1
|
Zhao X, Jia S, Zhao H, Liu P, Wu Z, Tao H, Yu B, Cui B. The interaction between maize resistant starch III and Bifidobacterium adolescentis during in vitro fermentation. Food Chem 2025; 463:140968. [PMID: 39265403 DOI: 10.1016/j.foodchem.2024.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
As an alternative to traditional dietary fibers with prebiotic effects, the interaction between resistant starch III (RS3) and gut microbiota is worth exploring. In this study, the effects of RS3 on the proliferation of Bifidobacterium adolescentis (B. adolescentis) and their structural changes before and after fermentation were investigated. Autoclaved-debranched resistant starch (ADRS) demonstrated the best proliferative effect for B. adolescentis and the highest roughness (Ra = 21.90 nm; Rq = 16.00 nm). The rough surface of ADRS was the key for B. adolescentis proliferation. B. adolescentis produced an extracellular amylase to assist degradation and showed the highest activity in ADRS. Fermentation disrupted short-range ordered structure and reduced R1047 cm-1/1022 cm-1 by 20.74 % and R995 cm-1/1022 cm-1 by 30.85 %. The extracellular amylase was essential substance for ADRS degradation. These findings help optimize RS3 structure and promote the proliferation of intestinal probiotics.
Collapse
Affiliation(s)
- Xinzhu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
He S, Li L, Lei S, Su J, Zhang Y, Zeng H. Effect of lotus seed resistant starch on the bioconversion pathway of taurocholic acid by regulating the intestinal microbiota. Int J Biol Macromol 2024; 266:131174. [PMID: 38552699 DOI: 10.1016/j.ijbiomac.2024.131174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Taurocholic acid (TCA) is abundant in the rat intestine and has multiple health benefits. In the gut, intestinal microbiota can transform TCA into different bile acid (BA) derivatives, with the composition of microbiota playing a crucial role in the transformation process. This study aims to investigate how lotus seed resistant starch (LRS) can regulate microbiota to influence BA transformation. A fecal fermentation study was conducted in vitro, using either LRS, high-amylose maize starch (HAMS), or glucose (GLU) to analyze microbiota composition, BA content, and metabolic enzyme activities over different fermentation times. Bioinformatics analysis found that LRS increased the relative abundance of Enterococcus, Bacillus, and Lactobacillus, and decreased Escherichia-Shigella, compared with HAMS and GLU. LRS also reduced total BA content and accelerated the conversion of TCA to cholic acid, deoxycholic acid, and other derivatives. These results reveal that LRS and GLU tend to mediate the dehydroxy pathway, whereas HAMS tends to secrete metabolic enzymes in the epimerization pathway. Therefore, the evidence that LRS may regulate TCA bioconversion may benefit human colon health research and provide an important theoretical basis, as well as offer new concepts for the development of functional foods.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
4
|
Zeng H, He S, Xiong Z, Su J, Wang Y, Zheng B, Zhang Y. Gut microbiota-metabolic axis insight into the hyperlipidemic effect of lotus seed resistant starch in hyperlipidemic mice. Carbohydr Polym 2023; 314:120939. [PMID: 37173019 DOI: 10.1016/j.carbpol.2023.120939] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
We investigated the hyperlipidemic effect of different doses of lotus seed resistant starch (low-, medium and high-dose LRS, named as LLRS, MLRS and HLRS, respectively) in hyperlipidemic mice using gut microbiota-metabolic axis compared to high-fat diet mice (model control group, MC). Allobaculum was significantly decreased in LRS groups compared to MC group, while MLRS promoted the abundance of norank_f_Muribaculaceae and norank_f_Erysipelotrichaceae. Moreover, supplementation of LRS promoted cholic acid (CA) production and inhibited deoxycholic acid compared to MC group. Among, LLRS promoted formic acid, MLRS inhibited 20-Carboxy-leukotriene B4, while HLRS promoted 3, 4-Methyleneazelaic acid and inhibited Oleic acid and Malic acid. Finally, MLRS regulate microbiota composition, and this promoted cholesterol catabolism to form CA, which inhibited serum lipid index by gut microbiota-metabolic axis. In conclusion, MLRS can promote CA and inhibit medium chain fatty acids, so as to play the best role in lowering blood lipids in hyperlipidemia mice.
Collapse
Affiliation(s)
- Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixiao Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Li D, Wang X, Wang J, Wang M, Zhou J, Liu S, Zhao J, Li J, Wang H. Structural characterization of different starch-fatty acid complexes and their effects on human intestinal microflora. J Food Sci 2023. [PMID: 37421353 DOI: 10.1111/1750-3841.16680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 07/10/2023]
Abstract
Resistant starch type 5 (RS5), a starch-lipid complex, exhibited potential health benefits in blood glucose and insulin control due to the low digestibility. The effects of the crystalline structure of starch and chain length of fatty acid on the structure, in vitro digestibility, and fermentation ability in RS5 were investigated by compounding (maize, rice, wheat, potato, cassava, lotus, and ginkgo) of different debranched starches with 12-18C fatty acid (lauric, myristic, palmitic, and stearic acids), respectively. The complex showed a V-type structure, formed by lotus and ginkgo debranched starches, and fatty acid exhibited a higher short-range order and crystallinity, and lower in vitro digestibility than others due to the neat interior structure of more linear glucan chains. Furthermore, a fatty acid with 12C (lauric acid)-debranched starches complexes had the highest complex index among all complexes, which might be attributed to the activation energy required for complex formation increased with the lengthening of the lipid carbon chain. Therefore, the lotus starch-lauric acid complex (LS12) exhibited remarkable ability in intestinal flora fermentation to produce short-chain fatty acid (SCFAs), reducing intestinal pH, and creating a favorable environment for beneficial bacteria.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Xin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Bayannur, Inner Mongolia, China
| | - Mingchun Wang
- Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Jiaping Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Juan Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|
6
|
Chen R, Zhang C, Xu F, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis reveals gut microbiome and functional pathway alterations in response to resistant starch. Food Funct 2023. [PMID: 37194392 DOI: 10.1039/d3fo00845b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistant starch (RS) has the ability to improve the structure of the gut microbiota, regulate glucolipid metabolism and maintain the health of the human body, and has been extensively studied by many scholars in recent years. However, previous studies have provided a wide range of results on the differences in the gut microbiota after RS intake. In this article, we performed a meta-analysis of a total of 955 samples of 248 individuals from the seven studies included to compare the gut microbiota of the baseline and the end-point of RS intake. At the end-point, RS intake was related to a lower gut microbial α-diversity and higher relative abundance of Ruminococcus, Agathobacter, Faecalibacterium and Bifidobacterium, and the functional pathways of the gut microbiota related to the carbohydrate metabolism, lipid metabolism, amino acid metabolism and genetic information processing were higher. Different types of resistant starch and different populations led to varied responses on the gut microbiome. The altered gut microbiome may contribute to improve the blood glucose level and insulin resistance, which may be a potential treatment route for diabetes, obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Ruimin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fusheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Effect of lotus seed resistant starch on small intestinal flora and bile acids in hyperlipidemic rats. Food Chem 2023; 404:134599. [DOI: 10.1016/j.foodchem.2022.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
8
|
Effect of resistant starch types as a prebiotic. Appl Microbiol Biotechnol 2023; 107:491-515. [PMID: 36512032 DOI: 10.1007/s00253-022-12325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since the role of intestinal microbiota in metabolism was understood, the importance of dietary components such as fibres and prebiotics, which affect the modulation of microbiota, has been increasing day by day. While all prebiotic components are considered dietary fibre, not every dietary fibre is considered a prebiotic. While fructooligosaccharides, galactooligosaccharides, inulin, and galactans are considered prebiotics, other fermentable carbohydrates are considered candidate prebiotic components based on in vitro and preclinical studies. Resistant starch, one of such carbohydrates, is considered a potential prebiotic component when it is made resistant to digestion naturally or chemically. In this review, both in vitro and in vivo studies in which the prebiotic capacity of type II, type III, and type IV resistant starch isolated from food and produced commercially was assessed were analyzed. According to the results of current studies, certain types of resistant starch are thought to have a high prebiotic capacity, and they may be candidate prebiotic components although positive results have not been achieved in all studies. KEY POINTS: • Resistant starch is undigested in the small intestine and is fermented in the large intestine. • Resistant starch fermentation positively affects the growth of Bifidobacterium and Lactobacillus. • Resistant starch can be considered a prebiotic ingredient.
Collapse
|
9
|
Li X, Chen W, Gao J, Gao W, Zhang Y, Zeng H, Zheng B. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Resistant starches and gut microbiota. Food Chem 2022; 387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
|
11
|
Effect of Physical and Enzymatic Modifications on Composition, Properties and In Vitro Starch Digestibility of Sacred Lotus ( Nelumbo nucifera) Seed Flour. Foods 2022; 11:foods11162473. [PMID: 36010474 PMCID: PMC9407196 DOI: 10.3390/foods11162473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, native lotus seed flour (N-LSF) was modified by different methods, namely, partial gelatinization (PG), heat−moisture treatment (HMT), or pullulanase treatment (EP). Their composition, functional properties, starch composition, and estimated glycemic index (eGI) were compared. PG contained similar protein, soluble dietary fiber, and insoluble dietary fiber contents to N-LSF, while those of HMT and EP differed from their native form. PG increased rapid digestible starch (RDS) but decreased resistant starch (RS); while HMT and EP increased amylose and RS contents to 34.57−39.23% and 86.99−92.52% total starch, respectively. Such differences led to the different pasting properties of the modified flours rather than PG, which was comparable to the native flour. HMT had limited pasting properties, while EP gave the highest viscosities upon pasting. The eGI of all samples could be classified as low (<50), except that of PG, which was in the medium range (60). It was plausible that lotus seed flour modified either with HMT or EP could be used as carbohydrate source for diabetes patients or health-conscious people.
Collapse
|
12
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
13
|
Lotus seed resistant starch ameliorates high-fat diet induced hyperlipidemia by fatty acid degradation and glycerolipid metabolism pathways in mouse liver. Int J Biol Macromol 2022; 215:79-91. [PMID: 35718147 DOI: 10.1016/j.ijbiomac.2022.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
We investigated the potential efficacy and underlying mechanisms of Lotus seed Resistant Starch (LRS) for regulating hyperlipidemia in mice fed a High-fat Diet (HFD). Mouse were fed a normal diet (Normal Control group, NC group), HFD alone (MC group), HFD plus lovastatin (PC group), or HFD with low/medium/high LRS (LLRS, MLRS, and HLRS groups, respectively) for 4 weeks. LRS supplementation significantly decreased body weight and significantly reduced serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipopro-tein cholesterol compared with the MC group. LRS also significantly alleviated hepatic steatosis, especially in the MLRS group, which also showed a significantly reduced visceral fat index. LLRS supplementation significantly regulated genes associated with glycerolipid metabolism and steroid hormone biosynthesis (Lpin1 and Ugt2b38), MLRS significantly regulated genes related to fatty acid degradation, fatty acid elongation, and glycerolipid metabolism (Lpin1, Hadha, Aldh3a2, and Acox1), whereas HLRS significantly regulated genes related to fatty acid elongation and glycerolipid metabolism (Lpin1, Elovl3, Elovol5, and Agpat3). The fatty acid-degradation pathway regulated by MLRS thus exerts better control of serum lipid levels, body weight, visceral fat index, and liver steatosis in mice compared with LLRS- and HLRS-regulated pathways.
Collapse
|
14
|
|
15
|
Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
16
|
Zhang H, Qin S, Zhu Y, Zhang X, Du P, Huang Y, Michiels J, Zeng Q, Chen W. Dietary Resistant Starch From Potato Regulates Bone Mass by Modulating Gut Microbiota and Concomitant Short-Chain Fatty Acids Production in Meat Ducks. Front Nutr 2022; 9:860086. [PMID: 35369099 PMCID: PMC8970273 DOI: 10.3389/fnut.2022.860086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023] Open
Abstract
Gut microbiota interfered with using prebiotics may improve bone mass and alleviate the onset of bone problems. This study aimed to investigate the beneficial effect of resistant starch from raw potato starch (RPS) on bone health in meat ducks. Response to the dietary graded level of RPS supplementation, both tibia strength and ash were taken out linear and quadratic increase and positively correlated with increased propionate and butyrate levels in cecal content. Moreover, further outcomes of gut microbiota and micro-CT analysis showed the beneficial effect of RPS on bone mass might be associated with higher Firmicutes proportion and the production of short-chain fatty acids (SCFAs) in the cecum. Consistent with improving bone mass, SCFAs promoted phosphorus absorption, decreased the digestive tract pH, and enhanced intestinal integrity, which decreased the expression of pro-inflammatory genes in both gut and bone marrow, and consequently depressed osteoclastic bone resorption mediated by inflammatory cytokines. These findings highlight the importance of the "gut-bone" axis and provide new insight into the effect of prebiotics on bone health.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Simeng Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangli Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Du
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yanqun Huang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Quifeng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wen Chen
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Wang Z, Lin Y, Liu L, Zheng B, Zhang Y, Zeng H. Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1525-1535. [PMID: 34989559 DOI: 10.1021/acs.jafc.1c06000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim was to investigate the effect of lotus seed resistant starch (LRS) on lactic acid (LA) conversion to butyric acid (BA) fermented by rat fecal microbiota to construct an acetyl CoA pathway. According to growth curves, the microbiota compositions at 10 and 36 h were further analyzed. The microbiota in the LRS group had higher richness and diversity compared to glucose (GLU) and high amylose maize starch (HAMS). Moreover, LRS and isotope LA promoted the growth of Lactobacillus and Bifidobacterium, promoted BA production, and inhibited the growth of Escherichia-Shigella. The BUT pathway played a dominant role in three groups. At 10 h, Escherichia-Shigella and Bifidobacterium showed a negative correlation with BUT and a positive correlation with BUK, whereas Escherichia-Shigella, Allobaculum, Bifidobacterium, and Ralstonia showed a positive correlation with BUT and BUK at 36 h. [3-13C] LA was converted to [4-13C] BA by the isotope labeling technique. Finally, LRS promoted LA conversion to BA mainly by the BUT pathway in intestinal microbiota, especially including Allobaculum, Bifidobacterium, and Ralstonia.
Collapse
Affiliation(s)
- Zhiyun Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Huang Y, Yang S, Huang Z, Yuan Y, Miao S, Zhang Y, Zeng H, Zheng B, Deng K. Difference in the adhesion of Bifidobacterium breve to lotus seed resistant starch is attributable to its structural performance conferred by the preparation method. Int J Biol Macromol 2022; 195:309-316. [PMID: 34902443 DOI: 10.1016/j.ijbiomac.2021.11.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/05/2022]
Abstract
Resistant starch (RS) is a kind of important carbon source for colonic microorganisms. Its structure-function relationship is helpful to understand the mechanism of dietary nutrition in the body. In this paper, lotus seed resistant starches (LRS) prepared by microwave-power method (MP-LRS3-1 and MP-LRS3-2) and water-bath method (WB-LRS3-1 and WB-LRS3-2) were used to determine the structural changes and establish their nutritional interactions with Bifidobacterium breve. The results showed that four types all formed scale- and gully-like surface microstructures, B-type crystal structures, and lightly variable double helix structures. However, greater diffraction peak intensity was observed of MP-LRS3 at 18° and 19° compared with WB-LRS3, and higher crystallinity and tighter double helix were detected in MP-LRS3-1 than others. Meanwhile, MP-LRS3-1 showed the most effective proliferation promoting capability and highest adhesion value to B. breve. It might be related to specific surface microstructure and crystallinity differences of LRS caused by different preparing methods. There was also a positive correlation between the adhesion and the ability to promote proliferation, and it could be speculated this structural difference makes MP-LRS3-1 having highest adhesion ability and the most proliferative effect. This result can provide theoretical bases for improving the metabolism and probiotic action of RS.
Collapse
Affiliation(s)
- Yaping Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shujie Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yujie Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, PR China; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co. Cork, Ireland
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Kaibo Deng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
19
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
20
|
Lin Y, Liu L, Li L, Xu Y, Zhang Y, Zeng H. Properties and digestibility of a novel porous starch from lotus seed prepared via synergistic enzymatic treatment. Int J Biol Macromol 2022; 194:144-152. [PMID: 34863826 DOI: 10.1016/j.ijbiomac.2021.11.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/13/2023]
Abstract
The objective was to investigate the effect of synergistic enzymatic treatment on the properties and digestibility of a novel C-type lotus seed porous starch (LPS). Scanning electron microscopy showed that the densest and most complete pores were formed on the surface of LPS when the concentration of enzymes added was 1.5% (LS-1.5E). With increases in enzyme addition, the oil and water absorption of the porous starch increased and reached maxima at 1.5% of enzyme. Increased in the specific surface area, total pore volume and average pore diameter of LPS were determined by low-temperature nitrogen adsorption, while when the enzymes exceeded 1.5%, there were no significant changes. Compared to lotus seed starch (LS), the particle size of LPS also decreased. With the increases in enzyme addition, LPS exhibited higher relative crystallinity and ordering structure by XRD and FTIR. The results by SAXS confirmed that LPS had higher ordered semi-crystalline lamellar and denser lamellar structure compared to LS. Low-field 1H NMR spectroscopy indicated that the proportion of bound water in LPS increased, while the proportion of bulk water decreased. Moreover, the degree of hydrolysis of LPS was lower than that of LS, and the content of rapidly digestible starch decreased, while the content of slowly digestible starch and resistant starch increased with the enzyme addition, which was consistent with the structural properties.
Collapse
Affiliation(s)
- Yongjie Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingru Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
ZHANG Y, MA C, DOU B, ZHANG Y, GUO Y, GAO S, ZHANG Z, LIU Y, ZHANG N. Metagenomics exploring the effect of recombinant rice based on lotus seed starch-broken rice flour on intestinal flora in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.92622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu ZHANG
- Harbin University of Commerce, China; East University of Heilongjiang, China
| | - Chunmin MA
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Boxin DOU
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Yunliang ZHANG
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Yaqing GUO
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Shuai GAO
- Harbin University of Commerce, China
| | - Zhi ZHANG
- Beidahuang Rice Industry Group, China
| | - Ying LIU
- Harbin University of Commerce, China; Harbin University of Commerce, China
| | - Na ZHANG
- Harbin University of Commerce, China; Harbin University of Commerce, China
| |
Collapse
|
22
|
Li Z, Lin Z, Lu Z, Ying Z. Effects of a traditional Chinese medicine formula containing the Coix seed and Lotus seed on the intestinal morphology and microbiota of local piglets. AMB Express 2021; 11:159. [PMID: 34837549 PMCID: PMC8627543 DOI: 10.1186/s13568-021-01318-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
A traditional Chinese medicine formula based on the Coix seed and Lotus seed has been used as a general treatment of malnutrition, excessive fatigue, dysfunction of the spleen and stomach, and disorders of water transport in humans in China. However, there is limited information on its effects on the gut microbiota of piglets in vivo. In this study, the mix of Coix seed and Lotus were added the diet of forty weaned piglets (local piglets), and then evaluated it's affected on the gut microbiota of piglets and on the relations within the gut bacterial community. The results indicated that this traditional Chinese medicine formula (LM) and the extract of the traditional Chinese medicine formula (LMT) downregulated pH of succus gastricus and raised pH of the ileum, and LMT obviously decreased the feed conversion ratio. Further study showed LMT and LM also significantly increased the thick and long of gastrointestinal villi. And then, 16S ribosomal DNA sequencing revealed that groups LMT and LM have higher relative abundance of the genus Lactobacillus in the colon, succus gastricus, and jejunum, which are beneficial bacteria sold as dietary supplements to aid digestion or to augment health. Meanwhile, the relative abundance levels of Prevotellaceae, Alloprevotella, and Prevotella in the colon and Clostridium in succus gastricus and jejunum were lower. These experiments highlight the usefulness of the traditional Chinese medicine formula based on the Coix seed and Lotus seed for decreasing pH in succus gastricus, for improving the structure of intestinal villi and gut microflora, and then for achieving improvements in pig production performance.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350013, Fujian Province, China.
| | - Zhongning Lin
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350013, Fujian Province, China.
| | - Zheng Lu
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350013, Fujian Province, China
| | - Zhaoyang Ying
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350013, Fujian Province, China
| |
Collapse
|
23
|
Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Rezende ESV, Lima GC, Naves MMV. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021; 89:111217. [PMID: 33838493 DOI: 10.1016/j.nut.2021.111217] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Dietary fiber is a group of heterogeneous substances that are neither digested nor absorbed in the small intestine. Some fibers can be classified as prebiotics if they are metabolized by beneficial bacteria present in the hindgut microbiota. The aim of this review was to specify the prebiotic properties of different subgroups of dietary fibers (resistant oligosaccharides, non-starch polysaccharides, resistant starches, and associated substances) to classify them by prebiotic categories. Currently, only resistant oligosaccharides (fructans [fructooligosaccharides, oligofructose, and inulin] and galactans) are well documented as prebiotics in the literature. Other fibers are considered candidates to prebiotics or have prebiotic potential, and apparently some have no prebiotic effect on humans. This dietary fiber classification by the prebiotic categories contributes to a better understanding of these concepts in the literature, to the stimulation of the processing and consumption of foods rich in fiber and other products with prebiotic properties, and to the development of protocols and guidelines on food sources of prebiotics.
Collapse
Affiliation(s)
| | - Glaucia Carielo Lima
- School of Nutrition, Federal University of Goiás, St. Leste Universitário, Goiânia, Goiás, Brazil
| | | |
Collapse
|
25
|
Wang R, Li M, Strappe P, Zhou Z. Preparation, structural characteristics and physiological property of resistant starch. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:1-40. [PMID: 33745510 DOI: 10.1016/bs.afnr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Starch is of the most important carbohydrates in human diets for maintaining normal body's energy metabolisms. However, due to the increased number of chronic diseases worldwide, the further study of the starch property in the dietary formula becomes essential for revealing its association with preventing or intervening the occurrence of such diseases as diabetes, obesity, intestinal diseases and even cardiovascular diseases. Considering that different starches demonstrate different digestion property based on their individual structural characteristics, in particular, the existence of resistant starch (RS) attracts much more interests recently because of its being a major producer of short-chain fatty acids followed by gut microbial fermentation. Furthermore, the understanding of the interaction between RS and microbiota in the gut and its substantial influence on the regulation of diabetes, kidney, disease hypertension and others is still being under investigated. Therefore, this chapter summarized the fine structure of starch, resistant starch structural characteristics, formation and preparation of resistant starches and their corresponding physiological property.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
26
|
Huang Y, Dhital S, Liu F, Fu X, Huang Q, Zhang B. Cell wall permeability of pinto bean cotyledon cells regulate in vitro fecal fermentation and gut microbiota. Food Funct 2021; 12:6070-6082. [PMID: 34042922 DOI: 10.1039/d1fo00488c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Processing induced structural changes of whole foods for the regulation of the colonic fermentation rate and microbiota composition are least understood and often overlooked. In the present study, intact cotyledon cells from pinto beans were isolated as a whole pulse food model and subjected to a series of processing temperatures to modulate the structure, most dominantly the cell wall permeability. The cell wall permeability, observed with the diffusion of fluorescently labeled dextran (FITC-dextran), was increased as a function of the hydrothermal temperature, which is in line with the rise in the in vitro fecal fermentation rate and production of short-chain fatty acids (SCFAs) from the pinto bean cells. Further, the abundance of beneficial microbiota, such as Roseburia, Lachnospiraceae, Bacteroides, and Coprococcus, were significantly higher for cells processed at 100 °C compared to the 60 °C-treated ones. We conclude that cell wall provides an effective barrier for the microbial fermentation of intact cells. With an increase in cell wall permeability, microbes and/or microbial enzymes have easier access to intracellular starch for fermentation, leading to an increase in the production of metabolites and the abundance of beneficial microbes. Thus, desired colonic fermentation profiles can be achieved with the controlled processing of whole foods for enhanced gut health.
Collapse
Affiliation(s)
- Yanrong Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Feitong Liu
- H&H Group Global Research and Technology Center, Guangzhou 510700, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. and SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China and Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Affiliation(s)
- Dery Bede
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
28
|
Li L, Ryan J, Ning Z, Zhang X, Mayne J, Lavallée-Adam M, Stintzi A, Figeys D. A functional ecological network based on metaproteomics responses of individual gut microbiomes to resistant starches. Comput Struct Biotechnol J 2020; 18:3833-3842. [PMID: 33335682 PMCID: PMC7720074 DOI: 10.1016/j.csbj.2020.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Resistant starches (RS) are dietary compounds processed by the gut microbiota into metabolites, such as butyrate, that are beneficial to the host. The production of butyrate by the microbiome appears to be affected by the plant source and type of RS as well as the individual's microbiota. In this study, we used in vitro culture and metaproteomic methods to explore individual microbiome's functional responses to RS2 (enzymatically-resistant starch), RS3 (retrograded starch) and RS4 (chemically-modified starch). Results showed that RS2 and RS3 significantly altered the protein expressions in the individual gut microbiomes, while RS4 did not result in significant protein changes. Significantly elevated protein groups were enriched in carbohydrate metabolism and transport functions of families Eubacteriaceae, Lachnospiraceae and Ruminococcaceae. In addition, Bifidobacteriaceae was significantly increased in response to RS3. We also observed taxon-specific enrichments of starch metabolism and pentose phosphate pathways corresponding to this family. Functions related to starch utilization, ABC transporters and pyruvate metabolism pathways were consistently increased in the individual microbiomes in response to RS2 and RS3. Given that these taxon-specific responses depended on the type of carbohydrate sources, we constructed a functional ecological network to gain a system-level insight of functional organization. Our results suggest that while some microbes tend to be functionally independent, there are subsets of microbes that are functionally co-regulated by environmental changes, potentially by alterations of trophic interactions.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - James Ryan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
29
|
Lin X, Sun S, Wang B, Zheng B, Guo Z. Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. ULTRASONICS SONOCHEMISTRY 2020; 68:105199. [PMID: 32512432 DOI: 10.1016/j.ultsonch.2020.105199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
Lotus seed starch nanoparticles were prepared by ultrasonic (ultrasonic power: 200 W, 600 W, 1000 W; time: 5 min, 15 min, 25 min; liquid ratio (starch: buffer solution): 1%, 3%, 5%) assisted enzymatic hydrolysis (LS-SNPs represent lotus seed starch nanoparticles prepared by enzymatic hydrolysis and U-LS-SNPs represent lotus seed starch nanoparticles prepared by high pressure homogenization-assisted enzymatic hydrolysis). The structure and physicochemical properties of U-LS-SNPs were studied by laser particle size analysis, scanning electron microscope, X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and gel permeation chromatography system. The results of scanning electron microscopy showed that the surface of U-LS-SNPs was cracked and uneven after ultrasonic-assisted enzymolysis, and there was no significant difference from LS-SNPs. The results of particle size analysis and gel permeation chromatography showed that the particle size of U-LS-SNPs (except 5% treatment group) was smaller than that of LS-SNPs. With the increase of ultrasonic power and time, the weight average molecular gradually decreased. The results of X-ray diffraction and Raman spectroscopy showed that ultrasonic waves first acted on the amorphous region of starch granules. With the increase of ultrasonic power and time, the relative crystallinity of U-LS-SNPs increased first and then decreased. The group (600 W, 15 min, 3%) had the highest relative crystallinity. The results of nuclear magnetic resonance studies showed that the hydrogen bond and double helix structure of starch were destroyed by ultrasound, and the double helix structure strength of U-LS-SNPs was weakened compared with LS-SNPs. In summary, U-LS-SNPs with the small-sized and the highest crystallinity can be prepared under the conditions of ultrasonic power of 600 W, time of 15 min and material-liquid ratio of 3%.
Collapse
Affiliation(s)
- Xiong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Siwei Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Bailong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|
30
|
Lin S, Liu X, Cao Y, Liu S, Deng D, Zhang J, Huang G. Effects of xanthan and konjac gums on pasting, rheology, microstructure, crystallinity and in vitro digestibility of mung bean resistant starch. Food Chem 2020; 339:128001. [PMID: 33152856 DOI: 10.1016/j.foodchem.2020.128001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
Abstract
The effects of different concentrations of xanthan and konjac gums on the pasting, rheological properties, microstructure, crystallinity, and digestibility of mung bean resistant starch (MRS) were investigated. Based on the results of pasting properties, the adjunction of gums increased the peak, breakdown, and final viscosities of resistant starch. Compared with resistant starch, the addition of gum significantly increased the K value and dynamic moduli (G', G") of MRS with increasing gum concentration. This finding indicates that the mixtures had higher viscoelasticity. Mixtures with xanthan gum of MRS had larger starch particle compared with MRS, as revealed by SEM. All starches showed B and V-type crystallinity with high crystallinity. MRS had the highest summation of resistant starch (RS) and slowly digestible starch (SDS) of 71.89%. MRS had the lowest hydrolysis rate, which obviously decreased from 71.89% to 57.71% with increasing konjac gum from 0 to 0.30%.
Collapse
Affiliation(s)
- Siyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiane Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yao Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Suchen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Danwen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
Lin X, Sun S, Wang B, Zheng B, Guo Z. Structural and physicochemical properties of lotus seed starch nanoparticles. Int J Biol Macromol 2020; 157:240-246. [DOI: 10.1016/j.ijbiomac.2020.04.155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
32
|
Zhou Y, Wei Y, Yan B, Zhao S, Zhou X. Regulation of tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet. Food Sci Nutr 2020; 8:3243-3251. [PMID: 32724589 PMCID: PMC7382121 DOI: 10.1002/fsn3.1601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Resistant starch (RS) is closely related to the composition of intestinal flora. Based on many studies on the physiological functions of probiotics and short-chain fatty acids (SCFAs), it is possible that RS can improve the intestinal health of the host. Therefore, we speculated that tartary buckwheat-resistant starch (TBRS) can also regulate the intestinal flora disorder caused by high-fat diet. We randomly divided 36 SPF C57BL/6J mice into low-fat diet, high-fat diet (HF-CS), high-fat diet supplemented with TBRS (HF-BRS), and high-fat diet supplemented with corn-resistant starch (HF-CRS). We analyzed the diversity and richness of gut microbiota based on PCR and Illumina high-throughput sequencing technology. In community abundance, the HF-BRS group was significantly higher than the other three groups (p < .05). TBRS improved the gut microbiota dysbiosis, including decreasing the Firmicutes-to-Bacteroidetes ratios (F/B) and contributing to the growth of Bacteroides and Blautia as well significantly inhibiting the growth of Bifidobacterium, Faecalibaculum, and Erysipelatoclostridium. We also analyzed the production of SCFAs by GC-MS, and the concentration of total SCFAs increased in the HF-CS group. However, TBRS significantly increased the production of SCFAs, especially the propionate concentration compared with the HF-CRS group (p < .05). These results elucidated that TBRS has the potential to improve intestinal health by altering the structure of gut microbiota and increasing the production of SCFAs. Our findings have important implications for TBRS as functional food ingredient to manipulate intestinal microflora.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Yun Wei
- Department of School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Beibei Yan
- Department of School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Shen Zhao
- Department of School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| | - Xiaoli Zhou
- Department of School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiChina
| |
Collapse
|
33
|
Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. Int J Biol Macromol 2020; 151:384-393. [PMID: 32084485 DOI: 10.1016/j.ijbiomac.2020.02.197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
We investigated the effect of lotus seed resistant starch (LRS) on mice fecal microbiota tolerance to bile salt by culturing organisms compared to inulin (INU) glucose (GLU) and waxy corn starch (WAX). Operational taxonomic units (OTUs) and diversity indices in LRS and INU groups were increased in the presence of 0.03% to 0.3% bile salt, while they were decreased in GLU, and OTUs were decreased in WAX. Specifically, LRS promoted proliferation of Lactobacillus, which potentially used bile acid, and inhibited growth of the potentially harmful bacteria Enterococcus and Staphylococcus. Moreover, Lactobacillus was negatively correlated with Salinicoccus and Granulicatella in GLU, LRS and INU groups at 1.5% bile salt. With LRS, amino acid metabolic pathways were increased while pathogens causing certain diseases were decreased. LRS increased the tolerance of mice fecal microbiota to bile salt by promoting the proliferation of bacteria utilizing bile acid and inhibiting the growth of harmful bacteria.
Collapse
|
34
|
Guan N, He X, Wang S, Liu F, Huang Q, Fu X, Chen T, Zhang B. Cell Wall Integrity of Pulse Modulates the in Vitro Fecal Fermentation Rate and Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1091-1100. [PMID: 31896257 DOI: 10.1021/acs.jafc.9b06094] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical structure of type 1 resistant starch (RS 1) could influence the metabolite production and stimulate the growth of specific bacteria in the human colon. In the present study, we isolated intact cotyledon cells from pinto bean seeds as whole pulse food and RS 1 model and obtained a series of cell wall integrities through controlled enzymolysis. In vitro human fecal fermentation performance and microbiota responses were tested, and we reported that the cell wall integrity controls the in vitro fecal fermentation rate of heat-treated pinto bean cells. The concentration of butyrate produced by pinto bean cell fermentation enhanced with weakened cell wall integrity, and certain beneficial bacterial groups such as Blautia and Roseburia genera were remarkably promoted by pinto bean cells with damaged cell wall integrity. However, the intact cell sample had a shape more similar to microbiota composition with the purified cell wall polysaccharides, rather than the damaged cells.
Collapse
Affiliation(s)
- Nannan Guan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
| | - Xiaowei He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
| | - Shaokang Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
| | - Feitong Liu
- H&H Group Global Research and Technology Center , Guangzhou 510700 , China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| | - Tingting Chen
- School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
- Department of Biochemistry and Microbiology , Rutgers University , New Brunswick , New Jersey 08901-8525 , United States
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| |
Collapse
|
35
|
Yang K, Zhang Y, Cai M, Guan R, Neng J, Pi X, Sun P. In vitro prebiotic activities of oligosaccharides from the by-products in Ganoderma lucidum spore polysaccharide extraction. RSC Adv 2020; 10:14794-14802. [PMID: 35497166 PMCID: PMC9052122 DOI: 10.1039/c9ra10798c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Until recently, a variety of oligosaccharides from fruits, vegetables and mushrooms have demonstrated positive prebiotic effects. Ganoderma lucidum, a well-known traditional medicine and tonic in East Asia, has been utilized in the prevention and treatment of a broad range of illnesses. In this study, each of three oligosaccharides was obtained from the polysaccharide extraction by-products of sporoderm: the unbroken and broken spores of Ganoderma lucidum (UB-GLS, B-GLS). Their molecular weight distribution, monosaccharide composition and preliminary structures were analyzed using gel permeation chromatography (GPC), GC-MS, UV and FTIR, respectively. All of the oligosaccharides were found to exhibit prebiotic activities, evaluated by detecting growth stimulation on Lactobacillus in vitro. Among these, UB-O80 and B-O80 displayed the most significant effects (p < 0.05) in these groups, and UB-O80 showed higher resistance to hydrolysis by artificial human gastric juice compared with inulin, giving a maximum hydrolysis rate of 1.65%. Compared with inulin media, Lactobacillus also revealed high tolerance to lower pH levels and simulated gastric juices in UB-O80 and B-O80 media. Compared with a control in gut microbiota fermentation, the abundance of some beneficial bacteria increased and some harmful bacteria declined in the groups of UB-O80 and B-O80. In conclusion, the results suggest that GLS oligosaccharides could be exploited as promising prebiotics for the enhancement of human health. Until recently, a variety of oligosaccharides from fruits, vegetables and mushrooms have demonstrated positive prebiotic effects.![]()
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yajie Zhang
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Ming Cai
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Rongfa Guan
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jing Neng
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology
- Zhejiang Academy of Agricultural Science
- Hangzhou 310021
- P. R. China
| | - Peilong Sun
- College of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
36
|
Jiang F, Du C, Jiang W, Wang L, Du SK. The preparation, formation, fermentability, and applications of resistant starch. Int J Biol Macromol 2019; 150:1155-1161. [PMID: 31739041 DOI: 10.1016/j.ijbiomac.2019.10.124] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023]
Abstract
Resistant starch (RS) cannot be digested in the small intestine but can be fermented by microflora in the colon. To meet the demand for RS, effective methods and advanced equipment for preparing RS have emerged, but further development is needed. RS contents are affected by different prepared methods, starch source and certain nutrients such as protein, phenols, and hydrocolloids interacted with RS. As a beneficial fermentation substrate, RS modifies and stabilizes the intestinal flora to balance the intestinal environment and improve intestinal tract health and function. RS is also a kind of ingredient with potential physiological function, even better than that dietary fiber, but also in terms of providing various health benefits. RS has good food-processing characteristics as well and can thus be widely used in the food industry.
Collapse
Affiliation(s)
- Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunwei Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqian Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Effect of chitosan on the digestibility and molecular structural properties of lotus seed starch. Food Chem Toxicol 2019; 133:110731. [DOI: 10.1016/j.fct.2019.110731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 07/28/2019] [Indexed: 12/15/2022]
|
38
|
Zhou Y, Zhao S, Jiang Y, Wei Y, Zhou X. Regulatory Function of Buckwheat-Resistant Starch Supplementation on Lipid Profile and Gut Microbiota in Mice Fed with a High-Fat Diet. J Food Sci 2019; 84:2674-2681. [PMID: 31441507 DOI: 10.1111/1750-3841.14747] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/16/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
Buckwheat-resistant starch (BRS) has shown to be a nutrient capable of lowering cholesterol and reducing obesity. In this study, the regulatory effects of tartary buckwheat starch on blood lipid level and gut microbiota (Lactobacillus, Bifidobacterium, Enterococcus, and Escherichia coli) in mice fed with a high-fat diet was investigated. Male C57BL/6 mice were separately fed with a normal diet (CON), a high-fat diet (HFD), and high-fat diet supplemented with buckwheat-resistant starch (HFD+BRS) for 6 weeks. After the feedings, lipid profile, blood glucose, plasma levels of cytokines, short-chain fatty acid content in the colon and intestinal flora of fecal were measured. Furthermore, the antioxidant indices of the liver and duodenum tissues were measured to evaluate the antioxidant capacity of mice. Significantly reduced plasma levels of total cholesterol (TC), triglyceride (TG), glucose, and cytokines were observed in the HFD+BRS group, accompanied by an increased antioxidant capacity in the liver and duodenum. In addition, supplementation with BRS significantly inhibited the increase in plasma lipopolysaccharide, tumor necrosis factor-α, and interleukin-6 levels. Gut microbiota composition was regulated by the supplement of BRS, which promoted the growth of Lactobacillus, Bifidobacterium, and Enterococcus, as well as inhibited the growth of Escherichia coli. In contrast to the HFD group, the content of short-chain fatty acids in mice colon increased in the BRS group. In conclusion, BRS benefited the cholesterol and glucose metabolism, as well as optimized gut microbiota composition in mice fed with a high-fat diet. PRACTICAL APPLICATION: This study identified the beneficial effects of tartary buckwheat-resistant starch on the regulation of blood lipids and intestinal flora in mice fed a high-fat diet. The result of this study will provide a basis for the development of probiotic products supplemented with tartary buckwheat-resistant starch and direction for further research.
Collapse
Affiliation(s)
- Yiming Zhou
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Inst., Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Shen Zhao
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, Shanghai, 201418, China
| | - Yue Jiang
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, Shanghai, 201418, China
| | - Yun Wei
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, Shanghai, 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Inst. of Technology, Shanghai, 201418, China
| |
Collapse
|
39
|
Tanaka Y, Kimura S, Ishii Y, Tateda K. Equol inhibits growth and spore formation of Clostridioides difficile. J Appl Microbiol 2019; 127:932-940. [PMID: 31211883 DOI: 10.1111/jam.14353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
AIMS Equol is a nonsteroidal oestrogen of the isoflavone class. We investigated the antibacterial ability of equol with respect to the growth rate, toxin production and spore-forming abilities of Clostridioides difficile BI/027/NAP1. METHODS AND RESULTS Isoflavones, or female hormones, were added to bacterial culture, which was grown at 35°C. The absorbance of the culture was measured at various time points for evaluating the growth inhibition. The toxin levels in the media and morphological changes were also assessed. To evaluate the influence of equol on the sporulation of C. difficile, cells were collected at various time points from the equol-supplemented culture and the number of spores was counted. Our results show that equol inhibits bacterial growth in a concentration-dependent manner. However, it does not inhibit the production of toxin by C. difficile. Other isoflavones and female hormones did not inhibit the C. difficile growth. At the 14th day, approximately 600 spores were present in the control medium and only six were seen in the equol-containing medium. CONCLUSION Our results suggest that equol may directly inhibit the C. difficile growth in a concentration-dependent manner and spore formation. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the antimicrobial ability of equol.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - S Kimura
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Y Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - K Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Purnamasari N, Nur Faridah D, Sri Laksmi Jenie B. KARAKTERISTIK SIFAT PREBIOTIK TEPUNG DALUGA HASIL MODIFIKASI HEAT MOISTURE TREATMENT. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2019. [DOI: 10.6066/jtip.2019.30.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Ávila BP, Bragança GC, Pereira A, Gularte MA, Elias MC. Effect of Preparation and Freezing Methods on the Concentration of Resistant Starch, Antinutritional Factors and FODMAPs in Beans. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666171004145740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background:
During frozen storage, the properties of vegetables are greatly influenced by
storage conditions, especially temperature and time, even at low temperatures, suffering important
quality attributes modification as a result of the action of biochemical activity, chemical and physical
phenomena. The effect of freezing on common bean (Phaseolus vulgaris L.) and cowpea bean (Vigna
unguiculata L. Walp.) processed under domestic processing conditions was evaluated to investigate
the contents of resistant starch, oligosaccharides (raffinose and stachyose), phytate levels, protein digestibility
and the inhibitory trypsin activity.
Methods:
The beans were cooked after different pre-soaking treatments and frozen (-20°C) for one,
two and three weeks respectively.
Results:
A reduction was observed in the content of resistant starch by the use of the pre-soaking
treatments; however, it increased significantly after freezing the samples from the treatments in which
the soaking water was maintained and in which the cooked beans were frozen for 7 days. In the case
of oligosaccharide content (raffinose and stachyose), cowpea beans had higher levels than the common
beans, with changes in their values after 7 days of freezing. In the treatments in which the soaking
water was discarded before cooking, raffinose and stachyose showed variable levels. In cowpea,
the treatment in which the soaking water was not used in cooking showed a reduction in the content of
phytate at 14 days of freezing, with inhibition of trypsin at 21 days compared with the initial time. Digestibility
in all treatments was improved after freezing.
Conclusion:
The increase in resistant starch content, removal of phytate and trypsin inhibitors, and
bean flatulence factors were significant in cooked beans after freezing between 14 and 21 days.
Collapse
Affiliation(s)
- Bianca P. Ávila
- Federal University of Pelotas, Post-Graduate Program in Food Science and Technology (PPGCTA), Av. Eliseu Maciel Box 354, Capao do Leao, Brazil
| | - Guilherme C.M. Bragança
- Federal University of Pelotas, Post-Graduate Program in Food Science and Technology (PPGCTA), Av. Eliseu Maciel Box 354, Capao do Leao, Brazil
| | - Aline Pereira
- Federal University of Pelotas, Post-Graduate Program in Food Science and Technology (PPGCTA), Av. Eliseu Maciel Box 354, Capao do Leao, Brazil
| | - Márcia A. Gularte
- Federal University of Pelotas, Post-Graduate Program in Food Science and Technology (PPGCTA), Av. Eliseu Maciel Box 354, Capao do Leao, Brazil
| | - Moacir C. Elias
- Federal University of Pelotas, Post-Graduate Program in Food Science and Technology (PPGCTA), Av. Eliseu Maciel Box 354, Capao do Leao, Brazil
| |
Collapse
|
42
|
Sorndech W, Rodtong S, Blennow A, Tongta S. Impact of Resistant Maltodextrins and Resistant Starch on Human Gut Microbiota and Organic Acids Production. STARCH-STARKE 2019. [DOI: 10.1002/star.201800231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology; Institute of Agricultural Technology; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| | - Sureelak Rodtong
- School of Preclinic; Institute of Science; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| | - Andreas Blennow
- Department of Plant and Environmental Sciences; Faculty of Sciences; University of Copenhagen; C 1871 Frederiksberg Denmark
| | - Sunanta Tongta
- School of Food Technology; Institute of Agricultural Technology; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
43
|
Polysaccharide fractions from Fortunella margarita affect proliferation of Bifidobacterium adolescentis ATCC 15703 and undergo structural changes following fermentation. Int J Biol Macromol 2019; 123:1070-1078. [DOI: 10.1016/j.ijbiomac.2018.11.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
|
44
|
Tousen Y, Matsumoto Y, Nagahata Y, Kobayashi I, Inoue M, Ishimi Y. Resistant Starch Attenuates Bone Loss in Ovariectomised Mice by Regulating the Intestinal Microbiota and Bone-Marrow Inflammation. Nutrients 2019; 11:nu11020297. [PMID: 30704065 PMCID: PMC6412451 DOI: 10.3390/nu11020297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota may regulate bone metabolism by reducing levels of pro-inflammatory cytokines, and T cells in bone tissues of oestrogen-deficient mice have been reported. Resistant starch (RS) is a type of dietary fibre and results in changes in the composition of the gut microbiota. We evaluated the effects of RS supplemented in diets on intestinal microbial composition, bone mineral density, and inflammatory-gene expression in the colon and bone marrow of ovariectomised (OVX) mice. OVX mice were divided randomly into three groups: OVX control, OVX fed a 20% high amylose corn starch (HAS) diet, and OVX fed a 20% acid-hydrolysed HAS (AH-HAS) diet. HAS and AH-HAS diets contained 6.8% and 12% of RS, respectively. After 6 weeks, treatment with HAS or AH-HAS increased the abundance of Bifidobacterium spp. in faeces. The AH-HAS diet tended to upregulate mRNA expression of interleukin (IL)-10 in the colon, and downregulate expression of receptor activator of nuclear factor kappa-B ligand and IL-7 receptor genes in the bone marrow of OVX mice. AH-HAS treatment attenuated ovariectomy-induced bone loss. These findings suggest that AH-HAS might change the microbiota and immune status of the bone marrow, resulting in attenuated bone resorption in OVX mice.
Collapse
Affiliation(s)
- Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Yu Matsumoto
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | - Yuya Nagahata
- Product Development Laboratory, J-OIL MILLs Inc., 11 Kagetoricho, Totsuka-ku, Yokohama, Kanagawa 245-0064, Japan.
| | - Isao Kobayashi
- Product Development Laboratory, J-OIL MILLs Inc., 11 Kagetoricho, Totsuka-ku, Yokohama, Kanagawa 245-0064, Japan.
| | - Masahiro Inoue
- Product Development Laboratory, J-OIL MILLs Inc., 11 Kagetoricho, Totsuka-ku, Yokohama, Kanagawa 245-0064, Japan.
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| |
Collapse
|
45
|
Zheng M, You Q, Lin Y, Lan F, Luo M, Zeng H, Zheng B, Zhang Y. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. Food Chem 2019; 272:286-291. [DOI: 10.1016/j.foodchem.2018.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
|
46
|
Kim HJ, Shin SI, Lee SJ, Moon TW, Lee CJ. Screening and selection of Bifidobacterium strains isolated from human feces capable of utilizing resistant starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5901-5907. [PMID: 30009448 DOI: 10.1002/jsfa.9260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Resistant starch (RS) has been studied for its ability to serve as a substrate for the microbiota present in the human large intestine and for its beneficial physiological effects. The aim of this study was to screen and select novel strains of lactic acid bacteria (LAB) in the genus Bifidobacterium isolated from human fecal samples for further application as probiotics relying on their utilization of RS3, a prebiotic. RESULTS LAB were isolated from human fecal samples, based on their ability to utilize RS3 as a carbon source. Consequently, two LAB were identified as Bifidobacterium adolescentis based on morphological, physiological and biochemical properties, and molecular biological analysis. The RS3-utilizing ability of these isolates was shown by the rapid decrease in pH of RS3-MRS media and by the pinhole traces on the surface of RS3 particles. Isolated B. adolescentis JSC2 was shown to be negative for β-glucuronidase, suggesting that it would be safe for human use, and was found to be tolerant towards the acidic, bile-salt environment. CONCLUSION This synbiotics approach of B. adolescentis JCS2, an RS-utilizing probiotics, coupled with RS utilization, is expected to enhance RS utilization in the food industry and be beneficial for the promotion of human health. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyun-Joong Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Sang Ick Shin
- R&D Center, Korea Yakult Co. Ltd., Yongin, Republic of Korea
| | - Sang-Jun Lee
- Department of Food Nutrition, Chungkang College of Cultural Industries, Icheon, Republic of Korea
| | - Tae Wha Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
47
|
Zeng H, Zheng Y, Lin Y, Huang C, Lin S, Zheng B, Zhang Y. Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation. Food Chem 2018; 268:134-142. [DOI: 10.1016/j.foodchem.2018.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
|
48
|
Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Thakur K, Xu GY, Zhang JG, Zhang F, Hu F, Wei ZJ. In vitro Prebiotic Effects of Bamboo Shoots and Potato Peel Extracts on the Proliferation of Lactic Acid Bacteria Under Simulated GIT Conditions. Front Microbiol 2018; 9:2114. [PMID: 30233560 PMCID: PMC6133992 DOI: 10.3389/fmicb.2018.02114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
The present study explored the possible prebiotic application of potato peel and bamboo shoot extracts for the proliferation of lactic acid bacteria (LAB) from diverse niches and their tolerance ability to simulated gastrointestinal tract (GIT) conditions was also examined. Initially, the complete 16S rDNA sequencing of selected isolates revealed them as Lactobacillus paracasei (6), Staphylococcus simulans (2), and Streptococcus thermophilus (1). Higher cell densities and rapid pH change were obtained from cultured media supplemented with BS (2%) and PP (2%) as a carbon source. Their higher tolerance and the lowest reducing sugar abilities were obtained for BS at pH 2.5 and 9.0, while at pH 3.5 and 8.0 for PP. The isolates were screened for additional functional and technological properties to harvest the most appropriate starter. The selected isolates harbored promising functional properties such as amylase presence, cell surface hydrophobicity, autoaggregation, proteolytic and lipolytic activity, antifungal action, as well as exopolysaccharide production. On the basis of these attributes, microencapsulated strain K3 was found resistant to gastrointestinal conditions after 2 h, resulting in significantly (p ≤ 0.05) improved survival compared to non-capsulated strain. The current approach presents an interesting economical strategy to modulate LAB through supplementation of plant-derived carbon sources as well as to enhance their survival under GIT.
Collapse
Affiliation(s)
- Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,Anhui Huaheng Biotechnology Co., Ltd., Hefei, China
| | - Guan-Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| |
Collapse
|
50
|
Zeng H, Chen P, Chen C, Huang C, Lin S, Zheng B, Zhang Y. Structural properties and prebiotic activities of fractionated lotus seed resistant starches. Food Chem 2018; 251:33-40. [DOI: 10.1016/j.foodchem.2018.01.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|