1
|
Sharma V, Khokhar M, Panigrahi P, Gadwal A, Setia P, Purohit P. Advancements, Challenges, and clinical implications of integration of metabolomics technologies in diabetic nephropathy. Clin Chim Acta 2024; 561:119842. [PMID: 38969086 DOI: 10.1016/j.cca.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN), a severe complication of diabetes, involves a range of renal abnormalities driven by metabolic derangements. Metabolomics, revealing dynamic metabolic shifts in diseases like DN and offering insights into personalized treatment strategies, emerges as a promising tool for improved diagnostics and therapies. METHODS We conducted an extensive literature review to examine how metabolomics contributes to the study of DN and the challenges associated with its implementation in clinical practice. We identified and assessed relevant studies that utilized metabolomics methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) to assess their efficacy in diagnosing DN. RESULTS Metabolomics unveils key pathways in DN progression, highlighting glucose metabolism, dyslipidemia, and mitochondrial dysfunction. Biomarkers like glycated albumin and free fatty acids offer insights into DN nuances, guiding potential treatments. Metabolomics detects small-molecule metabolites, revealing disease-specific patterns for personalized care. CONCLUSION Metabolomics offers valuable insights into the molecular mechanisms underlying DN progression and holds promise for personalized medicine approaches. Further research in this field is warranted to elucidate additional metabolic pathways and identify novel biomarkers for early detection and targeted therapeutic interventions in DN.
Collapse
Affiliation(s)
- V Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - M Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - A Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India.
| |
Collapse
|
2
|
Li Y, Wang L, Zhang J, Xu B, Zhan H. Integrated multi-omics and bioinformatic methods to reveal the mechanisms of sinomenine against diabetic nephropathy. BMC Complement Med Ther 2023; 23:287. [PMID: 37580684 PMCID: PMC10424381 DOI: 10.1186/s12906-023-04119-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023] Open
Abstract
OBJECTIVES Diabetic Nephropathy (DN) is a serious complication of diabetes, the diagnosis and treatment of DN is still limited. Sinomenine (SIN) is an active extract of herbal medicine and has been applied into the therapy of DN. METHODS In the part of bioinformatic analyses, network pharmacology and molecular docking analyses were conducted to predict the important pathway of SIN treatment for DN. In-vivo study, DN rats were randomized to be treated with vehicle or SIN (20 mg/kg or 40 mg/kg) daily by gavage for 8 weeks. Then, the pharmacological effect of SIN on DN and the potential mechanisms were also evaluated by 24 h albuminuria, histopathological examination, transcriptomics, and metabolomics. RESULTS Firstly, network pharmacology and molecular docking were performed to show that SIN might improve DN via AGEs/RAGE, IL-17, JAK, TNF pathways. Urine biochemical parameters showed that SIN treatment could significantly reduce 24 h albuminuria of DN rats. Transcriptomics analysis found SIN could affect DN progression via inflammation and EMT pathways. Metabolic pathway analysis found SIN would mainly involve in arginine biosynthesis, linoleic acid metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism to affect DN development. CONCLUSIONS We confirmed that SIN could inhibit the progression of DN via affecting multiple genes and metabolites related pathways.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 117892, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, XM, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen University, Xiamen, 12466, Fujian, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 117892, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, XM, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen University, Xiamen, 12466, Fujian, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Huakui Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
3
|
Daniels RC, Tiba MH, Cummings B, Yap YR, Ansari S, McCracken B, Sun Y, Jennaro T, Ward KR, Stringer KA. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock. Shock 2022; 57:282-290. [PMID: 35670453 PMCID: PMC10314677 DOI: 10.1097/shk.0000000000001944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress. To test this hypothesis, we compared blood and urine RP with concentrations of multiple metabolites in a swine traumatic shock model to identify meaningful RP-metabolite relationships. METHODS Seven swine were subjected to traumatic shock. Mixed venous (MV) RP, urine RP, and concurrent MV and urine metabolite concentrations were assessed at baseline, max O 2 Debt (80 mL/kg), end resuscitation, and 2 h post-resuscitation. RP was measured at collection via open circuit potential using nanoporous gold electrodes with Ag/AgCl reference and a ParstatMC potentiostat. Metabolite concentrations were measured by quantitative 1 H-NMR spectroscopy. MV and urine RP were compared with time-matched metabolites across all swine. LASSO regression with leave-one-out cross validation was used to determine meaningful RP/metabolite relationships. Metabolites had to maintain magnitude and direction of coefficients across 6 or more swine to be considered as having a meaningful relationship. KEGG IDs of these metabolites were uploaded into Metscape for pathway identification and evaluation for physiologic function. RESULTS Meaningful metabolite relationships (and mean coefficients across cross-validation folds) with MV RP included: choline (-6.27), ATP (-4.39), glycine (5.93), ADP (1.84), glucose (15.96), formate (-13.09), pyruvate (6.18), and taurine (-7.18). Relationships with urine RP were: betaine (4.81), urea (4.14), glycine (-2.97), taurine (10.32), 3-hydroxyisobutyrate (-7.67), N-phenylacetylglycine, PAG (-14.52), hippurate (12.89), and formate (-5.89). These meaningful metabolites were found to scavenge extracellular peroxide (pyruvate), inhibit ROS and activate cellular antioxidant defense (taurine), act as indicators of antioxidant mobilization against oxidative stress (glycine + PAG), and reflect renal hydroxyl radical trapping (hippurate), among other activities. CONCLUSIONS Real-time RP measures demonstrate significant relationships with metabolites attributable to metabolic pathways involved in systemic responses to oxidative stress, as well as those involved in these processes. These data support RP measures as a feasible, biologically relevant marker of oxidative stress. As a direct measure of redox state, RP may be a useful biomarker and clinical tool in guiding diagnosis and therapy in states of increased oxidative stress and may offer value as a marker for organ injury in these states as well.
Collapse
Affiliation(s)
- Rodney C. Daniels
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI
| | - M. Hakam Tiba
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Brandon Cummings
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Yan Rou Yap
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Sardar Ansari
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Yihan Sun
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Teddy Jennaro
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Kevin R. Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Kathleen A. Stringer
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Chai J, Sun Z, Xu J. A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes Metab Syndr Obes 2022; 15:1605-1625. [PMID: 35642181 PMCID: PMC9148614 DOI: 10.2147/dmso.s357007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
High-throughput omics has been widely applied in metabolic disease, type 1 diabetes (T1D) was one of the most typical diseases. Effective prevention and early diagnosis are very important because of infancy and persistent characteristics of T1D. The occurrence and development of T1D is a chronic and continuous process, in which the production of autoantibodies (ie serum transformation) occupies the central position. Metabolomics can evaluate the metabolic characteristics of serum before seroconversion, the changes with age and T1D complications. And the addition of natural drug metabolomics is more conducive to the systematic and comprehensive diagnosis and treatment of T1D. This paper reviewed the metabolic changes and main pathogenesis from pre-diagnosis to treatment in T1D. The metabolic spectrum of significant abnormal energy and glucose-related metabolic pathway, down-regulation of lipid metabolism and up-regulation of some antioxidant pathways has appeared before seroconversion, indicating that the body has been in the dual state of disease progression and disease resistance before T1D onset. Some metabolites (such as methionine) are closely related to age, and the types of autoantibodies produced are age-specific. Some metabolites may jointly predict DN with eGFR, and metabolomics can further contribute to the pathogenesis based on the correlation between DN and DR. Many natural drug components have been proved to act on abnormal metabolic pathways of T1D and have a positive impact on some metabolic levels, which is very important for further finding therapeutic targets and developing new drugs with small side effects. Metabolomics can provide auxiliary value for the diagnosis of T1D and provide a new direction to reveal the pathogenesis of T1D and find new therapeutic targets. The development of T1D metabolomics shows that high-throughput research methods are expected to be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Roointan A, Gheisari Y, Hudkins KL, Gholaminejad A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis 2021; 31:2253-2272. [PMID: 34059383 DOI: 10.1016/j.numecd.2021.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
AIM Diabetic nephropathy (DN) is one of the worst complications of diabetes. Despite a growing number of DN metabolite profiling studies, most studies are suffering from inconsistency in their findings. The main goal of this meta-analysis was to reach to a consensus panel of significantly dysregulated metabolites as potential biomarkers in DN. DATA SYNTHESIS To identify the significant dysregulated metabolites, meta-analysis was performed by "vote-counting rank" and "robust rank aggregation" strategies. Bioinformatics analyses were performed to identify the most affected genes and pathways. Among 44 selected studies consisting of 98 metabolite profiles, 17 metabolites (9 up-regulated and 8 down-regulated metabolites), were identified as significant ones by both the meta-analysis strategies (p-value<0.05 and OR>2 or <0.5) and selected as DN metabolite meta-signature. Furthermore, enrichment analyses confirmed the involvement of various effective biological pathways in DN pathogenesis, such as urea cycle, TCA cycle, glycolysis, and amino acid metabolisms. Finally, by performing a meta-analysis over existing time-course studies in DN, the results indicated that lactic acid, hippuric acid, allantoin (in urine), and glutamine (in blood), are the topmost non-invasive early diagnostic biomarkers. CONCLUSION The identified metabolites are potentially involved in diabetic nephropathy pathogenesis and could be considered as biomarkers or drug targets in the disease. PROSPERO REGISTRATION NUMBER CRD42020197697.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kelly L Hudkins
- Department of Pathology, University of Washington, School of Medicine, Seattle, United States
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Wang J, Yan W, Zhou X, Liu Y, Tang C, Peng Y, Liu H, Sun L, Xiao L, He L. Metabolomics window into the role of acute kidney injury after coronary artery bypass grafting in diabetic nephropathy progression. PeerJ 2020; 8:e9111. [PMID: 32461830 PMCID: PMC7231503 DOI: 10.7717/peerj.9111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Metabolomics has emerged as a valuable tool to discover novel biomarkers and study the pathophysiology of diabetic nephropathy (DN). However, the effect of postoperative acute kidney injury (AKI) on diabetes mellitus (DM) to chronic DN progression has not been evaluated from the perspective of metabolomics. Methods A group of type 2 diabetes mellitus (T2DM) inpatients, who underwent off-pump coronary artery bypass grafting (CABG), were enrolled in our study. According to whether postoperative AKI occurred, patients were grouped in either the AKI group (AKI, n = 44) or the non-AKI group (NAKI, n = 44). Urine samples were collected from these patients before and 24 h after operation. Six patients from the AKI group and six patients from the NAKI group were chosen as the pilot cohort for untargeted metabolomics analysis, with the goal of identifying postoperative AKI-related metabolites. To understand the possible role of these metabolites in the chronic development of renal injury among T2DM patients, trans-4-hydroxy-L-proline and azelaic acid were quantified by targeted metabolomics analysis among 38 NAKI patients, 38 AKI patients, 46 early DN patients (DN-micro group), and 34 overt DN patients (DN-macro group). Results Untargeted metabolomics screened 61 statistically distinguishable metabolites in postoperative urine samples, compared with preoperative urine samples. Via Venn diagram analysis, nine of 61 were postoperative AKI-related metabolites, including trans-4-hydroxy-L-proline, uridine triphosphate, p-aminobenzoate, caffeic acid, adrenochrome, δ-valerolactam, L-norleucine, 5′-deoxy-5′-(methylthio) adenosine, and azelaic acid. By targeted metabolomics analysis, the level of trans-4-hydroxy-L-proline increased gradually from the NAKI group to the AKI, DN-micro, and DN-macro groups. For azelaic acid, the highest level was found in the NAKI and DN-micro groups, followed by the DN-macro group. The AKI group exhibited the lowest level of azelaic acid. Conclusions The detection of urinary trans-4-hydroxy-L-proline after AKI could be treated as an early warning of chronic DN progression and might be linked to renal fibrosis. Urinary azelaic acid can be used to monitor renal function noninvasively in DM and DN patients. Our results identified markers of AKI on DM and the chronic progression of DN. In addition, the progression of DN was associated with AKI-like episodes occurring in DM.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Wenzhe Yan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| |
Collapse
|
7
|
Shao M, Lu H, Yang M, Liu Y, Yin P, Li G, Wang Y, Chen L, Chen Q, Zhao C, Lu Q, Wu T, Ji G. Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:199. [PMID: 32309346 PMCID: PMC7154445 DOI: 10.21037/atm.2020.01.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Diabetes is a metabolic disease and is often accompanied by severe microvascular and macrovascular complications. A comprehensive understanding of its complex mechanisms can help prevent type 2 diabetes mellitus (T2DM) complications, such as diabetic nephropathy (DN). METHODS To reveal the systemic metabolic changes related to renal injury, clinical information of T2DM patients with or without nephropathy was collected, and it was found that serum urea levels of DN patients were significantly higher in T2DM patients without nephropathy. Further along the disease progression, the serum urea levels also gradually increased. We used gas chromatograph coupled with time-of-flight mass spectrometry (GC-TOFMS) metabolomics to analyze the serum and urine metabolites of T2DM patients with or without nephropathy to study the metabolic changes associated with the disease. RESULTS Finally, we identified 61 serum metabolites and 46 urine metabolites as potential biomarkers related to DN (P<0.05, VIP >1). In order to determine which metabolic pathways were major altered in DN, we summarized pathway analysis based on P values from their impact values and enrichment. There were 9 serum metabolic pathways and 12 urine metabolic pathways with significant differences in serum and urine metabolism, respectively. CONCLUSIONS This study emphasizes that GC-TOFMS-based metabolomics provides insight into the potential pathways in the pathogenesis and progression of DN.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Yang
- Department of Good Clinical Practice Office, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Liu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yunman Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qingguang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Zhao
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qun Lu
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
8
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Benito-Martínez S, Lucio-Cazaña FJ, Marina ML. A Non-Targeted Capillary Electrophoresis-Mass Spectrometry Strategy to Study Metabolic Differences in an In vitro Model of High-Glucose Induced Changes in Human Proximal Tubular HK-2 Cells. Molecules 2020; 25:molecules25030512. [PMID: 31991659 PMCID: PMC7037647 DOI: 10.3390/molecules25030512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy is characterized by the chronic loss of kidney function due to high glucose renal levels. HK-2 proximal tubular cells are good candidates to study this disease. The aim of this work was to study an in vitro model of high glucose-induced metabolic alterations in HK-2 cells to contribute to the pathogenesis of this diabetic complication. An untargeted metabolomics strategy based on CE-MS was developed to find metabolites affected under high glucose conditions. Intracellular and extracellular fluids from HK-2 cells treated with 25 mM glucose (high glucose group), with 5.5 mM glucose (normal glucose group), and with 5.5 mM glucose and 19.5 mM mannitol (osmotic control group) were analyzed. The main changes induced by high glucose were found in the extracellular medium where increased levels of four amino acids were detected. Three of them (alanine, proline, and glutamic acid) were exported from HK-2 cells to the extracellular medium. Other affected metabolites include Amadori products and cysteine, which are more likely cause and consequence, respectively, of the oxidative stress induced by high glucose in HK-2 cells. The developed CE-MS platform provides valuable insight into high glucose-induced metabolic alterations in proximal tubular cells and allows identifying discriminative molecules of diabetic nephropathy.
Collapse
Affiliation(s)
- Samuel Bernardo-Bermejo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
| | - Elena Sánchez-López
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Selma Benito-Martínez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-M.); (F.J.L.-C.)
- “Ramón y Cajal” Health Research Institute (IRYCIS), Universidad de Alcalá, 28871 Madrid, Spain
| | - Francisco Javier Lucio-Cazaña
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-M.); (F.J.L.-C.)
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4935; Fax: +34-91-885-4971
| |
Collapse
|
9
|
Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med 2019; 57:417-441. [PMID: 30169327 DOI: 10.1515/cclm-2018-0380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
Recently, nuclear magnetic resonance spectroscopy (NMR)-based metabolomics analysis and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The purpose of these efforts is to identify unique metabolite biomarkers in a specific human disease so as to (1) accurately predict and diagnose diseases, including separating distinct disease stages; (2) provide insights into underlying pathways in the pathogenesis and progression of the malady and (3) aid in disease treatment and evaluate the efficacy of drugs. In this review we discuss recent developments in the application of NMR-based metabolomics in searching disease biomarkers in human blood samples in the last 5 years.
Collapse
Affiliation(s)
- Zikuan Song
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haoyu Wang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaotong Yin
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
10
|
Pietzke M, Arroyo SF, Sumpton D, Mackay GM, Martin-Castillo B, Camps J, Joven J, Menendez JA, Vazquez A. Stratification of cancer and diabetes based on circulating levels of formate and glucose. Cancer Metab 2019; 7:3. [PMID: 31049200 PMCID: PMC6482583 DOI: 10.1186/s40170-019-0195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serum and urine metabolites have been investigated for their use as cancer biomarkers. The specificity of candidate metabolites can be limited by the impact of other disorders on metabolite levels. In particular, the increasing incidence of obesity could become a significant confounding factor. METHODS Here we developed a multinomial classifier for the stratification of cancer, obesity and healthy phenotypes based on circulating glucose and formate levels. We quantified the classifier performance from the retrospective analysis of samples from breast cancer, lung cancer, obese individuals and healthy controls. RESULTS We discovered that circulating formate levels are significantly lower in breast and lung cancer patients than in healthy controls. However, the performance of a cancer classifier based on formate levels alone is limited because obese patients also have low serum formate levels. By introducing a multinomial classifier based on circulating glucose and formate levels, we were able to improve the classifier performance, reaching a true positive rate of 79% with a false positive rate of 8%. CONCLUSIONS Circulating formate is reduced in HER2+ breast cancer, non-small cell lung cancer and highly obese patients relative to healthy controls. Further studies are required to determine the relevance of these observations in other cancer types and diseases.
Collapse
Affiliation(s)
- Matthias Pietzke
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
| | - Salvador Fernandez Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Rovira i Virgili University, Reus, Spain
| | - David Sumpton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
| | - Gillian M. Mackay
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
| | | | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Rovira i Virgili University, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Rovira i Virgili University, Reus, Spain
| | - Javier A. Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Catalonia Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Zhou YJ, Li LS, Sun JL, Guan K, Wei JF. 1H NMR-based metabolomic study of metabolic profiling for pollinosis. World Allergy Organ J 2019; 12:100005. [PMID: 30937130 PMCID: PMC6439407 DOI: 10.1016/j.waojou.2018.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background Allergic rhinitis is the main symptom of pollinosis, relieved by non-specific treatment universally. This study aimed to find the changes of serum metabolites between the seizure and remission periods of pollinosis and provide assistance in the diagnosis and/or therapy. Methods Metabonomics based on 1H nuclear magnetic resonance (NMR) was used to study the 37 serum samples of pollinosis patients. Results We believed that the decreased levels of isoleutine, leutine, valine, 3-hydroxybutyric acid, allo-threonine, alanine, methionine, glutamine, lysine, glycine, l-tyrosine, histidine, phenylalanine, lactate, acetate, O-acetylcholine, creatine and creatinine and the increased level of N-acetylglutamine at the seizure stage were statistically significant. Conclusions Pollinosis could change the metabolic profiles of energy, amino acid and lipid in patients, which might be the diagnosis and/or prognosis markers for hay fever patients.
Collapse
Key Words
- Amino acid
- Energy
- FIDs, free induction decay
- Lipid metabolism
- Metabonomics
- NMR, nuclear magnetic resonance
- OPLS-DA, orthogonal partial least squares discriminant analysis
- OSC-PLS-DA, orthogonal signal correction-partial least squares discriminant analysis
- PBS, phosphate buffer solution
- PCA, principle component analysis
- Pollinosis
- SD, standard deviation
- SIT, allergen-specific immunotherapy
- SLE, systemic lupus erythematosus
- TCA, tricarboxylic acid cycle
- TSP, 3-trimethylsilyl-propionic acid
Collapse
Affiliation(s)
- Yan-Jun Zhou
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Li-Sha Li
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Jin-Lu Sun
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| |
Collapse
|
12
|
Chen R, Liao C, Guo Q, Wu L, Zhang L, Wang X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv 2018; 8:27448-27463. [PMID: 35540008 PMCID: PMC9083881 DOI: 10.1039/c8ra04358b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|
13
|
Li L, Wang C, Yang H, Liu S, Lu Y, Fu P, Liu J. Metabolomics reveal mitochondrial and fatty acid metabolism disorders that contribute to the development of DKD in T2DM patients. MOLECULAR BIOSYSTEMS 2018; 13:2392-2400. [PMID: 28956034 DOI: 10.1039/c7mb00167c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of ESRD; however, early intervention can greatly prevent the progression of DKD; thus, sensitive biomarkers for DKD are still required. This study was aimed at the identification of potential biomarkers and revelation of underlying pathways in DKD patients by non-targeted metabolomics. Gas chromatography-mass spectrometry was used to analyze urine obtained from the control and type 2 diabetes mellitus (T2DM) and DKD patients, and the renal histological changes in DKD patients were assessed. The DKD group showed increased level of uric acid, 1,5-anhydroglucitol, hippuric acid, stearic acid, and palmitic acid and reduced level of uracil, glycine, aconitic acid, isocitric acid, 4-hydroxybutyrate, 2-deoxyerythritol, and glycolic acid as compared to the control and T2DM groups. Further analysis indicated that many of the changed metabolites were involved in mitochondrial and fatty acid (FA) metabolism, and combined mitochondrial and FA metabolites showed better diagnosis values for DKD. Histological results confirmed that renal expression of key proteins was reduced in DKD patients with respect to mitochondrial biogenesis (PGC-1α, p-AMPK) and FA oxidation (PPAR-α, CPT-1) as compared to that in the control and T2DM groups. This study highlighted that both mitochondrial and FA metabolism were disturbed in DKD, and thus, they could serve as combined biomarkers for the prediction of DKD.
Collapse
Affiliation(s)
- Ling Li
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Investig 2018; 9:244-255. [PMID: 28779528 PMCID: PMC5835462 DOI: 10.1111/jdi.12723] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes has become a major global health problem. The elucidation of characteristic metabolic alterations during the diabetic progression is critical for better understanding its pathogenesis, and identifying potential biomarkers and drug targets. Metabolomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of diabetic complications. The present review provides an update on the application of metabolomics in diabetic complications, including diabetic coronary artery disease, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy, and this review provides notes on the prevention and prediction of diabetic complications.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems BiologyShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Digestive DiseaseLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuxuan Qiao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chenze Shi
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuya Wang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseaseLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
15
|
Abstract
Globally, diabetes is the leading cause of chronic kidney disease and end-stage renal disease, which are major risk factors for cardiovascular disease and death. Despite this burden, the factors that precipitate the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. Mitochondrial dysfunction is associated with kidney disease in nondiabetic contexts, and increasing evidence suggests that dysfunctional renal mitochondria are pathological mediators of DKD. These complex organelles have a broad range of functions, including the generation of ATP. The kidneys are mitochondrially rich, highly metabolic organs that require vast amounts of ATP for their normal function. The delivery of metabolic substrates for ATP production, such as fatty acids and oxygen, is altered by diabetes. Changes in metabolic fuel sources in diabetes to meet ATP demands result in increased oxygen consumption, which contributes to renal hypoxia. Inherited factors including mutations in genes that impact mitochondrial function and/or substrate delivery may also be important risk factors for DKD. Hence, we postulate that the diabetic milieu and inherited factors that underlie abnormalities in mitochondrial function synergistically drive the development and progression of DKD.
Collapse
Affiliation(s)
- Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Clinical School, School of Medicine, The University of Queensland, St Lucia, Queensland, Australia.,Departments of Medicine and Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - David R Thorburn
- Departments of Medicine and Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Wang Y, Li Y, Zhou L, Guo L. Effects of acupuncture on the urinary metabolome of spontaneously hypertensive rats. Acupunct Med 2017; 35:374-382. [PMID: 28793984 DOI: 10.1136/acupmed-2016-011170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND The mechanism of action underlying the putative effects of acupuncture in essential hypertension remains unknown but neuronal mechanisms have been explored most extensively to date. We aimed to explore the effects of manual acupuncture (MA) with manual stimulation on blood pressure (BP) and urine metabolites in the spontaneously hypertensive rat (SHR) model of hypertension. METHODS After adaptive feeding (with a standard laboratory diet and distilled water) for 1 week, five normotensive Wistar Kyoto (WKY) rats with normal BP formed the control group. Ten SHRs were randomised into two groups (n=5 each), one of which received MA at ST9 for a total of 14 days (SHR+MA group). The other (SHR group) and the WKY control group underwent needle insertion without manual stimulation. BP was measured pre- and post-acupuncture in all groups and urinary metabolic profiles were investigated using metabonomics methods based on 1H nuclear magnetic resonance (NMR) spectroscopy coupled with principal component analysis, partial least squares discriminant analysis, and orthogonal to partial least squares discriminant analysis. RESULTS A total of 46 metabolites were clearly separated in the urine by 1H NMR. Loading plots showed significant changes in urinary metabolite contents after acupuncture treatment as well as significant differences between SHR and WKY rats. Acupuncture at ST9 in SHRs increased urine metabolites including α-ketoglutaric acid, N-acetyl glutamic acid, and betaine. Furthermore, systolic and diastolic BP, mean arterial pressure and heart rate were significantly reduced after acupuncture. CONCLUSIONS Acupuncture may decrease BP in SHRs by improving the metabolic disorder associated with hypertension.
Collapse
Affiliation(s)
- Ying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liang Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Liu S, Yuan Y, Zhou Y, Zhao M, Chen Y, Cheng J, Lu Y, Liu J. Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake. J Cell Mol Med 2017; 21:2553-2562. [PMID: 28402018 PMCID: PMC5618667 DOI: 10.1111/jcmm.13176] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Hyperuricemia is an important risk factor for cardiovascular and renal diseases. Phloretin had shown antioxidant and anti‐inflammatory properties, but its role in endothelial injury is rarely reported. In this study, we aimed to investigate the protective effect of phloretin on UA‐induced injury in human umbilical vein endothelial cells. The effects of UA and phloretin on cell viability, inflammation, THP‐1 monocyte adhesion, endothelial cell tube formation, GLUT9 expression and UA uptake in human umbilical vein endothelial cells were evaluated. The changes of nuclear factor‐kappa B/extracellular regulated protein kinases signalling were also analysed. Our results showed that UA reduced cell viability and tube formation, and increased inflammation and monocytes adhesion in human umbilical vein endothelial cells in a dose‐dependent manner. In contrast, phloretin significantly attenuated pro‐inflammatory factors expression and endothelial injury induced by UA. Phloretin inhibited the activation of extracellular regulated protein kinases/nuclear factor‐kappa B pathway, and reduced GLUT9 and it mediated UA uptake in human umbilical vein endothelial cells. These results indicated that phloretin attenuated UA‐induced endothelial injury via a synergic mechanism including direct anti‐inflammatory effect and lowering cellular UA uptake. Our study suggested that phloretin might be a promising therapy for hyperuricemia‐related cardiovascular diseases.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017; 13:269-284. [PMID: 28262773 DOI: 10.1038/nrneph.2017.30] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) has a high prevalence in the general population and is associated with high mortality; a need therefore exists for better biomarkers for diagnosis, monitoring of disease progression and therapy stratification. Moreover, very sensitive biomarkers are needed in drug development and clinical research to increase understanding of the efficacy and safety of potential and existing therapies. Metabolomics analyses can identify and quantify all metabolites present in a given sample, covering hundreds to thousands of metabolites. Sample preparation for metabolomics requires a very fast arrest of biochemical processes. Present key technologies for metabolomics are mass spectrometry and proton nuclear magnetic resonance spectroscopy, which require sophisticated biostatistic and bioinformatic data analyses. The use of metabolomics has been instrumental in identifying new biomarkers of CKD such as acylcarnitines, glycerolipids, dimethylarginines and metabolites of tryptophan, the citric acid cycle and the urea cycle. Biomarkers such as c-mannosyl tryptophan and pseudouridine have better performance in CKD stratification than does creatinine. Future challenges in metabolomics analyses are prospective studies and deconvolution of CKD biomarkers from those of other diseases such as metabolic syndrome, diabetes mellitus, inflammatory conditions, stress and cancer.
Collapse
Affiliation(s)
- Berthold Hocher
- Department of Basic Medicine, Medical College of Hunan University, 410006 Changsha, China
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
19
|
Hoffman JM, Tran V, Wachtman LM, Green CL, Jones DP, Promislow DEL. A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix jacchus. Exp Gerontol 2016; 76:17-24. [PMID: 26805607 DOI: 10.1016/j.exger.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Primates tend to be long-lived for their size with humans being the longest lived of all primates. There are compelling reasons to understand the underlying age-related processes that shape human lifespan. But the very fact of our long lifespan that makes it so compelling, also makes it especially difficult to study. Thus, in studies of aging, researchers have turned to non-human primate models, including chimpanzees, baboons, and rhesus macaques. More recently, the common marmoset, Callithrix jacchus, has been recognized as a particularly valuable model in studies of aging, given its small size, ease of housing in captivity, and relatively short lifespan. However, little is known about the physiological changes that occur as marmosets age. To begin to fill in this gap, we utilized high sensitivity metabolomics to define the longitudinal biochemical changes associated with age in the common marmoset. We measured 2104 metabolites from blood plasma at three separate time points over a 17-month period, and we completed both a cross-sectional and longitudinal analysis of the metabolome. We discovered hundreds of metabolites associated with age and body weight in both male and female animals. Our longitudinal analysis identified age-associated metabolic pathways that were not found in our cross-sectional analysis. Pathways enriched for age-associated metabolites included tryptophan, nucleotide, and xenobiotic metabolism, suggesting these biochemical pathways might play an important role in the basic mechanisms of aging in primates. Moreover, we found that many metabolic pathways associated with age were sex specific. Our work illustrates the power of longitudinal approaches, even in a short time frame, to discover novel biochemical changes that occur with age.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Genetics, University of Georgia, 120 Green Street, Athens, GA 30602, USA.
| | - ViLinh Tran
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Emory University, 615 Michael Street, Suite 225, Atlanta, GA 30322,USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, 615 Michael Street, Suite 225, Atlanta, GA 30322,USA
| | - Lynn M Wachtman
- New England Primate Research Center, Harvard University, 1 Pinehill Rd, Southborough, MA 10772, USA
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, Scotland, UK
| | - Dean P Jones
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Emory University, 615 Michael Street, Suite 225, Atlanta, GA 30322,USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, 615 Michael Street, Suite 225, Atlanta, GA 30322,USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Biology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci Rep 2015; 5:11998. [PMID: 26149603 PMCID: PMC4493693 DOI: 10.1038/srep11998] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 11/08/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the lethal manifestations of diabetic systemic microvascular disease. Elucidation of characteristic metabolic alterations during diabetic progression is critical to understand its pathogenesis and identify potential biomarkers and drug targets involved in the disease. In this study, (1)H nuclear magnetic resonance ((1)H NMR)-based metabonomics with correlative analysis was performed to study the characteristic metabolites, as well as the related pathways in urine and kidney samples of db/db diabetic mice, compared with age-matched wildtype mice. The time trajectory plot of db/db mice revealed alterations, in an age-dependent manner, in urinary metabolic profiles along with progression of renal damage and dysfunction. Age-dependent and correlated metabolite analysis identified that cis-aconitate and allantoin could serve as biomarkers for the diagnosis of DN. Further correlative analysis revealed that the enzymes dimethylarginine dimethylaminohydrolase (DDAH), guanosine triphosphate cyclohydrolase I (GTPCH I), and 3-hydroxy-3-methylglutaryl-CoA lyase (HMG-CoA lyase) were involved in dimethylamine metabolism, ketogenesis and GTP metabolism pathways, respectively, and could be potential therapeutic targets for DN. Our results highlight that metabonomic analysis can be used as a tool to identify potential biomarkers and novel therapeutic targets to gain a better understanding of the mechanisms underlying the initiation and progression of diseases.
Collapse
|
21
|
Liu J, Liu S, Chen Y, Zhao X, Lu Y, Cheng J. Functionalized self-assembling peptide improves INS-1 β-cell function and proliferation via the integrin/FAK/ERK/cyclin pathway. Int J Nanomedicine 2015; 10:3519-31. [PMID: 25999715 PMCID: PMC4436204 DOI: 10.2147/ijn.s80502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation is considered to be a curative treatment for type 1 diabetes mellitus. However, disruption of the extracellular matrix (ECM) leads to β-cell destruction and graft dysfunction. In this study, we developed a functionalized self-assembling peptide, KLD-F, with ECM mimic motifs derived from fibronectin and collagen IV, and evaluated its effect on β-cell function and proliferation. Atomic force microscopy and rheological results showed that KLD-F could self-assemble into a nanofibrous scaffold and change into a hydrogel in physiological saline condition. In a three-dimensional cell culture model, KLD-F improved ECM remodeling and cell-cell adhesion of INS-1 β-cells by upregulation of E-cadherin, fibronectin, and collagen IV. KLD-F also enhanced glucose-stimulated insulin secretion and expression of β-cell function genes, including Glut2, Ins1, MafA, and Pdx-1 in INS-1 cells. Moreover, KLD-F promoted proliferation of INS-1 β-cells and upregulated Ki67 expression by mediating cell cycle progression. In addition, KLD-F improved β-cell function and proliferation via an integrin/focal adhesion kinase/extracellular signal-regulated kinase/cyclin D pathway. This study highlights the fact that the β-cell-ECM interaction reestablished with this functionalized self-assembling peptide is a promising method to improve the therapeutic efficacy of islet transplantation.
Collapse
Affiliation(s)
- Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaojun Zhao
- Laboratory of Nanomedicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Liu J, Wang C, Liu F, Lu Y, Cheng J. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem 2015; 407:2569-79. [PMID: 25636229 DOI: 10.1007/s00216-015-8481-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which is a major public health problem in the world. To reveal the metabolic changes associated with DN, we analyzed the serum, urine, and renal extracts obtained from control and streptozotocin (STZ)-induced DN rats by (1)H NMR-based metabonomics and multivariate data analysis. A significant difference between control and DN rats was revealed in metabolic profiles, and we identified several important DN-related metabolites including increased levels of allantoin and uric acid (UA) in the DN rats, suggesting that disturbed purine metabolism may be involved in the DN. Combined with conventional histological and biological methods, we further demonstrated that xanthine oxidase (XO), a key enzyme for purine catabolism, was abnormally activated in the kidney of diabetic rats by hyperglycemia. The highly activated XO increased the level of intracellular ROS, which caused renal injury by direct oxidative damage to renal cells, and indirect inducing inflammatory responses via activating NF-κB signaling pathway. Our study highlighted that metabonomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu, 610041, China
| | | | | | | | | |
Collapse
|
23
|
Li L, Yin Q, Tang X, Bai L, Zhang J, Gou S, Zhu H, Cheng J, Fu P, Liu F. C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-β/smad3 and IKBα pathway. PLoS One 2014; 9:e113639. [PMID: 25422985 PMCID: PMC4244104 DOI: 10.1371/journal.pone.0113639] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) is a serious complication for patients with diabetes mellitus (DM). Emerging evidence suggests that complement C3a is involved in the progression of DN. The aim of this study was to investigate the effect of C3a Receptor Agonist (C3aRA) on DN and its potential mechanism of action in rats with type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in SD rats by a high fat diet (HFD) plus repeated low dose streptozocin (STZ) injections. T2DM rats were treated with vehicle or C3aRA for 8 weeks. Biochemical analysis, HE and PAS stains were performed to evaluate the renal function and pathological changes. Human renal glomerular endothelial cells (HRGECs) were cultured and treated with normal glucose (NG), high glucose (HG), HG+C3a, HG+C3a+C3aRA and HG+C3a+BAY-11-7082 (p-IKBα Inhibitor) or SIS3 (Smad3 Inhibitor), respectively. Real-time PCR, immunofluorescent staining and western blot were performed to detect the mRNA and protein levels, respectively. RESULTS T2DM rats showed worse renal morphology and impaired renal function compared with control rats, including elevated levels of serum creatinine (CREA), blood urea nitrogen (BUN) and urine albumin excretion (UACR), as well as increased levels of C3a, C3aR, IL-6, p-IKBα, collagen I, TGF-β and p-Smad3 in the kidney of T2DM rats and C3a-treated HRGECs. In contrast, C3aRA treatment improved renal function and morphology, reduced CREA, UACR and the intensity of PAS and collagen I staining in the kidney of T2DM rats, and decreased C3a, p-IKBα, IL-6, TGF-β, p-Smad3 and collagen I expressions in HRGECs and T2DM rats. CONCLUSION C3a mediated pro-inflammatory and pro-fibrotic responses and aggravated renal injury in T2DM rats. C3aRA ameliorated T2DN by inhibiting IKBα phosphorylation and cytokine release, and also TGF-β/Smad3 signaling and ECM deposition. Therefore, complement C3a receptor is a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Ling Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Yin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xi Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin Bai
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shenju Gou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hongping Zhu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail: (PF); (FL)
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail: (PF); (FL)
| |
Collapse
|