd Lewis acid sites for benzimidazole and hydrogen (H2) coproduction over Pd-loaded TiO2 nanospheres with the highest photoredox activity compared to previous works so far. The results show that the introduction of VO optimizes the energy band structure and supplies coordinatively unsaturated sites for adsorbing and activating ethanol molecules, affording acetaldehyde active intermediates. Pd acts as a Lewis acid site, enhancing the adsorption of alkaline amine molecules via Lewis acid-base pair interactions and driving the condensation process. Furthermore, VO and Pd synergistically promote interfacial charge transfer and separation. This work offers new insightful guidance for the rational design of semiconductor-based photocatalysts with interface synergy at the molecular level towards the high-performance coproduction of renewable fuels and value-added feedstocks.
Collapse
Affiliation(s)
- Zhi-Sang Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Yin-Feng Wang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Ming-Yu Qi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, S3 7HF, Sheffield, UK
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| |
Collapse
|
8
|
Zhou Y, Zhu J, Gao F, Hu M, Qian C, Wang X, Wang X. Fighting fire with fire: remodeling Aβ aggregation with H-aggregates of a europium(III) complex. Dalton Trans 2024; 53:14966-14970. [PMID: 39189405 DOI: 10.1039/d4dt02188f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We herein report a "Fight Aggregation with Aggregation" (FAA) approach for redirection of amyloid-β peptide (Aβ) aggregation using a europium(III) complex (EuL3) that can undergo H-aggregation in aqueous solution under physiological conditions. The H-aggregates of EuL3 may serve as scaffolds that can facilitate the accumulation of Aβ to form non-fibrillar co-assemblies. As a result, the Aβ aggregation-induced cytotoxicity was inhibited.
Collapse
Affiliation(s)
- Yuancun Zhou
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Jiacheng Zhu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Chengyuan Qian
- School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xin Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
9
|
Jin X, Nguyen BNT, Davies RP. Synthesis and characterisation of copper(I) complexes with relevance to intramolecular Ullmann O, S-arylation. Dalton Trans 2024; 53:12554-12559. [PMID: 38995223 DOI: 10.1039/d4dt01418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Copper-catalysed intramolecular Ullman arylation has been frequently used to synthesise benzoxazoles and benzothiazoles. Despite widespread use, investigations into the mechanism and speciation of copper-containing complexes relevant to the catalytic pathway have remained relatively limited. Accordingly, this study aims to elucidate the structural details of potential copper(I) intermediates through the analysis of their solid-state structures using X-ray crystallography, while also investigating the reactivities of these complexes. Five novel copper complexes are reported which are formed prior to the aryl halide activation step and feature distinct aggregation modes based on either Cu4N4O4C4 or Cu4N4S4C4 clusters.
Collapse
Affiliation(s)
- Xiaodong Jin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Bao-Nguyen T Nguyen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
| | - Robert P Davies
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
10
|
Laru S, Ghoshal S, Sarkar P, Hajra A. Unusual Regioselective C-H Difluoroalkylation of Heteroarenes under Photoredox Catalysis. Org Lett 2024; 26:5098-5104. [PMID: 38847562 DOI: 10.1021/acs.orglett.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We disclose a new general strategy for the site-selective difluoroalkylation of nonprefunctionalized heteroarenes, such as quinoxaline at the C-8 position, and benzothiadiazole, benzoxadiazole, and benzothiazole at the C-4 position via consecutive organophotoredox-catalyzed radical-radical cross-coupling and base-assisted hydrogen abstraction reactions. The current methodology represents a site-selective direct difluoroalkylative strategy to allow broad functional group tolerance and a wide substrate scope in good to excellent yields. Careful experimental investigations and detailed DFT calculations revealed the exact site-selectivity of the heteroarenes and a possible mechanistic pathway.
Collapse
Affiliation(s)
- Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| |
Collapse
|
11
|
Zheng Y, Du DM. Asymmetric Mannich/Cyclization Reaction of 2-Benzothiazolimines and 2-Isothiocyano-1-indanones to Construct Chiral Spirocyclic Compounds. Molecules 2024; 29:2958. [PMID: 38998910 PMCID: PMC11242980 DOI: 10.3390/molecules29132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
An efficient and practical organocatalyzed asymmetric Mannich/cyclization tandem reaction strategy of 2-benzothiazolimines and 2-isothiocyanato-1-indanones was developed, and novel spirocyclic compounds containing benzothiazolimine and indanone scaffolds were obtained. This chiral thiourea-catalyzed Mannich/cyclization tandem reaction offers chiral spirocyclic compounds with continuous tertiary and quaternary stereocenters in good to high yields (up to 90%) with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities (up to 98% ee) at -18 °C. Additionally, the scaled-up synthesis was also performed with retained yield and stereoselectivity, and a reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Yao Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China;
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China;
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, Ministry of Industry and Information Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
12
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
13
|
Huang PF, Fu JL, Peng Y, Fan JH, Zhong LJ, Tang KW, Liu Y. Electro-oxidative three-component cascade coupling of isocyanides with elemental sulfur and amines for the synthesis of 2-aminobenzothiazoles. Org Biomol Chem 2024; 22:3752-3760. [PMID: 38652536 DOI: 10.1039/d4ob00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
2-Aminobenzothiazoles are commonly encountered in various functional compounds. Herein, we disclose an electro-oxidative three-component reaction for the effective synthesis of 2-aminobenzothiazoles under mild conditions, utilizing non-toxic and abundant elemental sulfur as the sulfur source. Both aliphatic amines and aryl amines demonstrate good compatibility at room temperature, highlighting the broad functional group tolerance of this approach. Additionally, elemental selenium demonstrated reactivities comparable to those of elemental sulfur.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
14
|
Kwon Y, Kong Y, Lee M, Lim E, Kwak J, Kim W. Regioselective Arylation of Amidoaryne Precursors via Ag-Mediated Intramolecular Oxy-Argentation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308829. [PMID: 38403474 PMCID: PMC11077674 DOI: 10.1002/advs.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Indexed: 02/27/2024]
Abstract
An unprecedented silver-mediated intramolecular oxy-argentation of 3-amidoaryne precursors that quickly generates a heteroarylsilver species is developed. AgF acts as both a stoichiometric fluoride source and a reagent for the formation of a benzoxazolylsilver intermediate via aryne generation. Pd-catalyzed coupling reactions of (hetero)aryl iodides with a silver species, generated in situ, allow for the synthesis of various C7-arylated benzoxazoles. As a result, an aryl group is selectively introduced into the meta-position of 3-amidobenzyne precursors. Mechanistic studies have indicated the presence of a benzoxazolylsilver intermediate and revealed that the reaction proceeds via an intramolecular oxy-argentation process, which is initiated by a direct fluoride attack on the silyl group.
Collapse
Affiliation(s)
- Yong‐Ju Kwon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Ye‐Jin Kong
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Min‐Jung Lee
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Eun‐Hye Lim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
- Division of Medicinal Chemistry and PharmacologyKRICT SchoolUniversity of Science and TechnologyDaejeon34114Republic of Korea
| | - Won‐Suk Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| |
Collapse
|
15
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
16
|
da Silva CB, Silva L, Debia NP, Chaves OA, Lüdtke DS, Rodembusch FS. Photoactive glycoconjugates with a very large Stokes shift: synthesis, photophysics, and copper(II) and BSA sensing. Org Biomol Chem 2023; 21:9242-9254. [PMID: 37966045 DOI: 10.1039/d3ob01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study presents the synthesis of novel glycoconjugates by connecting benzazole and carbohydrate units with a 1,2,3-triazole linker. A simple synthetic route employing a copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was utilized. The synthesized compounds exhibit excited-state intramolecular proton transfer (ESIPT), resulting in longer wavelength emission with a significantly large Stokes shift (∼10 000 cm-1). These compounds show potential as chemical sensors due to their ability to detect Cu2+ ions, causing a decrease in fluorescence emission (turn-off effect). Additionally, they demonstrate strong interaction with proteins, exemplified by their interaction with bovine serum albumin (BSA) as a model protein.
Collapse
Affiliation(s)
- Cláudia Brito da Silva
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada. Instituto de Química (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Luana Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natalí Pires Debia
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Otávio Augusto Chaves
- CQC-IMS, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Laboratório de Imunofarmacologia, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4036 - Bloco 2, 21040-361 Rio de Janeiro - RJ, Brazil
| | - Diogo Seibert Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Fabiano Severo Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada. Instituto de Química (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Gao F, Chen J, Zhou Y, Cheng L, Hu M, Wang X. Recent progress of small-molecule-based theranostic agents in Alzheimer's disease. RSC Med Chem 2023; 14:2231-2245. [PMID: 37974955 PMCID: PMC10650505 DOI: 10.1039/d3md00330b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia. As a multifactorial disease, AD involves several etiopathogenic mechanisms, in which multiple pathological factors are interconnected with each other. This complicated and unclear pathogenesis makes AD lack effective diagnosis and treatment. Theranostics, exerting the synergistic effect of diagnostic and therapeutic functions, would provide a promising strategy for exploring AD pathogenesis and developing drugs for combating AD. With the efforts in small drug-like molecules for both diagnosis and treatment of AD, small-molecule-based theranostic agents have attracted significant attention owing to their facile synthesis, high biocompatibility and reproducibility, and easy clearance from the body through the excretion systems. In this review, the small-molecule-based theranostic agents reported in the literature for anti-AD are classified into four groups according to their diagnostic modalities. Their design rationales, chemical structures, and working mechanisms for theranostics are summarized. Finally, the opportunities for small-molecule-based theranostic agents in AD are also proposed.
Collapse
Affiliation(s)
- Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiefang Chen
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuancun Zhou
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Letong Cheng
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
18
|
Zhang CP, Zhu YJ, Wang D, Qian J, Zhao YP, Lian C, Zhang ZH, He MY, Chen SC, Chen Q. Ligand-Mediated Regulation of the Chemical/Thermal Stability and Catalytic Performance of Isostructural Cobalt(II) Coordination Polymers. Inorg Chem 2023; 62:17678-17690. [PMID: 37856236 DOI: 10.1021/acs.inorgchem.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Regulating the chemical/thermal stability and catalytic activity of coordination polymers (CPs) to achieve high catalytic performance is topical and challenging. The CPs are competent in promoting oxidative cross-coupling, yet they have not received substantial attention. Here, the ligand effect of the secondary ligand of CPs for oxidative cross-coupling reactions was investigated. Specifically, four new isostructural CPs [Co(Fbtx)1.5(4-R-1,2-BDC)]n (denoted as Co-CP-R, Fbtx = 1,4-bis(1,2,4-triazole-1-ylmethyl)-2,3,5,6-tetrafluorobenzene, 4-R-1,2-BDC = 4-R-1,2-benzenedicarboxylate, R = F, Cl, Br, CF3) were prepared. It was found that in the reactions of oxidative amination of benzoxazoles with secondary amines and the oxidative coupling of styrenes with benzaldehydes, both the chemical and thermal stabilities of the four Co-CPs with the R group followed the trend of -CF3 > -Br > -Cl > -F. Density functional theory (DFT) calculations suggested that the difference in reactivity may be ascribed to the effect of substituent groups on the electron transition energy of the cobalt(II) center of these Co-CPs. These findings highlight the secondary ligand effect in regulating the stability and catalytic performance of coordination networks.
Collapse
Affiliation(s)
- Cheng-Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Jun Zhu
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Pei Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Cheng Lian
- Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Sheng-Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
19
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
21
|
Sun Y, Gao K. Aminoguanidine-Catalyzed Reductive Cyclization of o-Phenylenediamines with CO 2 in the Presence of Triethoxysilane. J Org Chem 2023. [PMID: 37126855 DOI: 10.1021/acs.joc.3c00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An inexpensive and efficient aminoguanidine-catalyzed reductive cyclization of o-phenylenediamines with CO2 in the presence of triethoxysilane is described. Various functionalized benzimidazoles, benzoxazole, and benzothiazole were synthesized in high yields. Mechanistic studies indicate that formic acid as a cocatalyst promotes the cyclization reaction.
Collapse
Affiliation(s)
- Yulin Sun
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Ke Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
22
|
Srinivas B, Shakeena K, Kota DL, Abhinav V, Eswar P, Geetha Sravani R, Sampath Pavan Kumar A, Indukuri K, Dhanaraju KA, Murali Krishna Kumar M, Alla SK. Iron(III)-Catalyzed Regioselective Synthesis of Electron-Rich Benzothiazoles from Aryl Isothiocyanates via C-H Functionalization. J Org Chem 2023; 88:4458-4471. [PMID: 36912001 DOI: 10.1021/acs.joc.2c03078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We report herein a direct synthetic route for the preparation of 2-arylbenzothiazoles using aryl isothiocyanates and electron-rich arenes. The synthetic route involves triflic acid promoted addition of the arenes to aryl isothiocyanates followed by FeCl3-catalyzed C-S bond formation via C-H functionalization. The approach provides the advantage of synthesis of benzothiazoles without the conventional use of aryl aldehyde/carboxylic acid precursors employing the less expensive iron(III) catalyst.
Collapse
Affiliation(s)
- Bokka Srinivas
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kotari Shakeena
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Durgeswari Lakkavarapu Kota
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Valeti Abhinav
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Pyla Eswar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rongali Geetha Sravani
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Anandam Sampath Pavan Kumar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kiran Indukuri
- Chemistry-Discovery Research Lab, Dextro Synthesis Private Limited, Hyderabad, Telangana 500090, India
| | | | | | - Santhosh Kumar Alla
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
23
|
Kim ST, Kim HG, Kim YM, Han HS, Cho JH, Lim SC, Lee T, Jahng GH. An aptamer-based magnetic resonance imaging contrast agent for detecting oligomeric amyloid-β in the brain of an Alzheimer's disease mouse model. NMR IN BIOMEDICINE 2023; 36:e4862. [PMID: 36308279 DOI: 10.1002/nbm.4862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The oligomeric amyloid-β (oAβ) is a reliable feature for an early diagnosis of Alzheimer's disease (AD). Therefore, the objective of this study was to demonstrate imaging of oAβ deposits using our developed DNA aptamer called ob5 conjugated with gadolinium (Gd)-dodecane tetraacetic acid (DOTA) as a contrast agent for early diagnosis of AD using MRI. An oAβ-specific aptamer was developed by amide bond formation and conjugated to Gd-DOTA MRI contrast agent and/or cyanine5 (cy5). We verified the performance of our new contrast agent with an AD mouse model using in vivo and ex vivo fluorescent imaging and animal MRI experiments. The presence of soluble Aβ in 3xTg AD mice was detected using GdDOTA-ob5-cy5 probe ex vivo. Fluorescence intensities of the GdDOTA-ob5-cy5 contrast agent were high in the brains of 3xTg-AD mice, but relatively low in the brains of control mice. The GdDOTA-ob5 contrast agent had higher relaxivity than a clinically available contrast agent. T1-weighted MRI signals in 5-month-old 3xTg AD mice increased at 5 min, were prolonged until 10 min, then decreased 15 min after injecting the GdDOTA-ob5 contrast agent. Our targeted DNA aptamer GdDOTA-ob5 contrast agent could be potentially useful for validating the efficacy of a novel diagnostic contrast agent for selectively targeting neurotoxic oAβ. It could ultimately be used for early diagnosis of AD.
Collapse
Affiliation(s)
- Sang-Tae Kim
- Neuroscience of Lab., Biomedical Research Institute, Seoul National University College of Medicine, Seongnam City, Geonggido, Republic of Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Yu Mi Kim
- Neuroscience of Lab., Biomedical Research Institute, Seoul National University College of Medicine, Seongnam City, Geonggido, Republic of Korea
| | - Ho-Seong Han
- Department of Surgery, Bundang Hospital of Seoul National University, Seongnam City, Kyunggeedo, Republic of Korea
| | - Jee-Hyun Cho
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, Chosun University Medical School, Gwangju, Republic of Korea
- Department of Education & Research, Chosun University Hospital, Gwangju, Republic of Korea
| | - Taekwan Lee
- Brain Research Core Facility, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Oxidative Damages on the Alzheimer's Related-Aβ Peptide Alters Its Ability to Assemble. Antioxidants (Basel) 2023; 12:antiox12020472. [PMID: 36830030 PMCID: PMC9951946 DOI: 10.3390/antiox12020472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Oxidative stress that can lead to oxidation of the amyloid-β (Aβ) peptide is considered a key feature in Alzheimer's disease (AD), influencing the ability of Aβ to assemble into β-sheet rich fibrils that are commonly found in senile plaques of AD patients. The present study aims at investigating the fallouts of Aβ oxidation on the assembly properties of the Aβ peptide. To accomplish this, we performed kinetics and analysis on an oxidized Aβ (oxAβ) peptide, resulting from the attack of reactive oxygen species (ROS) that are formed by the biologically relevant Cu/Aβ/dioxygen/ascorbate system. oxAβ was still able to assemble but displayed ill-defined and small oligomeric assemblies compared to the long and thick β-sheet rich fibrils from the non-oxidized counterpart. In addition, oxAβ does affect the assembly of the parent Aβ peptide. In a mixture of the two peptides, oxAβ has a mainly kinetic effect on the assembly of the Aβ peptide and was able to slow down the formation of Aβ fibril in a wide pH range [6.0-7.4]. However, oxAβ does not change the quantity and morphology of the Aβ fibrils formed to a significant extent. In the presence of copper or zinc di-cations, oxAβ assembled into weakly-structured aggregates rather than short, untangled Cu-Aβ fibrils and long untangled Zn-Aβ fibrils. The delaying effect of oxAβ on metal altered Aβ assembly was also observed. Hence, our results obtained here bring new insights regarding the tight interconnection between (i) ROS production leading to Aβ oxidation and (ii) Aβ assembly, in particular via the modulation of the Aβ assembly by oxAβ. It is the first time that co-assembly of oxAβ and Aβ under various environmental conditions (pH, metal ions …) are reported.
Collapse
|
25
|
Li S, Yin J, Zhang H, Zhang KAI. Dual Molecular Oxygen Activation Sites on Conjugated Microporous Polymers for Enhanced Photocatalytic Formation of Benzothiazoles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2825-2831. [PMID: 36598932 DOI: 10.1021/acsami.2c16581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative formation of high value compounds involving active oxygen species using heterogeneous polymeric photocatalysts has become a useful tool in catalysis. Controlling the interaction between the active sites on polymer photocatalysts and oxygen molecules is still challenging due to the rather large polymer backbone structure. Here, we design a triazine-containing donor acceptor-type conjugated microporous polymer (CMP) containing dual major active sites at F and N atoms for molecular oxygen activation. Introducing fluorine atoms on the CMP backbone led to a combined effect of enhanced adsorption and electron transfer of oxygen. Time-resolved photoluminescence, electronic paramagnetic resonance spectra, and DFT calculation revealed favorable absorption energy and electron transfer kinetics between the CMP and oxygen molecules, thus efficiently generating superoxide radicals (O2•-) and singlet oxygen (1O2) as main active oxygen species. The photocatalytic activity, selectivity, and reusability of the CMP was demonstrated by the photocatalytic formation of a variety of benzothiazoles.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Jie Yin
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Hao Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
26
|
Crown Ether as Organocatalyst for Reductive Upgrading of CO2 to N-Containing Benzoheterocyclics and N-Formamides. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Yadav SN, Kumar B, Yadav RK, Gupta SK, Singh P, Singh C, Singh AP. Lemon-juice derived highly efficient S-GQD/GO composite as a photocatalyst for regeneration of coenzyme under solar light. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The innovation of a highly efficient and inexpensive graphene oxide-based photocatalyst is a challenging task for selective solar chemical regeneration/coenzyme such as nicotinamide adenine dinucleotide (NADH). Herein, we have designed lemon-juice derived highly efficient S-GQD/GO composite as a photocatalyst for regeneration of NADH under solar light. The rational design of a highly efficient photocatalytic system through the orientation of S-GQD on graphene oxide as solar light harvesting photocatalyst is explored for the first time for NADH regeneration. This highly solar light active S-GQD/GO composite photocatalyst upon integration with the NAD + is used for highly regioselective regeneration of coenzyme (76.36%). The present work provides the benchmark instances of graphene oxide-based material as a photocatalyst for selective regeneration of NADH under solar light and opens a new door for green synthesis.
Collapse
Affiliation(s)
- Shesh Nath Yadav
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Brijesh Kumar
- Department of Information Technology, Indira Gandhi Delhi Technical University for Women, Delhi, India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Sarvesh Kumar Gupta
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India
| | - Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| | - Chandani Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
28
|
Rybczyński P, Bousquet MHE, Kaczmarek-Kędziera A, Jędrzejewska B, Jacquemin D, Ośmiałowski B. Controlling the fluorescence quantum yields of benzothiazole-difluoroborates by optimal substitution. Chem Sci 2022; 13:13347-13360. [PMID: 36507166 PMCID: PMC9682896 DOI: 10.1039/d2sc05044g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022] Open
Abstract
Precise tuning of the fluorescence quantum yield, vital for countless applications of fluorophores, remains exceptionally challenging due to numerous factors affecting energy dissipation phenomena often leading to its counterintuitive behavior. In contrast to the absorption and emission wavelength which can be precisely shifted to the desired range by simple structural changes, no general strategy exists for controllable modification of the fluorescence quantum yield. The rigidification of the molecular skeleton is known to usually enhance the emission and can be practically realized via the limiting molecular vibrations by aggregation. However, the subtle balance between the abundant possible radiative and non-radiative decay pathways makes the final picture exceptionally sophisticated. In the present study, a series of nine fluorophores obtained by peripheral substitution with two relatively mild electron donating and electron withdrawing groups are reported. The obtained fluorescence quantum yields range from dark to ultra-bright and the extreme values are obtained for the isomeric molecules. These severe changes in emission efficiency have been shown to arise from the complex relationship between the Franck-Condon excited state and conical intersection position. The experimental findings are rationalized by the advanced quantum chemical calculations delivering good correlation between the measured emission parameters and theoretical radiative and internal conversion rate constants. Therefore, the described substituent exchange provides a method to rigorously adjust the properties of molecular probes structurally similar to thioflavin T.
Collapse
Affiliation(s)
- Patryk Rybczyński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina Street 7 87-100 Toruń Poland
| | | | - Anna Kaczmarek-Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina Street 7 87-100 Toruń Poland
| | - Beata Jędrzejewska
- Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering Seminaryjna 3 85-326 Bydgoszcz Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) Paris FR-75005 France
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń Gagarina Street 7 87-100 Toruń Poland
| |
Collapse
|
29
|
Koyanagi A, Murata Y, Hayakawa S, Matsumura M, Yasuike S. One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides. Beilstein J Org Chem 2022; 18:1479-1487. [PMID: 36320343 PMCID: PMC9592962 DOI: 10.3762/bjoc.18.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 09/07/2024] Open
Abstract
The development of novel and efficient synthesis methods for 2-substituted benzazole derivatives is of interest as they are biologically active substances. Herein, a simple method for the synthesis of 2-aryl- and 2-alkyl-substituted benzazoles is described. The reaction of 2-aminophenols with thioamides at 60 °C in the presence of triphenylbismuth dichloride in 1,2-dichloroethane as a promoter afforded various 2-aryl- and 2-alkylbenzoxazoles in moderate to excellent yields under mild reaction conditions. This method could also be applied to the synthesis of benzimidazoles and benzothiazoles. This study presents the first use of triphenylbismuth dichloride to produce benzimidoyl chloride from thioamides by desulfurization and chlorination, as well as its application to the synthesis of 2-substituted benzazoles.
Collapse
Affiliation(s)
- Arisu Koyanagi
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shiori Hayakawa
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
30
|
Kim YH, Kim DB, Youn SW. Simple Tandem Olefin Isomerization/Intramolecular Hydroamination of Alkenyl Amines with Various Allylic Tethers. J Org Chem 2022; 87:11919-11924. [PMID: 36001369 DOI: 10.1021/acs.joc.2c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and efficient AgOTf-promoted tandem olefin isomerization/intramolecular hydroamination of 1,1-disubstituted alkenyl amines has been developed. This one-pot process represents a facile and attractive route for the synthesis of diverse 2-alkyl-substituted 1,3-X,N-heterocycles through chemo- and regioselective C(sp3)-N bond formation with atom economy. Advantages such as the operationally simple and practical procedure that uses a readily available catalyst under aerobic conditions, good to excellent chemical yields, the high functional group tolerance, the broad substrate scope, and high efficiency and selectivity are noteworthy.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dong Bin Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
31
|
Xu B, Su W. A Tandem Dehydrogenation-Driven Cross-Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022; 61:e202203365. [PMID: 35546303 DOI: 10.1002/anie.202203365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Herein, we report a transition metal-free, operationally simple, general method for straightforward syntheses of 2-substituted benzoxazoles from readily available cyclohexanones and aliphatic primary amines by an imine α-oxygenation-initiated cascade reaction sequence. The key to achieving high selectivity and excellent functional-group tolerance is the use of TEMPO as a mild oxidant that selectively oxidizes the reaction intermediates through its multiple reactivity modes, thus facilitating the individual steps to proceed in succession. More than 70 substrate combinations are disclosed, demonstrating the reliability of this protocol to synthesize structurally diverse products, including marketed drugs, drug candidate, and natural products that are unattainable by the existing methods.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| |
Collapse
|
32
|
Ragno D, De Risi C, Massi A, Di Carmine G, Toldo S, Leonardi C, Bortolini O. Regiodivergent Synthesis of Benzothiazole‐based Isosorbide Imidates by Oxidative N‐Heterocyclic Carbene Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Ragno
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Carmela De Risi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Alessandro Massi
- University of Ferrara: Universita degli Studi di Ferrara DepartmentEnvironmental and Prevention Sciences ITALY
| | - Graziano Di Carmine
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Sofia Toldo
- University of Ferrara: Universita degli Studi di Ferrara Environmental and Prevention Sciences ITALY
| | - Costanza Leonardi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Olga Bortolini
- Universita of Ferrara DepartmentEnvironmental and Prevention Sciences Via Borsari 46 44121 Ferrara ITALY
| |
Collapse
|
33
|
Xu B, Su W. A Tandem Dehydrogenation‐Driven Cross‐Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Biping Xu
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Chemistry CHINA
| | - Weiping Su
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry Yangqiao West Road 155# 350002 Fuzhou CHINA
| |
Collapse
|
34
|
Kim YH, Kim DB, Jang SS, Youn SW. Pd-Catalyzed Regioselective Intramolecular Allylic C-H Amination of 1,1-Disubstituted Alkenyl Amines. J Org Chem 2022; 87:7574-7580. [PMID: 35549260 DOI: 10.1021/acs.joc.2c00781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd-Catalyzed intramolecular allylic C-H amination of 1,1-disubstituted alkenyl amines with various allylic tethers (X = O, NMs, CH2) was developed. This process allows for the divergent synthesis of 1,3-X,N-heterocycles through a regioselective allylic C-H cleavage and π-allylpalladium formation. Particularly noteworthy is the use of substrates containing a labile allylic moiety and new simple catalytic systems capable of promoting highly chemo- and regioselective allylic C-H amination by overcoming significant challenges.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dong Bin Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Su San Jang
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
35
|
Li K, Liu YF, Lin XL, Yang GP. Copper-Containing Polyoxometalate-Based Metal-Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorg Chem 2022; 61:6934-6942. [PMID: 35483004 DOI: 10.1021/acs.inorgchem.2c00287] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new polyoxometalate-based metal-organic frameworks (POMOFs) [Cu4(μ3-OH)2(tba)3(H2O)5(SiW12O40)0.5](H2SiW12O40)0.5·2.5H2O (CuSiW), [Cu3(μ3-OH)(tba)3(Htba)(H2O)2(HPMo12O40)]·7H2O (CuPMo), and [Cu4(μ3-OH)2(tba)3(H2O)3(PW12O40)0.5]2(PW12O40)·0.5H2O (CuPW) were constructed using multinuclear copper clusters, 3-(4H-1,2,4-triazol-4-yl)benzoic acid (Htba), and Keggin polyoxometalates (POMs). Different POMs regulate the formation of different multinuclear copper clusters ("boat" tetranuclear clusters in CuSiW, trinuclear clusters in CuPMo, and "chair" tetranuclear clusters in CuPW) and different topological structures of CuSiW, CuPMo, and CuPW (3-connected two-dimensional (2D) network for CuSiW, 4-connected 2D network for CuPMo, and (4,6)-connected three-dimensional network for CuPW). CuSiW, CuPMo, and CuPW as heterogeneous catalysts combine the high stability of MOFs in polar solvents and excellent catalytic activity of POMs and could be used for the synthesis of nitrogen-heterocycle compounds. The condensation cyclization reactions of 2-aminophenols/benzenesulfonyl hydrazines with 1,3-diketones produce benzoazoles and pyrazoles in good to excellent yields under the catalysis of CuPMo. Moreover, the catalyst could be reused at least for 7 runs, and this protocol was suitable for gram-scale reactions.
Collapse
Affiliation(s)
- Ke Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiao-Ling Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
36
|
Ultra-efficient synthesis of bamboo-shape porphyrin framework for photocatalytic CO2 reduction and consecutive C-S/C-N bonds formation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Atrián-Blasco E, de Cremoux L, Lin X, Mitchell-Heggs R, Sabater L, Blanchard S, Hureau C. Keggin-type polyoxometalates as Cu(II) chelators in the context of Alzheimer's disease. Chem Commun (Camb) 2022; 58:2367-2370. [PMID: 35080532 DOI: 10.1039/d1cc05792h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two Keggin polyoxometalates were used as new copper ligands to counteract the effects of CuII(Amyloid-β) interaction. Their ability to remove CuII from CuII(Amyloid-β), to stop CuII(Amyloid-β) induced formation of reactive oxygen species and to restore apo-like self-assembly of CuII(Amyloid-β) was shown.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France. .,Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | - Xudong Lin
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | | | | | - Sébastien Blanchard
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, 4 Place Jussieu, Paris F-75005, France.
| | | |
Collapse
|
39
|
Wang X, Yu C, Atodiresei IL, Patureau FW. Phosphine-Catalyzed Dearomative [3 + 2] Cycloaddition of Benzoxazoles with a Cyclopropenone. Org Lett 2022; 24:1127-1131. [PMID: 35085442 PMCID: PMC8845044 DOI: 10.1021/acs.orglett.1c04045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/21/2022]
Abstract
The triphenylphosphine-catalyzed dearomative [3 + 2] cycloaddition of benzoxazoles with 1,2-diphenylcyclopropenone is herein described. The reaction scope, mechanism, and possible future applications of this rare organocatalyzed cycloaddition are herein discussed.
Collapse
Affiliation(s)
- Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Congjun Yu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iuliana L. Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
40
|
Li F, Xiao J, Wu X, Wang X, Deng J, Tang Z. Metal-Free Formation of 2-Substitued Benzoxazoles with Amides and Esters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Yang X, Guo X, Yuan X, Chen B. K 2S 2O 8-promoted rearrangement of nitrones for the synthesis of benzo[ d]oxazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An efficient route for the synthesis of valuable benzoxazoles has been developed through self-oxidative cyclization with N–O bond cleavage.
Collapse
Affiliation(s)
- Xueying Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Xinglong Yuan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
42
|
Yang T, Zhang L, Shang Y, Zhu Z, Jin S, Guo Z, Wang X. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer's disease. Chem Sci 2022; 13:2971-2980. [PMID: 35382471 PMCID: PMC8905858 DOI: 10.1039/d1sc06071f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness accompanied by severe memory loss, cognitive disorders and impaired behavioral ability. Amyloid β-peptide (Aβ) aggregation and nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome play crucial roles in the pathogenesis of AD. Aβ plaques not only induce oxidative stress and impair neurons, but also activate the NLRP3 inflammasome, which releases inflammatory cytokine IL-1β to trigger neuroinflammation. A bifunctional molecule, 2-[2-(benzo[d]thiazol-2-yl)phenylamino]benzoic acid (BPBA), with both Aβ-targeting and inflammasome-inhibiting capabilities was designed and synthesized. BPBA inhibited self- and Cu2+- or Zn2+-induced Aβ aggregation, disaggregated the already formed Aβ aggregates, and reduced the neurotoxicity of Aβ aggregates; it also inhibited the activation of the NLRP3 inflammasome and reduced the release of IL-1β in vitro and vivo. Moreover, BPBA decreased the production of reactive oxygen species (ROS) and alleviated Aβ-induced paralysis in transgenic C. elegans with the human Aβ42 gene. BPBA exerts an anti-AD effect mainly through dissolving Aβ aggregates and inhibiting NLRP3 inflammasome activation synergistically. Bifunctional molecule BPBA inhibits Aβ aggregation and NLRP3 inflammasome activation, thereby decreasing ROS and IL-1β in vitro and vivo; it synergistically prevents Alzheimer's disease via alleviating Aβ neurotoxicity and reducing neuroinflammation.![]()
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yicun Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
43
|
Srivastava V, Singh PK, Tivari S, Singh PP. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d1qo01602d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light and photoredox catalysis have emerged as a powerful and long-lasting tool for organic synthesis, demonstrating the importance of a variety of chemical bond formation methods.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Pravin K. Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Praveen P. Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj 211010, India
| |
Collapse
|
44
|
He H, Duan D, Li H, Wei Y, Nie L, Tang B, Wang H, Han X, Huang P, Peng X. Graphene oxide-catalyzed synthesis of benzothiazoles with amines and elemental sulfur via oxidative coupling strategy of amines to imines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Alter N, Link S, Heuser S. Microwave-Assisted One-Pot Synthesis of 2-Substituted Benzoxazoles from Nitrophenol and Carboxylic Acids. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Yuan S, Ye X, Cai J, Song Z, Tan Y, Peng Y, Ding Q. DMF-Assisted Radical Cyclization of o-Isocyanodiaryl Ethers via 1,5-Aryl Migration: Construction of 2-Arylbenzoxazoles. J Org Chem 2021; 87:1485-1492. [PMID: 34967643 DOI: 10.1021/acs.joc.1c02806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DMF-assisted radical cyclization of o-isocyanodiaryl ethers via 1,5-aryl migration has been developed for the synthesis of a series of 2-arylbenzoxazoles by the FeCl3/TBHP/Et3N catalytic system in DMF. However, N,N-dimethylbenzo[d]thiazole-2-carboxamide and N,N-dimethylbenzo[d]selenazole-2-carboxamide were obtained from the corresponding substrate 2-isocyanophenyl p-methoxyphenyl thioether and 2-isocyanodiphenyl selenoether under the same conditions. A possible mechanism may involve aryl 1,5-migration and DMF-assisted radical cyclization of o-isocyanodiaryl ethers.
Collapse
Affiliation(s)
- Sitian Yuan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xiaoling Ye
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jingyu Cai
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuxing Tan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
47
|
Joshi A, Iqbal Z, Jat JL, De SR. Pd(II)‐Catalyzed Chelation‐Induced C(sp
2
)‐H Acylation of (Hetero)Arenes Using Toluenes as Aroyl Surrogate. ChemistrySelect 2021. [DOI: 10.1002/slct.202103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asha Joshi
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Zafar Iqbal
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow 226025 India
| | - Saroj R. De
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
48
|
Dias GG, Paz ERS, Nunes MP, Carvalho RL, Rodrigues MO, Rodembusch FS, da Silva Júnior EN. Imidazoles and Oxazoles from Lapachones and Phenanthrene-9,10-dione: A Journey through their Synthesis, Biological Studies, and Optical Applications. CHEM REC 2021; 21:2702-2738. [PMID: 34170622 DOI: 10.1002/tcr.202100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Diverse structural frameworks are found in natural compounds and are well known for their chemical and biological properties; such compounds include the imidazoles and oxazoles. Researchers worldwide are continually working on the development of methods for synthesizing new molecules bearing these basic moiety and evaluating their properties and applications. To expand the knowledge related to azoles, this review summarizes important examples of imidazole and oxazole derivatives from 1,2-dicarbonyl compounds, such as lapachones and phenanthrene-9,10-diones, not only regarding their synthesis and biological applications but also their photophysical properties and uses. The data concerning the latter are particularly scarce in the literature, which leads to underestimation of the potential applications that can be envisaged for these compounds.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Marieli O Rodrigues
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Fabiano S Rodembusch
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
49
|
Synthesis of benzothiazoles using fluorescein as an efficient photocatalyst under visible light. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Liu C, Ji C, Zhou T, Hong X, Szostak M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C‐O/C‐H Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Chong‐Lei Ji
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|