1
|
Li Q, Jiang L, Chen N, Wang X, Yao J, Su Z, Zhao S. Anti-Melanoma Activity and Potential Mechanism of Purified Potato Protease Inhibitor. Foods 2025; 14:1026. [PMID: 40232104 PMCID: PMC11941659 DOI: 10.3390/foods14061026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Melanoma is one of the most lethal cancers originating from melanocytes. Its incidence and mortality have been rising rapidly for several decades and have posed a serious threat to human health. Current melanoma treatments are hindered by the scope of application, low efficiency, high cost, and toxic side effects. Due to their affordability and minimal side effects, natural bioactive compounds derived from plants are promising candidates for melanoma treatment. This study aims to delve into the isolation, purification, and characterization of potato proteins and to explore their potential in melanoma treatment. Two potato proteins, patatin PP-1 and aspartate protease inhibitor PP-2, were isolated and purified by a newly developed method in this work, and their physicochemical properties were systematically characterized. Both potato proteins showed great antiproliferative activities and migration inhibition effects on melanoma cells. Meanwhile, Western blotting results illustrated that they could induce endogenous cell apoptosis by regulating the Bax/Bcl-2 pathway. Notably, aspartate protease inhibitor PP-2 demonstrated the best performance in inhibiting the growth and migration of melanoma cells, which might be attributed to the combined effect of its significant antioxidative activity and the inhibition effect of certain necessary protease activities in melanoma. This study provides valuable insights for developing nutraceuticals and therapeutic strategies against melanoma, which can lead to breakthroughs in melanoma treatment.
Collapse
Affiliation(s)
- Qiuyan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Q.L.); (N.C.); (X.W.)
| | - Lu Jiang
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (J.Y.); (Z.S.)
| | - Ni Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Q.L.); (N.C.); (X.W.)
| | - Xingzhi Wang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Q.L.); (N.C.); (X.W.)
| | - Jiajun Yao
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (J.Y.); (Z.S.)
| | - Zhien Su
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (J.Y.); (Z.S.)
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Q.L.); (N.C.); (X.W.)
| |
Collapse
|
2
|
Li L, Zhu T, Wen L, Zhang T, Ren M. Biofortification of potato nutrition. J Adv Res 2024:S2090-1232(24)00487-9. [PMID: 39486784 DOI: 10.1016/j.jare.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is the fourth most important food crop after rice, wheat and maize in the world with the potential to feed the world's population, and potato is a major staple food in many countries. Currently, potato is grown in more than 100 countries and is consumed by more than 1 billion people worldwide, and the global annual output exceeds 300 million tons. With the rapid increase in the global population, potato will play a key role in food supply. These aspects have driven scientists to genetically engineer potato for yield and nutrition improvement. AIM OF REVIEW Potato is an excellent source of carbohydrates, rich in vitamins, phenols and minerals. At present, the nutritional fortification of potato has made remarkable progress, and the biomass and nutrient compositions of potato have been significantly improved through agronomic operation and genetic improvement. This review aims to summarize recent advances in the nutritional fortification of potato protein, lipid and vitamin, and provides new insights for future potato research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively summarizes the biofortification of potato five nutrients from protein, lipid, starch, vitamin to mineral. Meanwhile, we also discuss the multilayered insights in the prospects of edible potato fruit, vaccines and high-value products synthesis, and diploid potato seeds reproduction.
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Lina Wen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tanran Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Tkaczyńska A, Rytel E, Kucharska AZ, Kolniak‐Ostek J, Sokół‐Łętwska A. Stability of color and biologically active compounds of pasteurized juices from potatoes with colored flesh. Food Sci Nutr 2024; 12:4637-4655. [PMID: 39055229 PMCID: PMC11266897 DOI: 10.1002/fsn3.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Juices from potato varieties with colored flesh contain a large amount of biologically active compounds, but they tend to darken enzymatically, which deteriorates the quality. One of the factors that can improve the color of juices is pasteurization. The aim of the study was to investigate the effect of pasteurization temperature on the anthocyanin content and color of juices from potatoes with colored flesh. The research material included juices from potato varieties with red and purple flesh. Juices pasteurized at 75 °C were characterized by the lightest color and an increase in the a* (red color) and b* (yellow color) parameters compared to unpasteurized juices. Pasteurization of juices reduced the amount of glycoalkaloids by an average of 54% compared to unpasteurized juices (larger losses in the content of α-chaconine than α-solanine). Purple potato juices showed a higher content of total polyphenols by an average of 30% and anthocyanins by 70% than juices from red potatoes. Pelargonidin and its derivatives were identified in red potato juices, while petunidin and peonidin were the most abundant in purple potato juices. Higher losses of total polyphenols were found in juices from red varieties of potatoes, while anthocyanins were less thermostable in juices from varieties with purple flesh.
Collapse
Affiliation(s)
- Agnieszka Tkaczyńska
- Department of Food Storage and TechnologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - Elżbieta Rytel
- Department of Food Storage and TechnologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - Alicja Z. Kucharska
- Departament of Fruit, Vegetable and Plant Nutraceutical TechnologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - Joanna Kolniak‐Ostek
- Departament of Fruit, Vegetable and Plant Nutraceutical TechnologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - Anna Sokół‐Łętwska
- Departament of Fruit, Vegetable and Plant Nutraceutical TechnologyWrocław University of Environmental and Life SciencesWrocławPoland
| |
Collapse
|
4
|
Akhtar U, Khurshid Y, El-Aarag B, Syed B, Khan IA, Parang K, Ahmed A. Proteomic characterization and cytotoxic potential of proteins from Cuscuta (Cuscuta epithymum (L.) crude herbal product against MCF-7 human breast cancer cell line. BMC Complement Med Ther 2024; 24:195. [PMID: 38769554 PMCID: PMC11103822 DOI: 10.1186/s12906-024-04495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.
Collapse
Affiliation(s)
- Umaima Akhtar
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yamna Khurshid
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bishoy El-Aarag
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Basir Syed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Ishtiaq A Khan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Keykavous Parang
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
5
|
Bioactive Substances of Potato Juice Reveal Synergy in Cytotoxic Activity against Cancer Cells of Digestive System Studied In Vitro. Nutrients 2022; 15:nu15010114. [PMID: 36615771 PMCID: PMC9823805 DOI: 10.3390/nu15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
More and more literature data indicate the health-promoting effect of potato juice (PJ). However, to date, it has not been precisely explained which of the many compounds present in PJ exhibit biological activity. The work aimed to establish the antiproliferative effect of gastrointestinal digested PJ and the products of its processing. Fresh PJs derived from three edible potato varieties, industrial side stream resulting from starch production, partially deproteinized PJ derived from feed protein production line, and three different potato protein preparations subjected to digestion in the artificial gastrointestinal tract were used in this study. The cytotoxic potential of glycoalkaloids (GAs), phenolic acids, digested PJ, and products of PJ processing was determined in human normal and cancer cells derived from the digestive system. The results showed that GAs exhibit concentration-dependent cytotoxicity against all analyzed cell lines. In contrast, phenolic acids (caffeic, ferulic, and chlorogenic acid) do not show cytotoxicity in the applied cell lines. A correlation between cytotoxic potency and GAs content was found in all PJ products studied. The most potent effects were observed under treatment with deproteinized PJ, a product of industrial processing of PJ, distinguished by the highest effective activity among the fresh juice products studied. Moreover, this preparation revealed a favorable cytotoxicity ratio towards cancer cells compared to normal cells. Statistical analysis of the obtained results showed the synergistic effect of other bioactive substances contained in PJ and its products, which may be crucial in further research on the possibility of using PJ as a source of compounds of therapeutic importance.
Collapse
|
6
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
7
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
8
|
Sadeghi R, Fang F, Shao Y, Olsen N, Du B, Lin AHM. Eliminating protein interference when quantifying potato reducing sugars with the miniaturized Somogyi-Nelson assay. Food Chem 2021; 373:131473. [PMID: 34741968 DOI: 10.1016/j.foodchem.2021.131473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022]
Abstract
Reducing sugar (RS) quantification is essential in the potato industry because RS content plays a vital role in potato quality, acrylamide formation, post-harvest management, and new variety development. A miniaturized Somogyi-Nelson (SN) analysis can effectively and accurately quantify RS. However, soluble proteins in potatoes interfere with SN analysis. Our research goal was to develop an applicable deprotinization procedure without influencing the precision of the SN analysis. Results showed ethanol effectively removed potato proteins and, unlike other chemicals (salts, acids), ethanol did not affect SN accuracy. Protein removal also can be achieved by heating and pH adjustment, but the ethanol-based procedure provides a simpler alternative. RS content measured by the miniaturized SN assay after deproteinization by ethanol was precise and validated by HPAEC-PAD. Data from 118 potao juicies showed that a commonly used biochemical analyzer obtained a lower reducing sugar content than the deprotinization-SN assay because fructose was not identified by the biochemical analyzer. Results demonstrate the reliability of quantifying potato RS with the SN assay following the ethanol-based deproteinization.
Collapse
Affiliation(s)
- Rohollah Sadeghi
- Bi-State School of Food Science, University of Idaho, Moscow, ID 83844, USA; Bi-State School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Fang Fang
- Bi-State School of Food Science, University of Idaho, Moscow, ID 83844, USA; Bi-State School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Yijing Shao
- Bi-State School of Food Science, University of Idaho, Moscow, ID 83844, USA; Bi-State School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Nora Olsen
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID 83341, USA
| | - Bin Du
- Bi-State School of Food Science, University of Idaho, Moscow, ID 83844, USA; Bi-State School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Amy Hui-Mei Lin
- Bi-State School of Food Science, University of Idaho, Moscow, ID 83844, USA; Bi-State School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
Wang S, Liu D, Yu J, Zhang X, Zhao P, Ren Z, Sun Y, Li M, Han S. Photocatalytic Penicillin Degradation Performance and the Mechanism of the Fragmented TiO 2 Modified by CdS Quantum Dots. ACS OMEGA 2021; 6:18178-18189. [PMID: 34308049 PMCID: PMC8296572 DOI: 10.1021/acsomega.1c02079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
In this study, a novel method was adopted to construct a CdS-TiO2 heterostructure to degrade penicillin under sunlight. A potato extract was used during the synthesis process of CdS QDs as a stabilizer and a modifier. The CdS-TiO2 composite with a heterostructure delivers high photocatalytic degradation efficiency. In detail, 0.6 mg/mL of CdS-TiO2 can successfully decompose penicillin after 2 h, and 5‰ CdS-TiO2 shows the optimal degradation efficiency with the degradation rate reaching 88%. Furthermore, the underlying mechanisms of the penicillin decomposition reaction were investigated by the EPR test and trapping experiment. It was found that the high photocatalytic degradation efficiency was attributed to the heterojunction of CdS-TiO2, which successfully suppresses the recombination of the conduction band of CdS and the valence band of TiO2. Moreover, it was confirmed that the reaction is the O2-consuming process, and introducing O2 can greatly accelerate the generation of a superoxide radical during the photocatalytic degradation process, which eventually improves the degradation of penicillin and shortens the degradation time. Finally, this work provides the possible penicillin degradation pathways, which will inspire the researchers to explore and design novel photocatalysts in the field of wastewater treatment in the future.
Collapse
|
10
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
11
|
Wang S, Yu J, Zhao P, Guo S, Han S. One-Step Synthesis of Water-Soluble CdS Quantum Dots for Silver-Ion Detection. ACS OMEGA 2021; 6:7139-7146. [PMID: 33748627 PMCID: PMC7970548 DOI: 10.1021/acsomega.1c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
To realize fast synthesis of cadmium sulfide (CdS) quantum dots with a low-toxic material, a one-step synthesis method is investigated and conducted. Potato extract is used as a stabilizer and modifier, by which aqueous CdS quantum dots can be prepared at a lower temperature with a shorter time. Through systematic characterization and analysis, a green and fast synthesis mechanism is demonstrated in detail. And the nanoscale CdS quantum dots are uniform in size and dispersity. With low cost and high sensitivity, the prepared CdS quantum dots show promising application in silver-ion detection. This method shows great significance for an environmentally friendly and facile synthesis of CdS quantum dots.
Collapse
Affiliation(s)
- Shen Wang
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Yu
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Pingnan Zhao
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Siyao Guo
- School
of Civil Engineering, Qingdao University
of Technology, Qingdao 266033, China
| | - Song Han
- College
of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
12
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Patatin primary structural properties and effects on lipid metabolism. Food Chem 2020; 344:128661. [PMID: 33272761 DOI: 10.1016/j.foodchem.2020.128661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/17/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Patatin, the major protein found in potatoes, was purified and shows several isoforms. The essential amino acid content of patatin was ashighas 76%, indicating that it is a valuable protein source. Patatin was an O-linked glycoprotein that contained fucose monosaccharides, as well as mannose, rhamnose, glucose, galactose, xylose, and arabinose. Patatin had a fucosylated glycan structural feature, which strongly bound AAL (Aleuria aurantia Leukoagglutinin), a known fucose binding lectin. Moreover, thelipid metabolism regulatory effects of patatin on the fat catabolism, fat absorption, and inhibition of lipase activity were measured after high-fat feeding of zebrafish larvae. Results revealed that 37.0 μg/mL patatin promoted 23% lipid decomposition metabolism. Meanwhile patatin could inhibite lipase activity and fat absorption, whose effects accounted for half that of a positive control drug. Our findings suggest that patatin, a fucosylated glycoprotein, could potentially be used as a naturalactiveconstituent with anti-obesity effects.
Collapse
|
15
|
Wang C, Chang T, Zhang D, Ma C, Chen S, Li H. Preparation and characterization of potato protein-based microcapsules with an emphasis on the mechanism of interaction among the main components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2866-2872. [PMID: 31960976 DOI: 10.1002/jsfa.10277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Potato protein (PP) has promising potential for utilization in food applications due to its high nutritive value and functional properties. Grapeseed oil (GO) is rich in unsaturated fatty acids and antioxidant active ingredients. However, its application is limited because of low stability and high volatility. In order to overcome such problems, PP-based microcapsules encapsulating GO were produced by complex coacervation, and characterized using optical, thermodynamic and spectroscopic analyses. RESULTS Results indicated that a ratio of GO/PP of 1:2 led to the best encapsulation effect with the maximum microencapsulation efficiency and yield. Intact and nearly spherical microcapsules were observed from scanning electron microscopy images. Results of thermogravimetry demonstrated that thermal resistance was increased in the microencapsulated GO, indicating that PP-based microcapsules could be a good way to protect the thermal stability of GO. Fourier transform infrared spectra indicated that hydrogen bonding and covalent crosslinking might occur among wall materials, but a physical interaction between GO and wall materials. CONCLUSIONS PP can be successfully used to encapsulate GO when combined with chitosan, indicating that PP-based microcapsules have potential for application in encapsulating liquid oils with functional properties. A schematic diagram of possible interactions was constructed to better understand the mechanism of formation of the microcapsules. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Tong Chang
- Zibo Center for Disease Control and Prevention, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Laoling Xisen Potato Industry Group Co. Ltd, Laoling, China
| |
Collapse
|
16
|
Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105529] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Fu Y, Liu W, Soladoye OP. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Fu
- College of Food Science Southwest University No. 2 Tiansheng Road Beibei District Chongqing 400715 China
| | - Wan‐Ning Liu
- College of Food Science Northeast Agricultural University No. 600 Changjiang Road Xiangfang District Harbin 150030 China
| | - Olugbenga P. Soladoye
- Food Processing Development Centre Ministry of Agriculture and Forestry Government of Alberta Leduc AB T9E 7C5 Canada
| |
Collapse
|
18
|
Gupta UC, Gupta SC. The Important Role of Potatoes, An Underrated Vegetable Food Crop in Human Health and Nutrition. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180906113417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite frequently being described as a carbohydrate-laden, calorie-rich unimportant part of
the human diet, potatoes (Solanum tuberosum L.) are one of the most nutritive vegetable food crops in
the world and, in comparison to most other vegetables are richer in essential human nutrients. These
include proteins, starch and fibre, major, secondary and trace minerals, vitamins, antioxidants and
phytochemicals. Potatoes have an abundance of vitamin C and the mineral potassium (K) which are
vital for health. Potassium reduces the risk of Blood Pressure (BP), cardiovascular diseases (CVDs),
osteoporosis and strokes. Vitamin C helps reduce strokes and hypertension and prevents scurvy. The
predominant form of carbohydrate (CHO) in the potato is starch. A small but significant part of this
starch is resistant to digestion by enzymes in the stomach and small intestine, so it reaches the large
intestine essentially intact. This resistant starch is considered to have similar physiological effects and
health benefits as fibre. A medium size potato (148 g) contains 4 g protein and very small amount of
fat or cholesterol. The fibre content of a potato with skin is equivalent to that of many whole grain
breads and pastas. Potatoes contain rather large amount of the enzyme catalase, which converts hydrogen
peroxide into oxygen and water and thus prevents cell injury. Potatoes contain phytochemicals
such as lutein and zeaxanthin; which protect and preserve eyesight and may help reduce the risk of
macular degeneration. It is not the high Glycemic Index (GI) in potatoes or in any other food, but the
number of calories consumed from all foods that causes weight gain. Overall, potatoes are an underrated
source of essential human nutrients.
</P><P>
Potatoes also contain toxic compounds, such as α-solanine and α-chaconine which are known to induce
toxicity. These poisons cause gastrointestinal disturbances causing vomiting and diarrhea but severe
poisoning may lead to paralysis, cardiac failure and comma. Green areas in potatoes containing
chlorophyll are harmless but indicate that toxins may be present. According to the American Cancer
Society, food born toxin such as acrylamide is formed when starchy foods such as potatoes and potato
products are cooked at temperatures above 121C. However, deep frying at 170C is known to effectively
lower the level of toxic compounds, while microwaving is only somewhat effective and freezedrying
or dehydration has little effect. The highest levels of acrylamide are found in CHO-rich foods,
such as potato chips and French fries, which had been cooked at high temperatures.
Collapse
Affiliation(s)
- Umesh C. Gupta
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Subhas C. Gupta
- The Department of Plastic Surgery, Loma Linda University School of Medicine, Loma Linda, California 92354, United States
| |
Collapse
|
19
|
Glusac J, Isaschar-Ovdat S, Kukavica B, Fishman A. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Res Int 2017; 100:407-415. [DOI: 10.1016/j.foodres.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 12/29/2022]
|
20
|
Raks V, Al-Suod H, Buszewski B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 2017; 81:189-202. [PMID: 29449742 PMCID: PMC5807477 DOI: 10.1007/s10337-017-3405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.
Collapse
Affiliation(s)
- Victoria Raks
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,3Department of Analytical Chemistry, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv, 01601 Ukraine
| | - Hossam Al-Suod
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| | - Bogusław Buszewski
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| |
Collapse
|
21
|
A novel enzymatic approach based on the use of multi-enzymatic systems for the recovery of enriched protein extracts from potato pulp. Food Chem 2017; 220:313-323. [DOI: 10.1016/j.foodchem.2016.09.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022]
|
22
|
High Hydrostatic Pressure (HHP)-Induced Structural Modification of Patatin and Its Antioxidant Activities. Molecules 2017; 22:molecules22030438. [PMID: 28287443 PMCID: PMC6155260 DOI: 10.3390/molecules22030438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 11/26/2022] Open
Abstract
Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa) found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa) was extracted from potato fruit juice using ammonium sulfate precipitation (ASP) and exposed to high hydrostatic pressure (HHP) treatment (250, 350, 450, and 550 MPa). We investigated the effect of HHP treatment on the structure, composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced patatin secondary structure as compared with native patatin (NP). Additionally, significant (p < 0.05) increases in β-sheet content along with decreases in α-helix content were observed following HHP treatment. Thermal changes observed by differential scanning calorimetry (DSC) also showed a similar trend following HHP treatment; however, the enthalpy of patatin was also negatively affected by pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa. The observed physicochemical changes suggested conformational modifications in patatin induced by HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested that HHP treatment offers an effective and green process for inducing structural modifications and improving patatin functionality.
Collapse
|
23
|
Visvanathan R, Jayathilake C, Chaminda Jayawardana B, Liyanage R. Health-beneficial properties of potato and compounds of interest. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4850-4860. [PMID: 27301296 DOI: 10.1002/jsfa.7848] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/28/2015] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Potatoes have shown promising health-promoting properties in human cell culture, experimental animal and human clinical studies, including antioxidant, hypocholesterolemic, anti-inflammatory, antiobesity, anticancer and antidiabetic effects. Compounds present such as phenolics, fiber, starch and proteins as well as compounds considered antinutritional such as glycoalkaloids, lectins and proteinase inhibitors are believed to contribute to the health benefits of potatoes. However, epidemiological studies exploring the role of potatoes in human health have been inconclusive. Some studies support a protective effect of potato consumption in weight management and diabetes, while other studies demonstrate no effect and a few suggest a negative effect. As there are many biological activities attributed to the compounds present in potato, some of which could be beneficial or detrimental depending on specific circumstances, a long-term study investigating the association between potato consumption and diabetes, obesity, cardiovascular disease and cancer while controlling for fat intake is needed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Chathuni Jayathilake
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Ruvini Liyanage
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
24
|
Antioxidant mechanism of potato protein hydrolysates against in vitro oxidation of reduced glutathione. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Fu Y, Wu W, Zhu M, Xiao Z. In Silico
Assessment of the Potential of Patatin as a Precursor of Bioactive Peptides. J Food Biochem 2015. [DOI: 10.1111/jfbc.12213] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Fu
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
- Department of Food Science; Aarhus University; Blichers Allé 20, Postbox 50 Tjele 8830 Denmark
| | - Wei Wu
- College of Food Science and Nutritional Engineering; China Agricultural University; 17 Qinghua East Road, Haidian District Beijing 100083 China
| | - Minpeng Zhu
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
| | - Zhigang Xiao
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
| |
Collapse
|
26
|
Seo S, Karboune S. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12235-12243. [PMID: 25400165 DOI: 10.1021/jf502497r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine.
Collapse
Affiliation(s)
- Sooyoun Seo
- Food Science and Agricultural Chemistry Department, McGill University , 21, 111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | | |
Collapse
|
27
|
Seo S, L'Hocine L, Karboune S. Allergenicity of potato proteins and of their conjugates with galactose, galactooligosaccharides, and galactan in native, heated, and digested forms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3591-3598. [PMID: 24661320 DOI: 10.1021/jf5003073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of glycation of potato proteins on their immunoreactivity was studied by using a pool of human sera with specific IgE to potato proteins. Patatin conjugates were more immunoreactive than protease inhibitors ones. To better understand this behavior, the changes in patatin structure upon glycation and heat treatment were investigated. Patatin demonstrated an increase in total immunoreactivity when glycated with galactose and galactooligosaccharides. However, galactan conjugation to patatin resulted in a decrease in immunoreactivity by restricting IgE's access to the epitopes. Although the heat treatment resulted in a decrease in patatin's immunoreactivity through aggregation, it was less effective when patatin conjugates were used due to the decrease in aggregation and the secondary structural changes. Upon digestion, native patatin exhibited the largest decrease in immunoreactivity resulting from the disruption of both conformational and sequential epitopes. Patatin conjugates were less digested and had higher IgE-immunoreactivity as compared to the digested patatin.
Collapse
Affiliation(s)
- Sooyoun Seo
- Food Science and Agricultural Chemistry Department, McGill University , 21,111 Lakeshore, Ste-Anne de Bellevue, Quebec, Canada H9X 3 V9
| | | | | |
Collapse
|