1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Katz RR, West JL. Tunable PEG Hydrogels for Discerning Differential Tumor Cell Response to Biomechanical Cues. Adv Biol (Weinh) 2022; 6:e2200084. [PMID: 35996804 DOI: 10.1002/adbi.202200084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Increased extracellular matrix (ECM) density in the tumor microenvironment has been shown to influence aspects of tumor progression such as proliferation and invasion. Increased matrix density means cells experience not only increased mechanical properties, but also a higher density of bioactive sites. Traditional in vitro ECM models like Matrigel and collagen do not allow these properties to be investigated independently. In this work, a poly(ethylene glycol)-based scaffold is used which modifies with integrin-binding sites for cell attachment and matrix metalloproteinase 2 and 9 sensitive sites for enzyme-mediated degradation. The polymer backbone density and binding site concentration are independently tuned and the effect each of these properties and their interaction have on the proliferation, invasion, and focal complex formation of two different tumor cell lines is evaluated. It is seen that the cell line of epithelial origin (Hs 578T, triple negative breast cancer) proliferates more, invades less, and forms more mature focal complexes in response to an increase in matrix adhesion sites. Conversely, the cell line of mesenchymal origin (HT1080, fibrosarcoma) proliferates more in 2D culture but less in 3D culture, invades less, and forms more mature focal complexes in response to an increase in matrix stiffness.
Collapse
Affiliation(s)
- Rachel R Katz
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA.,Department of Biomedical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Weakening of resistance force by cell-ECM interactions regulate cell migration directionality and pattern formation. Commun Biol 2021; 4:808. [PMID: 34183779 PMCID: PMC8239002 DOI: 10.1038/s42003-021-02350-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Collective migration of epithelial cells is a fundamental process in multicellular pattern formation. As they expand their territory, cells are exposed to various physical forces generated by cell-cell interactions and the surrounding microenvironment. While the physical stress applied by neighbouring cells has been well studied, little is known about how the niches that surround cells are spatio-temporally remodelled to regulate collective cell migration and pattern formation. Here, we analysed how the spatio-temporally remodelled extracellular matrix (ECM) alters the resistance force exerted on cells so that the cells can expand their territory. Multiple microfabrication techniques, optical tweezers, as well as mathematical models were employed to prove the simultaneous construction and breakage of ECM during cellular movement, and to show that this modification of the surrounding environment can guide cellular movement. Furthermore, by artificially remodelling the microenvironment, we showed that the directionality of collective cell migration, as well as the three-dimensional branch pattern formation of lung epithelial cells, can be controlled. Our results thus confirm that active remodelling of cellular microenvironment modulates the physical forces exerted on cells by the ECM, which contributes to the directionality of collective cell migration and consequently, pattern formation.
Collapse
|
4
|
Alteration of cell motility dynamics through collagen fiber density in photopolymerized polyethylene glycol hydrogels. Int J Biol Macromol 2020; 157:414-423. [DOI: 10.1016/j.ijbiomac.2020.04.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
|
5
|
Dorsey PJ, Rubanov M, Wang W, Schulman R. Digital Maskless Photolithographic Patterning of DNA-Functionalized Poly(ethylene glycol) Diacrylate Hydrogels with Visible Light Enabling Photodirected Release of Oligonucleotides. ACS Macro Lett 2019; 8:1133-1140. [PMID: 35619455 DOI: 10.1021/acsmacrolett.9b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soft biomaterials possessing structural hierarchy have growing applications in lab-on-chip devices, artificial tissues, and micromechanical and chemomechanical systems. The ability to integrate sets of biomolecules, specifically DNA, within hydrogel substrates at precise locations could offer the potential to form and modulate complex biochemical processes with DNA-based molecular switches in such materials and provide a means of creating dynamic spatial patterns, thus enabling spatiotemporal control of a wide array of reaction-diffusion phenomena prevalent in biological systems. Here we develop a means of photopatterning two-dimensional DNA-functionalized poly(ethylene glycol) diacrylate (PEGDA) hydrogel architectures with an aim toward these applications. While PEGDA photopatterning methods are well-established for the fabrication of hydrogels, including those containing oligonucleotides, the photoinitiators typically used have significant crosstalk with many UV-photoswitchable chemistries including nitrobenzyl derivatives. We demonstrate the digital photopatterning of PEGDA-co-DNA hydrogels using a blue light-absorbing (470 nm peak) photoinitiator system and macromer comprised of camphorquinone, triethanolamine, and poly(ethylene glycol) diacrylate (Mn = 575) that minimizes absorption in the UV-A wavelength range commonly used to trigger photoswitchable chemistries. We demonstrate this method using digital maskless photolithography within microfluidic devices that allows for the reliable construction of multidomain structures. The method achieves feature resolutions as small as 25 μm, and the resulting materials allow for lateral isotropic bulk diffusion of short single-stranded (ss) DNA oligonucleotides. Finally, we show how the use of these photoinitiators allows for orthogonal control of photopolymerization and UV-photoscission of acrylate-modified DNA containing a 1-(2-nitrophenyl) ethyl spacer to selectively cleave DNA from regions of a PEGDA substrate.
Collapse
|
6
|
Witzel II, Nasser R, Garcia-Sabaté A, Sapudom J, Ma C, Chen W, Teo JCM. Deconstructing Immune Microenvironments of Lymphoid Tissues for Reverse Engineering. Adv Healthc Mater 2019; 8:e1801126. [PMID: 30516005 DOI: 10.1002/adhm.201801126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The immune microenvironment presents a diverse panel of cues that impacts immune cell migration, organization, differentiation, and the immune response. Uniquely, both the liquid and solid phases of every specific immune niche within the body play an important role in defining cellular functions in immunity at that particular location. The in vivo immune microenvironment consists of biomechanical and biochemical signals including their gradients, surface topography, dimensionality, modes of ligand presentation, and cell-cell interactions, and the ability to recreate these immune biointerfaces in vitro can provide valuable insights into the immune system. This manuscript reviews the critical roles played by different immune cells and surveys the current progress of model systems for reverse engineering of immune microenvironments with a focus on lymphoid tissues.
Collapse
Affiliation(s)
- Ini-Isabée Witzel
- Core Technology Platforms; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Rasha Nasser
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Biomedical Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
7
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
8
|
George E, Barai A, Shirke P, Majumder A, Sen S. Engineering interfacial migration by collective tuning of adhesion anisotropy and stiffness. Acta Biomater 2018; 72:82-93. [PMID: 29574184 DOI: 10.1016/j.actbio.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/30/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023]
Abstract
Interfacial migration is central to multiple processes including morphogenesis and wound healing. However, the sensitivity of interfacial migration to properties of the interfacial microenvironment has not been adequately explored. Here, we address this question by tracking motility of 3T3 fibroblasts at the interface of two hydrogels. By sandwiching cells between two adhesive gels (composed of methacrylated gelatin) or between an adhesive and a non-adhesive gel (composed of gellan), we show that cells are more motile in case of the latter. By tuning the bulk stiffness of the gellan gel, we then show that motility is tuned in a stiffness-dependent manner. Fastest motility observed in case of the stiffest gel was associated with increased cell height, suggestive of stiffness-mediated cytoskeletal assembly. Inhibition of cell motility by contractile agonists and actin depolymerizing drugs is indicative of a mode of migration wherein cells combine contractile tractions exerted at their base and actin-based pushing forces on the top surface to propel themselves forward. Together, our results suggest that dorso-ventral adhesion anisotropy and stiffness can be collectively tuned to engineer interfacial migration. STATEMENT OF SIGNIFICANCE It is increasingly understood that cells migrate in vivo through confining spaces which typically occur as pores in the matrix and through naturally occurring interfaces that exist between neighbouring ECM fibers, or between the stroma and the vasculature. Such interfaces are also created when treating wounds on the skin surface by covering the wounds with adhesives. How multiple cues impact interfacial migration has not been adequately addressed. By studying cell migratory behaviour at the interface of two hydrogel substrates, we identify adhesivity and stiffness as two critical factors that can be tuned to maximize cell migration. We foresee a potential use of this knowledge in the design of tissue adhesives for wound healing applications.
Collapse
|
9
|
Dietrich M, Le Roy H, Brückner DB, Engelke H, Zantl R, Rädler JO, Broedersz CP. Guiding 3D cell migration in deformed synthetic hydrogel microstructures. SOFT MATTER 2018; 14:2816-2826. [PMID: 29595213 DOI: 10.1039/c8sm00018b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.
Collapse
Affiliation(s)
- Miriam Dietrich
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
11
|
Bosworth AM, Faley SL, Bellan LM, Lippmann ES. Modeling Neurovascular Disorders and Therapeutic Outcomes with Human-Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2018; 5:87. [PMID: 29441348 PMCID: PMC5797533 DOI: 10.3389/fbioe.2017.00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and endothelial cells that form the blood-brain barrier (BBB). The NVU regulates material exchange between the bloodstream and the brain parenchyma, and its dysfunction is a primary or secondary cause of many cerebrovascular and neurodegenerative disorders. As such, there are substantial research thrusts in academia and industry toward building NVU models that mimic endogenous organization and function, which could be used to better understand disease mechanisms and assess drug efficacy. Human pluripotent stem cells, which can self-renew indefinitely and differentiate to almost any cell type in the body, are attractive for these models because they can provide a limitless source of individual cells from the NVU. In addition, human-induced pluripotent stem cells (iPSCs) offer the opportunity to build NVU models with an explicit genetic background and in the context of disease susceptibility. Herein, we review how iPSCs are being used to model neurovascular and neurodegenerative diseases, with particular focus on contributions of the BBB, and discuss existing technologies and emerging opportunities to merge these iPSC progenies with biomaterials platforms to create complex NVU systems that recreate the in vivo microenvironment.
Collapse
Affiliation(s)
- Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Shannon L Faley
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Wang Z, Zhou R, Wen F, Zhang R, Ren L, Teoh SH, Hong M. Reliable laser fabrication: the quest for responsive biomaterials surface. J Mater Chem B 2018; 6:3612-3631. [DOI: 10.1039/c7tb02545a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review presents current efforts in laser fabrication, focusing on the surface features of biomaterials and their biological responses; this provides insight into the engineering of bio-responsive surfaces for future medical devices.
Collapse
Affiliation(s)
- Zuyong Wang
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Rui Zhou
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Feng Wen
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Rongkai Zhang
- The Third Affiliated Hospital of Southern Medical University
- Guangzhou 510630
- P. R. China
| | - Lei Ren
- College of Materials Science
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Swee Hin Teoh
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
- School of Chemical and Biomedical Engineering
| | - Minghui Hong
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
- Department of Electrical and Computer Engineering
| |
Collapse
|
13
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
14
|
Valentin TM, Leggett SE, Chen PY, Sodhi JK, Stephens LH, McClintock HD, Sim JY, Wong IY. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics. LAB ON A CHIP 2017; 17:3474-3488. [PMID: 28906525 PMCID: PMC5636682 DOI: 10.1039/c7lc00694b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Thomas M Valentin
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular & Nanoscale Innovation, Brown University, 184 Hope St, Box D, Providence, RI 02912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. CURRENT STEM CELL REPORTS 2017; 3:83-97. [PMID: 28596936 PMCID: PMC5445180 DOI: 10.1007/s40778-017-0081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we provide a general overview of recent bioengineering breakthroughs and enabling tools that are transforming the field of regenerative medicine (RM). We focus on five key areas that are evolving and increasingly interacting including mechanobiology, biomaterials and scaffolds, intracellular delivery strategies, imaging techniques, and computational and mathematical modeling. RECENT FINDINGS Mechanobiology plays an increasingly important role in tissue regeneration and design of therapies. This knowledge is aiding the design of more precise and effective biomaterials and scaffolds. Likewise, this enhanced precision is enabling ways to communicate with and stimulate cells down to their genome. Novel imaging technologies are permitting visualization and monitoring of all these events with increasing resolution from the research stages up to the clinic. Finally, algorithmic mining of data and soft matter physics and engineering are creating growing opportunities to predict biological scenarios, device performance, and therapeutic outcomes. SUMMARY We have found that the development of these areas is not only leading to revolutionary technological advances but also enabling a conceptual leap focused on targeting regenerative strategies in a holistic manner. This approach is bringing us ever more closer to the reality of personalized and precise RM.
Collapse
Affiliation(s)
- Alvaro Mata
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lorenzo Botto
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Nuria Gavara
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lei Su
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
16
|
Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG, Nallapatti U, Samitier J, DeForest CA, Posas F, Garcia-Cordero JL, Folch A. 3D-printing of transparent bio-microfluidic devices in PEG-DA. LAB ON A CHIP 2016; 16:2287-94. [PMID: 27217203 PMCID: PMC4930360 DOI: 10.1039/c6lc00153j] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices.
Collapse
Affiliation(s)
- Arturo Urrios
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peter M, Tayalia P. An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra08852j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this work, a poly(ethylene glycol) diacrylate (PEGDA) hydrogel is patterned with a cell adhesive ligand, that was functionalized with an acrylate group using Michael type addition reaction, thus, circumventing the need for proprietary reagents.
Collapse
Affiliation(s)
- Mathew Peter
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Prakriti Tayalia
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
18
|
Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 2015; 5:17814. [PMID: 26638791 PMCID: PMC4671067 DOI: 10.1038/srep17814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Here, we demonstrate the flexibility of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels for modeling tumor progression. The PEG hydrogels were formed using thiol-ene chemistry to incorporate a matrix metalloproteinase-degradable peptide crosslinker (KKCGGPQG↓IWGQGCKK) permissive to proteolytic remodeling and the adhesive CRGDS peptide ligand. Tumor cell function was investigated by culturing WM239A melanoma cells on PEG hydrogel surfaces or encapsulating cells within the hydrogels, and either as monocultures or indirect (non-contact) cocultures with primary human dermal fibroblasts (hDFs). WM239A cluster size and proliferation rate depended on the shear elastic modulus for cells cultured on PEG hydrogels, while growth was inhibited by coculture with hDFs regardless of hydrogel stiffness. Cluster size was also suppressed by hDFs for WM239A cells encapsulated in PEG hydrogels, which is consistent with cells seeded on top of hydrogels. Notably, encapsulated WM239A clusters and single cells adopted invasive phenotypes in the hDF coculture model, which included single cell and collective migration modes that resembled invasion from human melanoma patient-derived xenograft tumors encapsulated in equivalent PEG hydrogels. Our combined results demonstrate that peptide-functionalized PEG hydrogels provide a useful platform for investigating aspects of tumor progression in 2D and 3D microenvironments, including single cell migration, cluster growth and invasion.
Collapse
Affiliation(s)
- S P Singh
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - M P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E Y Tokuda
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Y Luo
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - R E Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - M Fujita
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America.,Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
| | - N G Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - K S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America.,Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
19
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
20
|
Rodgers ZL, Hughes RM, Doherty LM, Shell JR, Molesky BP, Brugh AM, Forbes MDE, Moran AM, Lawrence DS. B(12)-mediated, long wavelength photopolymerization of hydrogels. J Am Chem Soc 2015; 137:3372-8. [PMID: 25697508 DOI: 10.1021/jacs.5b00182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medical hydrogel applications have expanded rapidly over the past decade. Implantation in patients by noninvasive injection is preferred, but this requires hydrogel solidification from a low viscosity solution to occur in vivo via an applied stimuli. Transdermal photo-cross-linking of acrylated biopolymers with photoinitiators and lights offers a mild, spatiotemporally controlled solidification trigger. However, the current short wavelength initiators limit curing depth and efficacy because they do not absorb within the optical window of tissue (600-900 nm). As a solution to the current wavelength limitations, we report the development of a red light responsive initiator capable of polymerizing a range of acrylated monomers. Photoactivation occurs within a range of skin type models containing high biochromophore concentrations.
Collapse
Affiliation(s)
- Zachary L Rodgers
- Department of Chemistry, ‡Division of Chemical Biology and Medicinal Chemistry, and § Department of Pharmacology, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
22
|
Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 2015; 13:68-77. [PMID: 25463502 PMCID: PMC4293228 DOI: 10.1016/j.actbio.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
This paper describes a novel technique for fabricating spatially defined cell-laden collagen hydrogels, using patterned, non-adhesive polyacrylamide-coated polydimethylsiloxane (PDMS) surfaces as a template. Precisely patterned embedded co-cultures of breast cancer cells and chemokine-producing cells generated with this technique revealed matrix-dependent and chemokine isoform-dependent migration of cancer cells. CXCL12 chemokine-secreting cells induce significantly more chemotaxis of cancer cells when the 3-D extracellular matrix (ECM) includes components that bind the secreted CXCL12 chemokines. Experimental observations using cells that secrete CXCL12 isoforms with different matrix affinities together with computational simulations show that stronger ligand-matrix interactions sharpen chemoattractant gradients, leading to increased chemotaxis of the CXCL12 gradient-sensing CXCR4 receptor-expressing (CXCR4+) cells patterned in the hydrogel. These results extend our recent report on CXCL12 isoform-dependent chemotaxis studies from 2-D to 3-D environments and additionally reveal the important role of ECM composition. The developed technology is simple, versatile and robust; and as chemoattractant-matrix interactions are common, the methods described here should be broadly applicable for study of physiological migration of many different cell types in response to a variety of chemoattractants.
Collapse
Affiliation(s)
- Taisuke Kojima
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Shuichi Takayama
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Simona BR, Hirt L, Demkó L, Zambelli T, Vörös J, Ehrbar M, Milleret V. Density gradients at hydrogel interfaces for enhanced cell penetration. Biomater Sci 2015. [DOI: 10.1039/c4bm00416g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interfacial crosslinking density gradients represent a simple strategy to overcome the challenge of the limited penetration of cells seeded on the surface of hydrogels. The strategy here-presented can be used both when cells need to be seeded after hydrogel processing and to enable cell migration through hydrogel elements additively manufactured.
Collapse
Affiliation(s)
- B. R. Simona
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- University and ETH Zurich
- Zurich
- Switzerland
| | - L. Hirt
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- University and ETH Zurich
- Zurich
- Switzerland
| | - L. Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- University and ETH Zurich
- Zurich
- Switzerland
| | - T. Zambelli
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- University and ETH Zurich
- Zurich
- Switzerland
| | - J. Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- University and ETH Zurich
- Zurich
- Switzerland
| | - M. Ehrbar
- Laboratory for Cell and Tissue Engineering
- Department of Obstetrics
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| | - V. Milleret
- Laboratory for Cell and Tissue Engineering
- Department of Obstetrics
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| |
Collapse
|
24
|
Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 2014; 15:813-24. [PMID: 25355506 DOI: 10.1038/nrm3897] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The way in which a cell migrates is influenced by the physical properties of its surroundings, in particular the properties of the extracellular matrix. How the physical aspects of the cell's environment affect cell migration poses a considerable challenge when trying to understand migration in complex tissue environments and hinders the extrapolation of in vitro analyses to in vivo situations. A comprehensive understanding of these problems requires an integrated biochemical and biophysical approach. In this Review, we outline the findings that have emerged from approaches that span these disciplines, with a focus on actin-based cell migration in environments with different stiffness, dimensionality and geometry.
Collapse
Affiliation(s)
- Guillaume Charras
- 1] London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK. [2] Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Erik Sahai
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
25
|
Tseng H, Puperi DS, Kim EJ, Ayoub S, Shah JV, Cuchiara ML, West JL, Grande-Allen KJ. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng Part A 2014; 20:2634-45. [PMID: 24712446 PMCID: PMC4195534 DOI: 10.1089/ten.tea.2013.0397] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 03/19/2014] [Indexed: 11/12/2022] Open
Abstract
The recapitulation of the material properties and structure of the native aortic valve leaflet, specifically its anisotropy and laminate structure, is a major design goal for scaffolds for heart valve tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for this purpose as they are biocompatible, can be modified for their mechanical and biofunctional properties, and can be laminated. This study investigated augmenting PEG hydrogels with polycaprolactone (PCL) as an analog to the fibrosa to improve strength and introduce anisotropic mechanical behavior. However, due to its hydrophobicity, PCL must be modified prior to embedding within PEG hydrogels. In this study, PCL was electrospun (ePCL) and modified in three different ways, by protein adsorption (pPCL), alkali digestion (hPCL), and acrylation (aPCL). Modified PCL of all types maintained the anisotropic elastic moduli and yield strain of unmodified anisotropic ePCL. Composites of PEG and PCL (PPCs) maintained anisotropic elastic moduli, but aPCL and pPCL had isotropic yield strains. Overall, PPCs of all modifications had elastic moduli of 3.79±0.90 MPa and 0.46±0.21 MPa in the parallel and perpendicular directions, respectively. Valvular interstitial cells seeded atop anisotropic aPCL displayed an actin distribution aligned in the direction of the underlying fibers. The resulting scaffold combines the biocompatibility and tunable fabrication of PEG with the strength and anisotropy of ePCL to form a foundation for future engineered valve scaffolds.
Collapse
Affiliation(s)
- Hubert Tseng
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Eric J. Kim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Salma Ayoub
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jay V. Shah
- Department of Bioengineering, Rice University, Houston, Texas
| | - Maude L. Cuchiara
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | |
Collapse
|
26
|
El Muslemany KM, Twite AA, ElSohly AM, Obermeyer AC, Mathies RA, Francis MB. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning. J Am Chem Soc 2014; 136:12600-6. [PMID: 25171554 DOI: 10.1021/ja503056x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.
Collapse
Affiliation(s)
- Kareem M El Muslemany
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | | | | | | | |
Collapse
|
27
|
Vu LT, Jain G, Veres BD, Rajagopalan P. Cell migration on planar and three-dimensional matrices: a hydrogel-based perspective. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:67-74. [PMID: 25011932 DOI: 10.1089/ten.teb.2013.0782] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of cells is a complex process that is dependent on the properties of the surrounding environment. In vivo, the extracellular environment is complex with a wide range of physical features, topographies, and protein compositions. There have been a number of approaches to design substrates that can recapitulate the complex architecture in vivo. Two-dimensional (2D) substrates have been widely used to study the effect of material properties on cell migration. However, such substrates do not capture the intricate structure of the extracellular environment. Recent advances in hydrogel assembly and patterning techniques have enabled the design of new three-dimensional (3D) scaffolds and microenvironments. Investigations conducted on these matrices provide growing evidence that several established migratory trends obtained from studies on 2D substrates could be significantly different when conducted in a 3D environment. Since cell migration is closely linked to a wide range of physiological functions, there is a critical need to examine migratory trends on 3D matrices. In this review, our goal is to highlight recent experimental studies on cell migration within engineered 3D hydrogel environments and how they differ from planar substrates. We provide a detailed examination of the changes in cellular characteristics such as morphology, speed, directionality, and protein expression in 3D hydrogel environments. This growing field of research will have a significant impact on tissue engineering, regenerative medicine, and in the design of biomaterials.
Collapse
Affiliation(s)
- Lucas T Vu
- 1 Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia
| | | | | | | |
Collapse
|
28
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Singh SP, Schwartz MP, Lee JY, Fairbanks BD, Anseth KS. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater Sci 2014; 2:1024-1034. [PMID: 25105013 PMCID: PMC4120072 DOI: 10.1039/c4bm00022f] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To address the challenges associated with defined control over matrix properties in 3D cell culture systems, we employed a peptide functionalized poly(ethylene glycol) (PEG) hydrogel matrix in which mechanical modulus and adhesive properties were tuned. An HT-1080 human fibrosarcoma cell line was chosen as a model for probing matrix influences on tumor cell migration using the PEG hydrogel platform. HT-1080 speed varied with a complex dependence on both matrix modulus and Cys-Arg-Gly-Asp-Ser (CRGDS) adhesion ligand concentration, with regimes in which motility increased, decreased, or was minimally altered being observed. We further investigated cell motility by forming matrix interfaces that mimic aspects of tissue boundaries that might be encountered during invasion by taking advantage of the spatial control of the thiol-ene photochemistry to form patterned regions of low and high cross-linking densities. HT-1080s in 100 Pa regions of patterned PEG hydrogels tended to reverse direction or aggregate at the interface when they encountered a 360 Pa boundary. In contrast, HT-1080s were apparently unimpeded when migrating from the stiff to the soft regions of PEG peptide hydrogels, which may indicate that cells are capable of "reverse durotaxis" within at least some matrix regimes. Taken together, our results identified matrix regimes in which HT-1080 motility was both positively and negatively influenced by cell adhesion or matrix modulus.
Collapse
Affiliation(s)
- Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Michael P. Schwartz
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
30
|
Hansen TD, Koepsel JT, Le NN, Nguyen EH, Zorn S, Parlato M, Loveland SG, Schwartz MP, Murphy WL. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types. Biomater Sci 2014; 2:745-756. [PMID: 25386339 PMCID: PMC4224020 DOI: 10.1039/c3bm60278h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.
Collapse
Affiliation(s)
- Tyler D. Hansen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Ngoc Nhi Le
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Stefan Zorn
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew Parlato
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA
- Materials Science Program, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
31
|
Bordeleau F, Alcoser TA, Reinhart-King CA. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am J Physiol Cell Physiol 2014; 306:C110-20. [PMID: 24196535 PMCID: PMC3919983 DOI: 10.1152/ajpcell.00283.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
The tumor microenvironment is a milieu of heterogeneous architectural features that affect tumor growth and metastatic invasion. Pore size, density, stiffness, and fiber architecture change dramatically from location to location throughout the tumor matrix. While many studies have addressed the effects of two-dimensional extracellular matrix structure and composition on cell migration, less is known about how cancer cells navigate complex, heterogeneous three-dimensional (3D) microenvironments. Mechanical structures such as actin and keratin, part of the cytoskeletal framework, and lamins, part of the nucleoskeletal framework, play a key role in migration and are altered during cancer progression. Recent evidence suggests that these changes in cytoskeletal and nucleoskeletal structures may enable cancer cells to efficiently respond to features such as pore size and stiffness to invade and migrate. Here we discuss the role of cell mechanics and the cytoskeleton in the ability of cells to navigate and respond to 3D matrix features and heterogeneities.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | |
Collapse
|
32
|
Schwartz MP, Rogers RE, Singh SP, Lee JY, Loveland SG, Koepsel JT, Witze ES, Montanez-Sauri SI, Sung KE, Tokuda EY, Sharma Y, Everhart LM, Nguyen EH, Zaman MH, Beebe DJ, Ahn NG, Murphy WL, Anseth KS. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. PLoS One 2013; 8:e81689. [PMID: 24349113 PMCID: PMC3857815 DOI: 10.1371/journal.pone.0081689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype.
Collapse
Affiliation(s)
- Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MPS); (KSA)
| | - Robert E. Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, , United States of America
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyung E. Sung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emi Y. Tokuda
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Lydia M. Everhart
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio, United States of America
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natalie G. Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * E-mail: (MPS); (KSA)
| |
Collapse
|
33
|
Qin XH, Torgersen J, Saf R, Mühleder S, Pucher N, Ligon SC, Holnthoner W, Redl H, Ovsianikov A, Stampfl J, Liska R. Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26903] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiao-Hua Qin
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| | - Jan Torgersen
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Robert Saf
- Institute for Chemistry and Technology of Materials; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Severin Mühleder
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Niklas Pucher
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
| | - S. Clark Ligon
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Aleksandr Ovsianikov
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Jürgen Stampfl
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| |
Collapse
|