1
|
Kondo Y, Tsuchitori S, Yonezawa Y, Takada T, Maruyama A, Fujitsuka M, Kawai K. Sensing the Concentration of Biological Reductants through Single-Molecule Fluorescence Blinking. J Phys Chem Lett 2025:5202-5207. [PMID: 40374319 DOI: 10.1021/acs.jpclett.5c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Fluorescence blinking is a photophysical phenomenon where a fluorophore undergoes transitions between the dark state and the fluorescent state. The addition of reductants and oxidants can induce the fluctuation of emitted photons via nonfluorescent radical ion species of fluorophores, which are formed by redox reactions. Fluorescence blinking based on redox reactions has been harnessed to sense the microenvironments surrounding the fluorophores. Here, we report a fluorescence blinking system based on redox reactions to sense the concentrations of the reductants. The excess of coexisting oxidant p-nitrophenylphosphate can generate nonfluorescent radical cations of fluorophores, and an intermolecular electron transfer reaction with reductants (ascorbic acid and glutathione) regenerates fluorophores in a reductant concentration-dependent manner. The developed fluorescence blinking system using red-emitting fluorescent dyes ATTO 647N and JF646, allowed us to detect the concentration of glutathione through single-molecule fluorescence measurements, demonstrating that fluorophore molecules can serve as sensors for the local concentration of reductants.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shotaro Tsuchitori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Yonezawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kiyohiko Kawai
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
El Bakouri O, Johnson MA, Smith JR, Pati AK, Martin MI, Blanchard SC, Ottosson H. Search for improved triplet-state quenchers for fluorescence imaging: a computational framework incorporating excited-state Baird-aromaticity. Chem Sci 2025; 16:7989-8001. [PMID: 40201165 PMCID: PMC11974263 DOI: 10.1039/d5sc01131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Fluorescence imaging is crucial for studying biology. Triplet state quenchers (TSQs), especially cyclooctatetraene (COT), can dramatically improve fluorophore performance, particularly when linked intramolecularly so as to enable "self-healing". Leveraging knowledge revealed through investigations of the self-healing mechanism enabled by COT, we computationally screened for cyclic 8π-electron species, and their annulated derivatives, with efficient triplet-triplet energy transfer potential, high photostability, and strong spin-orbit coupling (SOC) between the lowest triplet state to the singlet ground state. Here, we report theory-based analyses of a broad array of candidates that demonstrate various extents of triplet state Baird-aromaticity, indicating self-healing potential. We identify specific candidates with 7-membered ring structures predicted to exhibit favorable enhancements in fluorophore performance spanning the visible spectrum, with several possessing estimated intersystem crossing (ISC) rates up to 4 × 106 times faster than that of COT, the current benchmark for the self-healing strategy.
Collapse
Affiliation(s)
- Ouissam El Bakouri
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 6 17003 Girona Catalonia Spain
| | - Matthew A Johnson
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
| | - Joshua R Smith
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
- Department of Chemistry & Biochemistry, Cal Poly Humboldt Arcata CA 95501 USA
| | - Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
- Department of Chemistry, Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
| | - Henrik Ottosson
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
| |
Collapse
|
3
|
Palanisamy J, Rajagopal R, Alfarhan A. D-π-A Carbzazole Based Reactive Cyano-Substituted C = C bond Probe for Selective and Sensitive Detection of Hydrazine in Aqueous Media. J Fluoresc 2025; 35:3331-3342. [PMID: 38761323 DOI: 10.1007/s10895-024-03768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
This work established a newly designed and synthesized carbazole N-phenyl π-conjugated vinyl malononitrile (CPM) fluorescent sensor, which showed typical and remarkable redshift emission properties with different polarity index solvents. Investigative probe CPM is colorimetric and fluorimetric ultrafast and ultrasensitive detection of hazardous hydrazine in an aqueous medium. Furthermore, CPM showed colorimetric and fluorometric responses to interference tests with other amines and high selectivity for detecting hydrazine without interference with other amines in colorimetric and fluorimetric methods. This probe CPM for hydrazine was as low as the lower detection limit value of 2.21 × 10- 8 M. The probe CPM expects significant attention due to its simplicity and cost-effectiveness in detecting hazardous hydrazine. UV-vis, PL, NMR, and MS spectra confirmed the mechanism of probe CPM detection of hazardous hydrazine. However, making a piece test kit attractive for practical hydrazine vapor leak-detection applications is easy. This study can be applied to many pipeline gas transmission industries and transportation facility sectors.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Palani, Tamilnadu, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Krupinski-Ptaszek A, Makowski A, Mielnicka A, Pawłowska M, Tenne R, Lapkiewicz R. Super-resolution microscopy based on the inherent fluctuations of dye molecules. BIOMEDICAL OPTICS EXPRESS 2025; 16:910-921. [PMID: 40109524 PMCID: PMC11919343 DOI: 10.1364/boe.533263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.
Collapse
Affiliation(s)
| | - Adrian Makowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire Kastler Brossel, ENS-PSL Université, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris 75005, France
| | | | - Monika Pawłowska
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ron Tenne
- Department of Physics, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Radek Lapkiewicz
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Miao Y, Cheng Y, Xia Y, Hei Y, Wang W, Dai Q, Suo J, Chen C. Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget. Nat Commun 2025; 16:74. [PMID: 39746928 PMCID: PMC11697068 DOI: 10.1038/s41467-024-54652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame. In practice, MUFFLE extends the total number of observation frames by a factor of 10 or more, greatly relieving the trade-off between temporal resolution and observation length and allowing for long-term measurements even without the need for oxygen scavenging systems and triplet state quenchers.
Collapse
Affiliation(s)
- Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiao Cheng
- Department of Automation, Tsinghua University, Beijing, China
| | - Yushi Xia
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhen Hei
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Roy S, Pattanaik PP, K M N, Moitra P, Dandela R. Rational design and syntheses of naphthalimide-based fluorescent probes for targeted detection of diabetes biomarkers. Bioorg Chem 2025; 154:108013. [PMID: 39652983 DOI: 10.1016/j.bioorg.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Diabetes poses serious health risks, leading to complications such as liver damage, renal issues, and heart inflammation. Diagnosis typically relies on blood sugar level testing, but qualitative markers like obesity and fatigue often manifest only after prolonged illness. To address the delay in diagnosis, the development of fluorescent probes has drawn the key attention. This review examines the recent advancements especially on Naphthalimide (NM) based fluorescent construct for detecting biomolecular changes related to diabetes and its complications. For the first time this review discusses the synthetic methods and design principles for these probes, providing valuable insights for researchers focused on diabetes treatment and probe development, and laying the groundwork for future clinical applications of these probes in early diabetes diagnosis and intervention.
Collapse
Affiliation(s)
- Sanjukta Roy
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Piyusa Priyadarsan Pattanaik
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Neethu K M
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Gulyak EL, Brylev VA, Zhitlov MY, Komarova OA, Ustinov AV, Sapozhnikova KA, Alferova VA, Korshun VA, Gvozdev DA. Indocarbocyanine-Indodicarbocyanine (sCy3-sCy5) Absorptive Interactions in Conjugates and DNA Duplexes. Molecules 2024; 30:57. [PMID: 39795114 PMCID: PMC11721635 DOI: 10.3390/molecules30010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected. In this work, we have investigated this phenomenon in detail by studying the spectral properties of a series of sCy3-sCy5 conjugates in which the dyes are separated by linkers of various lengths, including DNA duplexes. It was found that when sCy3 and sCy5 are located in close proximity, they consistently exhibit an "abnormal" absorbance ratio. However, when the two dyes are separated by long rigid DNA-based spacers, the absorbance ratio becomes consistent with their individual molar absorption coefficients. This phenomenon should be taken into account when assessing the molar ratio of the dyes by UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Olga A. Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.B.); (M.Y.Z.); (O.A.K.); (A.V.U.); (K.A.S.); (V.A.A.)
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| |
Collapse
|
8
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
9
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Sowndarya A, Thangadurai TD, Manjubaashini N, Pavithrakumar M, Senthilkumar K, Nataraj D, Kadirvelu K, Kalagatur KN. Surface-designed AuNPs-based fluorescent probe for ultra-sensitive detection of oral poultry antibacterial drug furaltadone via intermolecular hydrogen bonding. RSC Adv 2024; 14:28224-28233. [PMID: 39234519 PMCID: PMC11372455 DOI: 10.1039/d4ra04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024] Open
Abstract
Furaltadone (FTD), a nitrofuran drug, was primarily utilized as a very effective oral veterinary antibiotic, especially in poultry production farms. As a result, FTD, a form of carcinogen, might easily enter people via the food chain, leading to fatal cancers. As a result, it is critical to develop a quick and efficient approach for detecting FTD at extremely low concentrations. Considering the aforementioned purpose, pamoic acid (PA) capped gold nanoparticles (PA@AuNPs) were synthesized in spherical morphology (size 10-15 nm) using the method of chemical reduction and used as a fluorescent probe to detect FTD. The interaction between PA@AuNPs and FTD was validated by UV-vis, XRD, and FTIR methods. Microscopic images (FESEM and HRTEM) show that PA@AuNPs have varying morphologies including rod, triangle, hexagonal, and pentagonal, and average sizes of 20-50 nm after sensing FTD. The average surface roughness of PA@AuNPs was determined to be 46.75 nm using the AFM technique. The addition of FTD (0 → 100 μM) quenched the fluorescence emission intensity of PA@AuNPs at 436 nm (λ ex 353 nm) by 4-fold. This static quenching was confirmed by the formation of a ground state complex, PA@AuNPs·FTD, between AuNPs and FTD using fluorescence lifetime analysis. The presence of an isosbestic point at 412 nm in the UV-visible titration, as well as FTIR data, further demonstrated the existence of this ground state complex. PA@AuNPs revealed high sensitivity (LoD = 9.78 nM; K a = 1.0615 × 102 M-1) to FTD in water, resulting in a decrease in predicted quantum yield (Φ F) from 3.36% to 0.35%. To establish PA@AuNPs as a first-generation fluorescence probe for real samples, FTD in blood serum was measured (LoD = 6.07 nM; K a = 1.0595 × 102 M-1). The non-toxic cytotoxicity and bioimaging in live zebrafish broadened the practical uses of PA@AuNPs. Furthermore, the surface interactions between PA@AuNPs and FTD were studied theoretically using time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d,p) level of theory to support the findings from the experiment.
Collapse
Affiliation(s)
- A Sowndarya
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - T Daniel Thangadurai
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - N Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras Chennai 600025 India
| | - M Pavithrakumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Senthilkumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - D Nataraj
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Kadirvelu
- DRDO-Life Sciences, Bharathiar University Coimbatore 641046 India
| | | |
Collapse
|
11
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
12
|
Müller M, Liu N, Gujrati V, Valavalkar A, Hartmann S, Anzenhofer P, Klemm U, Telek A, Dietzek-Ivanšić B, Hartschuh A, Ntziachristos V, Thorn-Seshold O. Merged Molecular Switches Excel as Optoacoustic Dyes: Azobenzene-Cyanines Are Loud and Photostable NIR Imaging Agents. Angew Chem Int Ed Engl 2024; 63:e202405636. [PMID: 38807438 DOI: 10.1002/anie.202405636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.
Collapse
Affiliation(s)
- Markus Müller
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nian Liu
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Abha Valavalkar
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Sean Hartmann
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - András Telek
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Achim Hartschuh
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | | |
Collapse
|
13
|
Hanczyc P. Role of Alkali Cations in DNA-Thioflavin T Interaction. J Phys Chem B 2024; 128:7520-7529. [PMID: 38833533 PMCID: PMC11317975 DOI: 10.1021/acs.jpcb.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the role of alkali cations in modulating the interaction between deoxyribonucleic acid (DNA) and Thioflavin T (ThT) in dilute and condensed phases. The emission characteristics of ThT were analyzed in the presence of double-stranded DNA and G-quadruplex structures with a focus on the effects of four cations: sodium, potassium, calcium, and magnesium. The ThT emission in double-stranded DNA was influenced by direct DNA binding and steric hindrance within the hydration shell of DNA, which was modulated by the presence of alkali cations. Lasing spectroscopy experiments further highlighted ThT sensitivity to the spatial arrangement of water molecules in the DNA hydration shell. Lasing was exclusively observed in the presence of Mg2+ in the G-quadruplex structure, suggesting that the parallel propeller configuration of G4 provides an optimal environment for ThT light amplification. This study highlights the critical role of cations in DNA-dye interactions and reaffirms the significance of ThT in biophysical studies.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| |
Collapse
|
14
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
15
|
Palanisamy J, Rajagopal R, Alfarhan A. Naphthalimide Based Optical Probe for the Detection of Hydrazine in Water and Their Application in Test Strips and Silica Supported Material. J Fluoresc 2024:10.1007/s10895-024-03796-5. [PMID: 38935307 DOI: 10.1007/s10895-024-03796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
A newly synthesized naphthalimide-based fluorophore probe NIA was used to detect hydrazine. This probe, based on the Gabriel mechanism exhibited a highly sensitive revealing of hydrazine in naked eyes colorimetric as well as fluorescent recognition against other amines in an aqueous solution in DMSO - HEPES buffer. When hydrazine hydrate was added to the probe NIA, the absorption was red shifted from 403 nm to 520 nm. The titration studies by adding hydrazine to show two apparent isosbestic points found at 358 and 450 nm, respectively. Further, investigation of emission spectra upon addition of hydrazine hydride the emission peak at 493 nm gradually decreased up to 2.4 equiv. and when increasing the hydrazine hydride concentration from 2.4 equiv. to 4.4 equiv., the fluorescence intensity increased at 530 nm. which is exhibiting a raised ratiometric emission intensity at 530 nm. Further investigation of the selectivity of probe NIA revealed colorimetric and fluorimetric responses to interferences with other test amines. 1H NMR and HR-mass proved the Gabriel mechanism bath for detecting hazardous hydrazine by probe NIA. This probe NIA allowed the rapid and ultrasensitive detection of hydrazine hydride with a low detection limit of 0.26 nM. In view of the outstanding properties, probe NIA has been effectively performed to detect hydrazine using various techniques, including a test kit, silica support, and actual environmental water samples.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Tamilnadu, Palani, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
17
|
Ludvikova L, Simon E, Deygas M, Panier T, Plamont MA, Ollion J, Tebo A, Piel M, Jullien L, Robert L, Le Saux T, Espagne A. Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity. Nat Biotechnol 2024; 42:872-876. [PMID: 37537501 PMCID: PMC11180605 DOI: 10.1038/s41587-023-01893-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.
Collapse
Affiliation(s)
- Lucie Ludvikova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Emma Simon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Mathieu Deygas
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Alison Tebo
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Matthieu Piel
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Lydia Robert
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| | - Agathe Espagne
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
18
|
Li Y, Zhang M, Tao J, Zhao L, Li Z, Yang R, Qu L. Tackling the water solubility dilemma of spiroring-closing rhodamine: Sulfone-functionalization enabling rational designing water-soluble probe for rapid visualizing mercury ions in cosmetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123999. [PMID: 38340449 DOI: 10.1016/j.saa.2024.123999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Rhodamine derivatives possessing spiroring-closing structures exhibit colorlessness, while the induction of spiroring-opening by metal ions results in notable color changes, rendering them as ideal platform for the development of functional probes with broad applications. However, the spiroring-closing form of rhodamine-based probes exhibits limited water solubility due to its neutral character, necessitating the incorporation of organic solvents to enhance solubility, which may adversely affect the natural system. Designing rhodamine probes with high solubility in both the zwitterionic and neutral form is of utmost importance and presents a significant challenge. This study presents a sulfone-rhodamine-based probe that exhibits good water solubility both in the spiroring opening and closing for detecting Hg2+. Upon the presence of Hg2+, the color undergoes a noticeable change from colorless to pink, with a response time of less than 1 min. probe 1 demonstrates an excellent linear relationship with Hg2+ concentrations within the range of 0-8 μM, and achieves a detection limit is 17.26 nM. The effectiveness of probe 1 was confirmed through the analysis of mercury ions in cosmetic products. Utilizing this probe, test paper strips have been developed to enhance the portability of Hg2+ detection naked eyes.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Laboratory of Zhongyuan Food, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingwei Zhang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Laboratory of Zhongyuan Food, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Tao
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Linping Zhao
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China; Zhengzhou Zhongdao Biotechnology Company Limited, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Laboratory of Zhongyuan Food, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Laboratory of Zhongyuan Food, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China.
| | - Lingbo Qu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Laboratory of Zhongyuan Food, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China.
| |
Collapse
|
19
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
He JL, You YX, Pei X, Jiang W, Zeng QM, Chen B, Wang YH, Chen EQ, Tang H, Gao XF, Wu DB. Tracking of Stem Cells in Chronic Liver Diseases: Current Trends and Developments. Stem Cell Rev Rep 2024; 20:447-454. [PMID: 37993759 DOI: 10.1007/s12015-023-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.
Collapse
Affiliation(s)
- Jin-Long He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Yi-Xian You
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiong Pei
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Min Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Seabury AG, Khodabocus AJ, Kogan IM, Hoy GR, DeSalvo GA, Wustholz KL. Blinking characteristics of organic fluorophores for blink-based multiplexing. Commun Chem 2024; 7:18. [PMID: 38280979 PMCID: PMC10821931 DOI: 10.1038/s42004-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Single-molecule fluorescence experiments have transformed our understanding of complex materials and biological systems. Whether single molecules are used to report on their nano-environment or provide for localization, understanding their blinking dynamics (i.e., stochastic fluctuations in emission intensity under continuous illumination) is paramount. We recently demonstrated another use for blinking dynamics called blink-based multiplexing (BBM), where individual emitters are classified using a single excitation laser based on blinking dynamics, rather than color. This study elucidates the structure-activity relationships governing BBM performance in a series of model rhodamine, BODIPY, and anthraquinone fluorophores that undergo different photo-physical and-chemical processes during blinking. Change point detection and multinomial logistic regression analyses show that BBM can leverage spectral fluctuations, electron and proton transfer kinetics, as well as photostability for molecular classification-even within the context of a shared blinking mechanism. In doing so, we demonstrate two- and three-color BBM with ≥ 93% accuracy using spectrally-overlapped fluorophores.
Collapse
Affiliation(s)
| | | | | | - Grayson R Hoy
- Chemistry Department, William & Mary, Williamsburg, VA, USA
| | | | | |
Collapse
|
22
|
Gu K, Yu C, Zhou W, Liu C. In Operando Visualization of Elementary Turnovers in Photocatalytic Organic Synthesis. J Phys Chem Lett 2024; 15:717-724. [PMID: 38214912 DOI: 10.1021/acs.jpclett.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We report the in operando visualization of the photocatalytic turnovers on single eosin Y (EY) through a redox-induced photoblinking phenomenon. The photocatalytic cyclization of thiobenzamide (TB) catalyzed by EY was investigated. The analysis of the intensity-versus-time trajectories of single EYs revealed the kinetics and dynamics of the elementary photocatalytic turnovers and the heterogeneity of the activity of individual EYs. The quenching turnover time showed a fast population and a slow population, which could be attributed to the singlet and triplet states of photoexcited EY. The slow quenching turnovers were more dominant at higher TB concentrations. The activity heterogeneity of EYs was studied over a series of reactant concentrations. Excess quenching reagent was found to decrease the percentage of active EYs. The method can be broadly applied to studying the elementary processes of photocatalytic organic reactions in operando.
Collapse
Affiliation(s)
- Kai Gu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Christina Yu
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenqiao Zhou
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Chunming Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
23
|
Lu H, Wang Y, Hill SK, Jiang H, Ke Y, Huang S, Zheng D, Perrier S, Song Q. Supra-Cyanines: Ultrabright Cyanine-Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202311224. [PMID: 37840434 DOI: 10.1002/anie.202311224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.
Collapse
Affiliation(s)
- Haicheng Lu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqian Wang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sophie K Hill
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101499, China
| | - Dunjin Zheng
- LightEdge Technologies Limited, Zhongshan, 528451, China
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
24
|
Rashi, Kaur V, Devi A, Bain D, Sen T, Patra A. Probing the Fluorescence Intermittency of Bimetallic Nanoclusters using Single-Molecule Fluorescence Spectroscopy. J Phys Chem Lett 2023; 14:10166-10172. [PMID: 37925663 DOI: 10.1021/acs.jpclett.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-molecule spectroscopy (SMS) is a unique and competent technique to study molecule dynamics and sense biomolecules precisely. The design of an ultrahigh-stability single fluorophore probe with excellent photostability and long-lived dark transient states for single-molecule fluorescence microscopy is challenging. Here, we found that the photostability of bimetallic AuAg28 nanoclusters is better than monometallic Ag29 nanoclusters. The photon antibunching experiments unveiled exceptional brightness and remarkable photostability with high survival times of up to 218 s with minimal blinking. AuAg28 NCs exhibited longer "on" times and shorter "off" times as compared to Ag29 NCs. The statistical analysis was performed on at least 100 molecules that showed single-step photobleaching and almost a 5-fold enhancement in intensity on Au doping in Ag29 NCs. The distinctive and tunable photophysics of metal NCs can offer huge potential in pushing single-molecule dynamic measurements to be carried out biologically.
Collapse
Affiliation(s)
- Rashi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Vishaldeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Aarti Devi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Dipankar Bain
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Amitava Patra
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
25
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
26
|
Gandioso A, Izquierdo-García E, Mesdom P, Arnoux P, Demeubayeva N, Burckel P, Saubaméa B, Bosch M, Frochot C, Marchán V, Gasser G. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770 nm Near-Infrared Light. Chemistry 2023; 29:e202301742. [PMID: 37548580 DOI: 10.1002/chem.202301742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Eduardo Izquierdo-García
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | | | | | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Av. Diagonal, 643, Barcelona, 08028, Spain
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54000, Nancy, France
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
27
|
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers (Basel) 2023; 15:3935. [PMID: 37835984 PMCID: PMC10575272 DOI: 10.3390/polym15193935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.
Collapse
Affiliation(s)
- José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
28
|
Gidi Y, Ramos-Sanchez J, Lovell TC, Glembockyte V, Cheah IK, Schnermann MJ, Halliwell B, Cosa G. Superior Photoprotection of Cyanine Dyes with Thio-imidazole Amino Acids. J Am Chem Soc 2023; 145:19571-19577. [PMID: 37658476 DOI: 10.1021/jacs.3c03058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Preventing fluorophore photobleaching and unwanted blinking is crucial for single-molecule fluorescence (SMF) studies. Reductants achieve photoprotection via quenching excited triplet states, yet either require counteragents or, for popular alkyl-thiols, are limited to cyanine dye Cy3 protection. Here, we provide mechanistic and imaging results showing that the naturally occurring amino acid ergothioneine and its analogue dramatically enhance photostability for Cy3, Cy5, and their conformationally restrained congeners, providing a biocompatible universal solution for demanding fluorescence imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
29
|
Yang W, Luo D, Li G, Luo Q, Banwell MG, Chen L. Synthesis of Pyridin-1(2 H)-ylacrylates and the Effects of Different Functional Groups on Their Fluorescence. Molecules 2023; 28:6511. [PMID: 37764287 PMCID: PMC10536652 DOI: 10.3390/molecules28186511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Martin G. Banwell
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
- Institute for Advanced and Applied Chemical Synthesis (IAACS), Jinan University, Guangzhou 510632, China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| |
Collapse
|
30
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
31
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
32
|
Kaur C, Kaur V, Rai S, Sharma M, Sen T. Selective recognition of the amyloid marker single thioflavin T using DNA origami-based gold nanobipyramid nanoantennas. NANOSCALE 2023; 15:6170-6178. [PMID: 36917482 DOI: 10.1039/d2nr06389a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of effective methods for the detection of protein misfolding is highly beneficial for early stage medical diagnosis and the prevention of many neurodegenerative diseases. Self-assembled plasmonic nanoantennas with precisely tunable nanogaps show extraordinary electromagnetic enhancement, generating extreme signal amplification imperative for the design of ultrasensitive biosensors for point of care applications. Herein, we report the custom arrangement of Au nanobipyramid (Au NBP) monomer and dimer nanoantennas engineered precisely based on the DNA origami technique. Furthermore, we demonstrate the SERS based detection of thioflavin T (ThT), a well-established marker for the detection of amyloid fibril formation, where G-Quadruplexes govern the site-specific attachment of ThT in the plasmonic hotspot. This is the first study for the SERS based detection of the ThT dye attached specifically using a G-Quadruplex complex. The spectroscopic signals of ThT were greatly enhanced due to the designed nanoantennas demonstrating their potential as superior SERS substrates. This study paves the way for boosting the design of next-generation diagnostic tools for the specific and precise detection of various target disease biomarkers using molecular probes.
Collapse
Affiliation(s)
- Charanleen Kaur
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab - 140306, India.
| | - Vishaldeep Kaur
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab - 140306, India.
| | - Shikha Rai
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab - 140306, India.
| | - Mridu Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab - 140306, India.
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab - 140306, India.
| |
Collapse
|
33
|
Saladin L, Breton V, Dal Pra O, Klymchenko AS, Danglot L, Didier P, Collot M. Dual-Color Photoconvertible Fluorescent Probes Based on Directed Photooxidation Induced Conversion for Bioimaging. Angew Chem Int Ed Engl 2023; 62:e202215085. [PMID: 36420823 PMCID: PMC10107923 DOI: 10.1002/anie.202215085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
We herein present a new concept to produce dual-color photoconvertible probes based on a mechanism called Directed Photooxidation Induced Conversion (DPIC). As a support of this mechanism, styryl-coumarins (SCs) bearing Aromatic Singlet Oxygen Reactive Moieties (ASORMs) like furan and pyrrole have been synthesized. SCs are bright fluorophores, which undergo a hypsochromic conversion upon visible light irradiation due to directed photooxidation of the ASORM that leads to the disruption of conjugation. SC-P, a yellow emitting probe bearing a pyrrole moiety, converts to a stable blue emitting coumarin with a 68 nm shift allowing the photoconversion and tracking of lipid droplet in live cells. This new approach might pave the way to a new generation of photoconvertible dyes for advanced bioimaging applications.
Collapse
Affiliation(s)
- Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Victor Breton
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, 102 rue de la santé, 75014, Paris, France
| | - Ophélie Dal Pra
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, 102 rue de la santé, 75014, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Sientific director of NeurImag facility, Université Paris Cité, 102 rue de la santé, 75014, Paris, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| |
Collapse
|
34
|
Wang Q, Li C, Song Y, Shi Q, Li H, Zhong H, Wang J, Hu F. Acene enlargement for absorption red-shifting and photosensitization enhancement of photosensitizers with aggregation-induced emission. Chem Sci 2023; 14:684-690. [PMID: 36741529 PMCID: PMC9847635 DOI: 10.1039/d2sc05454j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Photosensitizers with aggregation-induced emission (AIE PSs) were widely explored in photodynamic therapy. Numerous acceptors but few donors were reported to design AIE PSs. In this study, we developed a new kind of donor that can improve the comprehensive performance of AIE PSs by expanding the π extension of aromatic rings at the end of the triphenylamine group through acene enlargement. The absorption and fluorescence peaks of anthryl-substituted AIE PS are red-shifted by 29 nm and 42 nm; the photosensitization efficiency is enhanced by 1.16 times; the AIE factor is 86.1 and the fluorescence quantum yield is 9.3%. We also demonstrated that the anthryl-based AIE PS can image and ablate cancer cells well both in vitro and in vivo. The anthryl-triphenylamine donor provides an excellent option to design donor-acceptor AIE PSs with high comprehensive performance.
Collapse
Affiliation(s)
- Qiang Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Yuchen Song
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 China
| | - Qiankun Shi
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 China
| | - Heng Li
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University Guangzhou 510900 China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University Guangzhou 510900 China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 China
| |
Collapse
|
35
|
Herdly L, Tinning PW, Geiser A, Taylor H, Gould GW, van de Linde S. Benchmarking Thiolate-Driven Photoswitching of Cyanine Dyes. J Phys Chem B 2023; 127:732-741. [PMID: 36638265 PMCID: PMC9884076 DOI: 10.1021/acs.jpcb.2c06872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Carbocyanines are among the best performing dyes in single-molecule localization microscopy (SMLM), but their performance critically relies on optimized photoswitching buffers. Here, we study the versatile role of thiols in cyanine photoswitching at varying intensities generated in a single acquisition by a microelectromechanical systems (MEMS) mirror placed in the excitation path. The key metrics we have analyzed as a function of the thiolate concentration are photon budget, on-state and off-state lifetimes and the corresponding impact on image resolution. We show that thiolate acts as a concentration bandpass filter for the maximum achievable resolution and determine a minimum of ∼1 mM is necessary to facilitate SMLM measurements. We also identify a concentration bandwidth of 1-16 mM in which the photoswitching performance can be balanced between high molecular brightness and high off-time to on-time ratios. Furthermore, we monitor the performance of the popular oxygen scavenger system based on glucose and glucose oxidase over time and show simple measures to avoid acidification during prolonged measurements. Finally, the impact of buffer settings is quantitatively tested on the distribution of the glucose transporter protein 4 within the plasma membrane of adipocytes. Our work provides a general strategy for achieving optimal resolution in SMLM with relevance for the development of novel buffers and dyes.
Collapse
Affiliation(s)
- Lucas Herdly
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Peter W. Tinning
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Angéline Geiser
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Holly Taylor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Gwyn W. Gould
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Sebastian van de Linde
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom,
| |
Collapse
|
36
|
Incicco JJ, Roy D, Stuchell-Brereton MD, Soranno A. Fluorescence Correlation Spectroscopy and Phase Separation. Methods Mol Biol 2023; 2563:161-198. [PMID: 36227473 DOI: 10.1007/978-1-0716-2663-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A quantitative understanding of the forces controlling the assembly and functioning of biomolecular condensates requires the identification of phase boundaries at which condensates form as well as the determination of tie-lines. Here, we describe in detail how Fluorescence Correlation Spectroscopy (FCS) provides a versatile approach to estimate phase boundaries of single-component and multicomponent solutions as well as insights about the transport properties of the condensate.
Collapse
Affiliation(s)
- Juan Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Debjit Roy
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
37
|
Pham TTD, Phan LMT, Cho S, Park J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:707-734. [DOI: 10.1080/14686996.2022.2134976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/14/2025]
Affiliation(s)
- Thi-Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Juhyun Park
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Qi D, Zhu H, Kong Y, Shen Q. Injectable Nanomedicine-Hydrogel for NIR Light Photothermal-Chemo Combination Therapy of Tumor. Polymers (Basel) 2022; 14:polym14245547. [PMID: 36559914 PMCID: PMC9780840 DOI: 10.3390/polym14245547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Traditional hydrogels have drawbacks such as surgical implantation, large wound surfaces, and uncontrollable drug release during tumor treatment. In this paper, targeted nanomedicine has been combined with injectable hydrogel for photothermal-chemotherapy combination therapy. First, targeted nanomedicine (ICG-MTX) was fabricated by combining near-infrared (NIR) photothermal reagents (ICG) and chemotherapy drugs (MTX). The ICG-MTX was then mixed with the hydrogel precursor and radical initiator to obtain an injectable hydrogel precursor solution. Under the irradiation of NIR light, the precursor solution could release alkyl radicals, which promote the transition of the precursor solution from a liquid to a colloidal state. As a result, the nanomedicine could effectively remain at the site of the tumor and continue to be released from the hydrogel. Due to the targeted nature of MTX, the released ICG-MTX could target tumor cells and improve the accuracy of photothermal-chemo combination therapy. The results indicated that the injectable nanomedicine-hydrogel system has a favorable therapeutic effect on tumors.
Collapse
|
39
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
41
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
42
|
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Das Saha N, Pradhan S, Sasmal R, Sarkar A, Berač CM, Kölsch JC, Pahwa M, Show S, Rozenholc Y, Topçu Z, Alessandrini V, Guibourdenche J, Tsatsaris V, Gagey-Eilstein N, Agasti SS. Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. J Am Chem Soc 2022; 144:14363-14379. [PMID: 35913703 DOI: 10.1021/jacs.2c05969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
Collapse
Affiliation(s)
- Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumen Pradhan
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Aritra Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jonas C Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Yves Rozenholc
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zeki Topçu
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Vivien Alessandrini
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Vassilis Tsatsaris
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | | | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
44
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
45
|
Han Z, Xiong J, Ren TB, Zhang XB. Recent advances in dual-target-activated fluorescent probes for biosensing and bioimaging. Chem Asian J 2022; 17:e202200387. [PMID: 35579099 DOI: 10.1002/asia.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Fluorescent probes have been powerful tools for visualizing and quantifying multiple dynamic processes in living cells. However, the currently developed probes are often constructed by conjugation a fluorophore with a recognition moiety and given signal-output after triggering with one singly target interest. Compared with the single-target-activated fluorescent probes mentioned above, the dual-target-activated ones, triggering with one target under stimulus (such as photoirradiation, microenvironment) or another targets, have the advantages of advoiding nonspecific activation and "false positive" results in complicated environments. In recent years, many dual-target-activated fluorescent probes have been developed to detect various biologically relevant species. In view of the importance of a comprehensive understanding of dual-target- activated fluorescent probes, a thorough summary of this topic is urgently needed. However, no comprehensive and critical review on dual target activated fluorescent probes has been published recently. In this review, we focus on the dual-target-activated fluorescent probes and briefly outline their types and current state of development. In each type, the chemical structure, proposed responsive mechanism and application of probes are highlighted. At last, the challenges and prospective opportunities of every type were proposed.
Collapse
Affiliation(s)
- Zhixiang Han
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Jie Xiong
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| | - Xiao-Bing Zhang
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| |
Collapse
|
46
|
Prasetyanto EA, Wasisto HS, Septiadi D. Cellular lasers for cell imaging and biosensing. Acta Biomater 2022; 143:39-51. [PMID: 35314365 DOI: 10.1016/j.actbio.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
The possibility to produce laser action involving biomaterials, in particular (single) biological cells, has fostered the development of cellular lasers as a novel approach in biophotonics. In this respect, cells that are engineered to carry gain medium (e.g., fluorescent dyes or proteins) are placed inside an optical cavity (i.e., typically a sandwich of highly reflective mirrors), allowing the generation of stimulated emission upon sufficient optical pumping. In another scenario, micron-sized optical resonators supporting whispering-gallery mode (WGM) or semiconductor-based laser probes can be internalized by the cells and support light amplification. This review summarizes the recent advances in the fields of biolasers and cellular lasers, and most importantly, highlights their potential applications in the fields of in vitro and in vivo cell imaging and analysis. They include biosensing (e.g., in vitro detection of sodium chloride (NaCl) concentration), cancer cell imaging, laser-emission-based microscope, cell tracking, cell distinction study, and tissue contraction monitoring in zebrafish. Lastly, several fundamental issues in developing cellular lasers including laser probe fabrication, biocompatibility of the system, and alteration of local refractive index of optical cavities due to protein absorption or probe aggregation are described. Cellular lasers are foreseen as a promising tool to study numerous biological and biophysical phenomena. STATEMENT OF SIGNIFICANCE: Biolasers are generation of laser involving biological materials. Biomaterials, including single cells, can be engineered to incorporate laser probes or fluorescent proteins or fluorophores, and the resulting light emission can be coupled to optical resonator, allowing generation of cellular laser emission upon optical pumping. Unlike fluorescence, this stimulated emission is very sensitive and is capable of detecting small alterations in the optical property of the cells and their environment. In this review, recent development and applications of cellular lasers in the fields of in vitro and in vivo cell imaging, cell tracking, biosensing, and cell/tissue analysis are highlighted. Several challenges in developing cellular lasers including probe fabrication and biocompatibility as well as alteration of cellular environment are explained.
Collapse
Affiliation(s)
- Eko Adi Prasetyanto
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University, Jl. Pluit Raya 2, Jakarta 14440, Indonesia
| | | | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland.
| |
Collapse
|
47
|
Chen TG, Zhang XQ, Ge JF, Xu YJ, Sun R. Thiocarbonyl photosensitizer, a feasible way to eliminate the photosensitizer residues in photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120783. [PMID: 34995850 DOI: 10.1016/j.saa.2021.120783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has been successfully applied in clinical treatment several years. However, after finished treatment process the residual photosensitizer will spread throughout body, which forces patients stay in the dark room to avoid exposure in sunlight several weeks. Therefore, develop degradable photosensitizer could effectively eliminate this inconvenience. In the past, researchers have developed degradable photosensitizers based on supramolecular structure. In this study, we achieved the same effect in small molecule level. Three thiocarbonyl photosensitizers (PS) have high photogenerated 1O2 quantum yield and can be photodegraded by laser irradiation within 15 min. And due to its high phototoxicity and low toxicity, thiocarbonyl PS still maintains its high phototoxicity. Especially, mitochondrial targeting PS 1a has better properties than many BODIPY or cyanine heavy-atom-free photosensitizers. It only needs 1 μM to reduce HeLa cell activity to 30%. Finally the thiocarbonyl PS provided a convenient way to solve the PS residue problem without sacrificing PDT efficiency.
Collapse
Affiliation(s)
- Tian-Ge Chen
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Xiao-Qing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| |
Collapse
|
48
|
Ma X, Shi L, Zhang B, Liu L, Fu Y, Zhang X. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 2022; 414:4551-4573. [PMID: 35359180 DOI: 10.1007/s00216-022-03995-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.
Collapse
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| | - Buyue Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Xiufeng Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
49
|
Sivagnanam S, Das K, Basak M, Mahata T, Stewart A, Maity B, Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. NANOSCALE ADVANCES 2022; 4:1694-1706. [PMID: 36134376 PMCID: PMC9417502 DOI: 10.1039/d1na00885d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide-based nanostructures, comprised of naturally occurring amino acids, display excellent biocompatibility, biodegradability, flexible responsiveness, and synthetic feasibility and can be customized for various biomedical applications. However, the lack of inherent optical properties of peptide-based nanoparticles is a limitation on their use as imaging probes or drug delivery vehicles. To overcome this impediment, we generated Boc protected tyrosine-tryptophan dipeptide-based nanoparticles (DPNPs) with structure rigidification by Zn(ii), which shifted the peptide's intrinsic fluorescent properties from the ultraviolet to the visible range. These DPNPs are photostable, biocompatible and have visible fluorescence signals that allow for real-time monitoring of their entry into cells. We further show that two DPNPs (PS1-Zn and PS2-Zn) can encapsulate the chemotherapeutic drug doxorubicin (Dox) and facilitate intracellular drug delivery resulting in cancer cell killing actions comparable to the unencapsulated drug. Finally, we chemically modified our DPNPs with an aptamer directed toward the epithelial cell surface marker EPCAM, which improved Dox delivery to the lung cancer epithelial cell line A549. In contrast, the aptamer conjugated DPNPs failed to deliver Dox into the cardiomyocyte cell line AC16. Theoretically, this strategy could be employed in vivo to specifically deliver Dox to cancer cells while sparing the myocardium, a major source of dose-limiting adverse events in the clinic. Our work represents an important proof-of-concept exercise demonstrating that ultra-short peptide-based fluorescent nanostructures have great promise for the development of new imaging probes and targeted drug delivery vehicles.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
50
|
A FRET-based ratiometric fluorescent probe with large pseudo-stokes for the detection of mercury ion based on xanthene and naphthalimide fluorophores. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|