1
|
Li Y, Cui W, Lu C, Hu X, Ma Z. The modulatory effect of pea resistant starch on hyperlipidemia in high fat diet-induced obese mice is related to their supramolecular structural features. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4633-4644. [PMID: 40165353 DOI: 10.1002/jsfa.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Resistant starch (RS) has gained attention for its potential in managing metabolic disorders. This study aimed to compare the supramolecular structure and anti-hyperlipidemia effects of RS isolated from native pea starch (NP-RS) and autoclaved pea starch (AP-RS) in high-fat diet (HFD)-induced obese mice. The structural characteristics of NP-RS and AP-RS were analyzed, and their impacts on obesity-related conditions, gene expression, and gut microbiota were evaluated. RESULTS The crystalline polymorph of AP-RS shifted from a C-type to a B-type, with significantly higher long- and short-range crystallinity and double helix levels compared to NP-RS, as determined by X-ray diffraction and solid-state carbon-13 nuclear magnetic resonance (13C-NMR) analyses. Small-angle X-ray scattering analysis demonstrated a higher α value for AP-RS, suggested enhanced structural compactness. In vivo experiments revealed that both NP-RS and AP-RS alleviated obesity-related conditions, including body weight control, oxidative stress inhibition, inflammatory response alleviation, and liver function regulation, with AP-RS exhibiting more pronounced effects. These effects were associated with the down-regulation of gene expression levels of liver type glycogen synthase-2 (GYS2), enzyme glycogenin-1 (GYG1), sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS) and the up-regulation of insulin induced gene-1 (Insig-1), Insig-2, and acetyl-CoA oxidase 1 (Acox1). Additionally, 16S rDNA sequencing analysis indicated that both NP-RS and AP-RS mitigated HFD-induced gut dysbiosis by increasing the abundance of beneficial bacteria, such as Allobaculum and Bifidobacterium. CONCLUSION The resistant characteristics of AP-RS, marked by increased crystallinity and a higher content of double helices, exhibit greater stability. This stability likely leads to differences in accessibility and fermentability between NP-RS and AP-RS substrates in vivo across various intestinal segments, resulting in different physiological responses in obese mice. These findings highlight the potential for designing novel RS-based supplements with tailored metabolic effects to promote health benefits. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenxin Cui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Cheng Lu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
İlhan İ, Ascı H, Buyukbayram Hİ, Imeci OB, Sevuk MA, Erol Z, Aksoy F, Milletsever A. The Impact of the High-Fructose Corn Syrup on Cardiac Damage via SIRT1/PGC1-α Pathway: Potential Ameliorative Effect of Selenium. Biol Trace Elem Res 2024; 202:5166-5176. [PMID: 38305829 PMCID: PMC11442503 DOI: 10.1007/s12011-024-04081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1β, and vascular endothelial growth factor (VEGF) in the CS + Se group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with HFCS consumption.
Collapse
Affiliation(s)
- İlter İlhan
- Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Ascı
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | | | - Orhan Berk Imeci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Abdulkadir Sevuk
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Zeki Erol
- Faculty of Veterinary, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatih Aksoy
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
- Faculty of Medicine, Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Adem Milletsever
- Faculty of Veterinary, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
3
|
Gong P, Long H, Guo Y, Wang S, Chen F, Chen X. Isolation, Structural Characterization, and Hypoglycemic Activities In Vitro of Polysaccharides from Pleurotus eryngii. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207140. [PMID: 36296732 PMCID: PMC9609144 DOI: 10.3390/molecules27207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Pleurotus eryngii (PE) is an edible mushroom with high nutritional value. Pleurotus eryngii polysaccharides (PEPs) are one of the main active ingredients and manifest a great variety of biological activities. This study mainly focused on the chemical characterization and biological activities of PEPs, which were separated into two fractions (named WPS and P-1). WPS is mainly dominated by β-glycosidic bonds and contains α-glycosidic bonds, and P-1 only contains α-glycosidic bonds. The molecular weights of WPS and P-1 were 4.5 × 105 Da and 2.2 × 104 Da. The result of GC indicated that two the fractions were composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose, with a ratio of 0.35:0.24:0.45:0.24:28.78:1.10 for WPS and 0.95:0.64:0.66:1.84:60.69:0.67 for P-1. The advanced structure studies indicated that the two fractions had no triple-helical structure, where WPS had a dense structure and P-1 had a loose structure. In addition, the antioxidant activity of WPS surpassed P-1, and the two fractions also exhibited a high hypoglycemic activity via inhibiting α-glycosidase activities and promoting the expression of PI3K-AKT signaling pathway based on in vitro assay and cell experiments.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Siyuan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: ; Tel.: +86-13772196479
| |
Collapse
|
4
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Fontes A, Ramalho-Santos J, Zischka H, Azul AM. Mushrooms on the plate: Trends towards NAFLD treatment, health improvement and sustainable diets. Eur J Clin Invest 2022; 52:e13667. [PMID: 34390493 DOI: 10.1111/eci.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a most important cause of liver disease. Similar to other non-communicable diseases (NCD), such as obesity and type II diabetes mellitus, NAFLD can strongly affected by diet. Diet-related NCD and malnutrition are rising in all regions being a major cause of the global health, economic and environmental burdens. Mushrooms, important dietary components since the hunter-gathering communities, have increasingly gained momentum in biomedical research and therapeutics due to their interplay in metabolism traits. We emphasize here the beneficial effects of mushroom-enriched diets on the homeostasis of lipid and sugar metabolism, including their modulation, but also interfering with insulin metabolism, gut microbiota, inflammation, oxidative stress and autophagy. In this review, we describe the cellular and molecular mechanisms at the gut-liver axis and the liver-white adipose tissue (WAT) axis, that plausibly cause such positive modulation, and discuss the potential of mushroom-enriched diets to prevent or ameliorate NAFLD and related NCD, also within the shift needed towards healthy sustainable diets.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Birhanie ZM, Xiao A, Yang D, Huang S, Zhang C, Zhao L, Liu L, Li J, Chen A, Tang H, Chang L, Pan G, Zhang C, Biswas A, Dey S, Li D, Deng Y. Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf ( Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091900. [PMID: 34579432 PMCID: PMC8466222 DOI: 10.3390/plants10091900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Kenaf (Hibiscus cannabinus L.) is a valuable plant with a potential health benefit because of its extensive bioactive compounds. Leaf extracts of 33 kenaf genotypes were investigated for their polysaccharide, total phenolic, and flavonoid content. The antioxidant properties were evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant potential (FRAP) assays. Antimicrobial capacity was also assessed against Staphylococcus aureus and Escherichia coli using a disc diffusion assay. The polysaccharide content varied from 6.45-16.12 mg glucose per g DW. Total phenolic and flavonoid content ranged from 6.03-21.15 mg GAE/g DW and 1.55-9.24 mg RE/g DW, respectively. Similarly, varied values in the range 20.55-79.99% of inhibition by DPPH, 56.28-88.30% of inhibition by ABTS and 1.26-5.08 mmol Fe2+/g DW by FRAP assays were obtained for antioxidants of the genotype extracts. Extracts from CS4 and CS2 genotypes had the highest antioxidant activities. Kenaf leaves exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Strong correlation was found between antioxidant activity with polysaccharide (DPPH, r = 0.893; ABTS, r = 0.819; FRAP, r = 0.864) and total phenolic content (DPPH, r = 0.850; ABTS, r = 0.959; FRAP, r = 0.953). The results suggested that the kenaf leaves could be used as a natural antioxidants and antimicrobial in food industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Defang Li
- Correspondence: (D.L.); (Y.D.); Tel.: +86-13873129468 (D.L.); +86-13808498640 (Y.D.)
| | - Yong Deng
- Correspondence: (D.L.); (Y.D.); Tel.: +86-13873129468 (D.L.); +86-13808498640 (Y.D.)
| |
Collapse
|
7
|
Production of antimicrobial metabolites against pathogenic bacteria and yeasts by Fusarium oxysporum in submerged culture processes. Bioprocess Biosyst Eng 2021; 44:1321-1332. [PMID: 33646354 DOI: 10.1007/s00449-021-02538-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
The antimicrobial activity of the metabolites produced by Fusarium oxysporum PR-33 in submerged culture was evaluated against Gram-positive and Gram-negative bacteria and yeasts. Metabolites were determined by HPLC-DAD-MS/MS. An extract was obtained following the removal of mycelium by centrifugation and lyophilisation of the supernatant. The compounds in this extract demonstrated broad-spectrum antimicrobial action, with rates of inhibition between 60 and 80%, depending on the species and extract tested. The major compounds of the extracts were identified as fusarinolic acid and its isomer [56.9% flask extract (FE)] and 59.2% bioreactor extract (BE), dehydrofusaric acid (35.7% FE and 31.6% BE), and fusaric acid (6.5% FE and 1.1% BE). Fusaric acid has been shown to be responsible for antimicrobial activity. The cytotoxicity of the extracts was evaluated in culture of HEK-293 and SH-SY5Y animal cells and toxicity of these extracts was verified even in the lowest tested concentrations. Therefore, our results indicate that the compounds identified exhibit potential as antimicrobial agents.
Collapse
|
8
|
Xu J, Ma Z, Li X, Liu L, Hu X. A more pronounced effect of type III resistant starch vs. type II resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics. Food Funct 2020; 11:1982-1995. [PMID: 32080691 DOI: 10.1039/c9fo02025j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The anti-obesity effects of two categories of resistant starch (RS) including RS2 (isolated from untreated lentil starch, URS) and RS3 (isolated from autoclaved and retrograded lentil starch, ARS) on mice with high-fat (HF) diet-induced obesity and the supramolecular structure-in vivo physiological functionality relationship of RS were investigated. Following 6 consecutive weeks, the obese mice in the two RS administered groups displayed suppression of body/liver weight gain and an improvement in serum glucose/lipid profile, antioxidant status, and gut microbiota structure. Compared with the URS intervention group, the ARS administration resulted in a more pronounced effect in controlling body weight, together with a more prominent reduction in blood glucose and triglyceride concentration, as well as a significant increase in the HDL-c level in obese mice. The ARS group also showed an absolute advantage over URS in suppressing the oxidative stress and regulating the liver function induced by the HF diet. Simultaneously, the administration of URS and ARS efficiently suppressed the HF-diet induced alterations in gut microbial ecology, with an obviously decreased ratio of Firmicutes to Bacteroidetes, especially for the ARS group, suggesting its beneficial role in gastrointestinal tract health. The structural characterization results revealed that ARS and URS differed significantly in their supramolecular structural characteristics, where ARS exhibited a higher proportion of crystallinity and double helix content with an X-ray diffraction pattern of a CB type crystal polymorph and a low proportion of molecular inhomogeneity. This study suggested that the difference in the anti-obesity effect of resistant starches was a consequence of the diversity in their structural features.
Collapse
Affiliation(s)
- Jiangbin Xu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | | | | | | | | |
Collapse
|
9
|
Wang J, Jia R, Celi P, Ding X, Bai S, Zeng Q, Mao X, Xu S, Zhang K. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs. Food Funct 2020; 11:534-543. [DOI: 10.1039/c9fo02157d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dietary supplementation with EGCG led to an increase in egg antioxidant activity and antioxidant chemical substances, tryptophan and carotenoid. This may be associated with its increasing effect on the oxidative stress related regulators expression (P38MAPK, Nrf2 and HO-1).
Collapse
Affiliation(s)
- Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Ru Jia
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences
- The University of Melbourne
- Parkville
- Australia
- DSM Nutritional Products
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition
- Ministry of Education
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
| |
Collapse
|
10
|
Ding X, Du J, Zhang K, Bai S, Zeng Q, Peng H, Xuan Y, Su Z, Wang J. Tandem mass tag-based quantitative proteomics analysis and gelling properties in egg albumen of laying hens feeding tea polyphenols. Poult Sci 2019; 99:430-440. [PMID: 32416828 PMCID: PMC7587682 DOI: 10.3382/ps/pez523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
The tea polyphenol (TP) can improve the egg albumen quality in laying hens; however, our understanding of the molecular mechanisms and proteomic changes in the egg albumen remains limited. A total of 720 layers (35-wk-old) were allocated into 5 treatments with TP and were added at 0 (control), 200 (TP200), 400 (TP400), 600 (TP600), and 800 (TP800) mg/kg. It showed that 400 mg/kg TP increases albumen height and Haugh unit (quadratic effect, P < 0.01), while 400 mg/kg TP decreases gel strength, hardness, gumminess, and chewiness value in a quadratic manner (P = 0.01). Eggs from TP400-fed layers had highest reducing power and oxygen radical absorbance capacity, and lowest albumen malondialdehyde content (quadratic effect, P < 0.05). Through Tandem Mass Tag-based quantitative proteomics analysis, 258 proteins were identified and 31 differentially accumulated proteins in egg white affected by 400 mg/kg TP compared to control group, with 19 proteins upregulated and 12 proteins downregulated. A total of 11 binding proteins (A0A1D5PZE3, F1NTQ2, Q7SX63, F1NRV5, P24802, A0A1L1RM02, E1BTX1, A0A1L1RMF4, A0A1D5P1N3, A0A1L1RML6, A0A1L1RQF3), 9 immune response proteins (P10184, R4GI90, P01875, Q6IV20, Q64EU6, P02701, P08110, P0CB50, A0A1D5PQ63), and 3 cell redox homeostasis proteins (P0CB50, P20136, Q8JG64) were changed in albumen of laying hens fed TP400. The differentially expressed proteins mainly involved in pyruvate metabolism, cysteine and methionine metabolism, glutathione metabolism, glycolysis, and protein processing in endoplasmic reticulum pathway. The result gathered in this study suggested that the improving mechanism of TP on albumen quality may act through regulating binding mediation, immune function, and antioxidant activity-related proteins.
Collapse
Affiliation(s)
- Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jieming Du
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuowei Su
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
12
|
Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr Polym 2019; 210:73-84. [DOI: 10.1016/j.carbpol.2019.01.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
|
13
|
Zhang B, Ren D, Zhao Y, Liu Y, Zhai X, Yang X. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota. Food Funct 2019; 10:8137-8148. [DOI: 10.1039/c9fo01890e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High fructose (HF) diet-induced liver steatosis is associated with intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xichuan Zhai
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
14
|
Ren D, Zhao Y, Zheng Q, Alim A, Yang X. Immunomodulatory effects of an acidic polysaccharide fraction from herbal Gynostemma pentaphyllum tea in RAW264.7 cells. Food Funct 2019; 10:2186-2197. [DOI: 10.1039/c9fo00219g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new acidic polysaccharide (GPTP-3) with a molecular weight of 2.49 × 106 Da was extracted and purified from Gynostemma pentaphyllum tea.
Collapse
Affiliation(s)
- Daoyuan Ren
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Quan Zheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Aamina Alim
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
15
|
Zhai X, Zhu C, Li Y, Zhang Y, Duan Z, Yang X. Optimization for pectinase-assisted extraction of polysaccharides from pomegranate peel with chemical composition and antioxidant activity. Int J Biol Macromol 2018; 109:244-253. [DOI: 10.1016/j.ijbiomac.2017.12.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
|
16
|
Ma G, Kimatu BM, Zhao L, Yang W, Pei F, Hu Q. Impacts of DietaryPleurotus eryngiiPolysaccharide on Nutrient Digestion, Metabolism, and Immune Response of the Small Intestine and Colon-An iTRAQ-Based Proteomic Analysis. Proteomics 2018; 18:e1700443. [DOI: 10.1002/pmic.201700443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/23/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P. R. China
| | - Benard Muinde Kimatu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P. R. China
- Department of Dairy and Food Science and Technology; Egerton University; Egerton Kenya
| | - Liyan Zhao
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P. R. China
| | - Wenjian Yang
- College of Food Science and Engineering; Nanjing University of Finance and Economics; Nanjing P. R. China
| | - Fei Pei
- College of Food Science and Engineering; Nanjing University of Finance and Economics; Nanjing P. R. China
| | - Qiuhui Hu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P. R. China
| |
Collapse
|
17
|
Gao J, Lin L, Sun B, Zhao M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity. Food Funct 2017; 8:3043-3052. [PMID: 28805835 DOI: 10.1039/c7fo00218a] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the structural characterization and bile acid-binding capacity of Laminaria japonica polysaccharides (LP), obtained by seven different extraction methods, were investigated. The results indicated that extraction methods exhibited significant effects on extraction yield, molecular weight, monosaccharide composition and the content of neutral sugar, fucose, uronic acid and sulfate of LP. AFM analysis indicated that LP extracted by different methods exhibited certain different, flexible and worm-like chains with many branches. Rheological measurements showed that the LP, obtained by pressurized hot water extraction and acid assisted extraction, exhibited lower viscosity due to their lower molecular weight, compared to other extracted polysaccharides. The bile acid-binding capacity of acid assisted extracted LP was significantly higher than other LP samples tested, which was probably ascribed to its highly branched structure, low molecular weight, low viscosity and abundant uronic acid and fucose in total monosaccharides. The present study provides scientific evidence and advances in the preparation technology and a method for evaluating hypolipidemic activities of L. japonica polysaccharides.
Collapse
Affiliation(s)
- Jie Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
18
|
Hu Y, Hou Z, Yi R, Wang Z, Sun P, Li G, Zhao X, Wang Q. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice. Food Funct 2017; 8:2803-2816. [PMID: 28714504 DOI: 10.1039/c7fo00359e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Zuoxu Hou
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Zhongming Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Guijie Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Qiang Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
19
|
Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang CC, Lin LJ, Chao YP, Chiang CJ, Lee MT, Chang SC, Yu B, Lee TT. Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens. Br Poult Sci 2017; 58:262-271. [DOI: 10.1080/00071668.2017.1280772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C. C. Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - L. J. Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Y. P. Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - C. J. Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - M. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - S. C. Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua, Taiwan
| | - B. Yu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - T. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 9:nu9020096. [PMID: 28146130 PMCID: PMC5331527 DOI: 10.3390/nu9020096] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/22/2017] [Indexed: 01/21/2023] Open
Abstract
As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD) is related to several pathological processes, including: (1) augmenting lipogenesis; (2) leading to mitochondrial dysfunction; (3) stimulating the activation of inflammatory pathways; and (4) causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXR)α, sterol regulatory element binding protein (SREBP)-1/1c, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), peroxisome proliferator–activated receptor α (PPARα), leptin nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), c-Jun amino terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK). Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−)-epicatechin) and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.
Collapse
Affiliation(s)
- Qian Chen
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Tingting Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Jian Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Sijian Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Haiyang Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Tao Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|
22
|
Zhai X, Ren D, Luo Y, Hu Y, Yang X. Chemical characteristics of an Ilex Kuding tea polysaccharide and its protective effects against high fructose-induced liver injury and vascular endothelial dysfunction in mice. Food Funct 2017. [DOI: 10.1039/c7fo00490g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was designed to investigate the protective effects of Ilex Kuding tea polysaccharides (IKTP) on high fructose (HF)-induced liver injury and vascular endothelial dysfunction in mice.
Collapse
Affiliation(s)
- Xichuan Zhai
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Yiyang Luo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Yuanyuan Hu
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
23
|
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2016; 91:1545-1563. [PMID: 27995280 DOI: 10.1007/s00204-016-1892-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany. .,MCR Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Dr, EH16 4UU Edinburgh, UK.
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
24
|
Chemical characterization and antioxidant activity of polysaccharide extract from spent mushroom substrate of Pleurotus eryngii. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5:E80. [PMID: 28231175 PMCID: PMC5302426 DOI: 10.3390/foods5040080] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
26
|
Hepatoprotection using Brassica rapa var. rapa L. seeds and its bioactive compound, sinapine thiocyanate, for CCl4-induced liver injury. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
27
|
Pang J, Xi C, Huang X, Cui J, Gong H, Zhang T. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice. PLoS One 2016; 11:e0146675. [PMID: 26745179 PMCID: PMC4706434 DOI: 10.1371/journal.pone.0146675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.
Collapse
Affiliation(s)
- Jing Pang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Chao Xi
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Huan Gong
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Tiemei Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Hu Y, Zhao Y, Ren D, Guo J, Luo Y, Yang X. Hypoglycemic and hepatoprotective effects ofd-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food Funct 2015; 6:3760-9. [DOI: 10.1039/c5fo00612k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
d-Chiro-Inositol-Enriched Tartary Buckwheat Extract (DTBE) prevents high fructose-induced hyperglycemia and hepatic injury in mice.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yan Zhao
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Daoyuan Ren
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jianjun Guo
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yiyang Luo
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xingbin Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
29
|
Cui F, Li Y, Yang Y, Sun W, Wu D, Ping L. Changes in chemical components and cytotoxicity at different maturity stages of Pleurotus eryngii fruiting body. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12631-12640. [PMID: 25483207 DOI: 10.1021/jf5048354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study investigated the changes of the chemical components and cytotoxicity potency at 5 developmental stages of Pleurotus eryngii fruiting body. The carbohydrate and protein contents increased along the maturity of fruiting body while fat content decreased. By comparison, the polysaccharide-protein fractions had the highest antiproliferative effect on SGC-7901 and HepG-2 cells in vitro and increasing activity with growing maturity of P. eryngii fruiting body.The maturation process increased the protein content and acid property through the enhanced relative abundance of Asp, Thr, and Glu in polysaccharide-protein fractions. Further purification and electrophoresis identified that the polysaccharide-protein PEG-1with three subunits possibly was the target cytotoxical component. Our findings proved that mature fruiting body of P. eryngii containing these polysaccharide-proteins possessed highly nutritional values and therapeutical benefits.
Collapse
Affiliation(s)
- Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | | | | | | | | | | |
Collapse
|