1
|
Abozahra MS, Amin MA, Sarker TC, Abd-ElGawad AM, Aboelezz E. Molecular, biophysical, and biochemical studies on irradiated Zea mays seeds using various sources of gamma rays for dosimetrical applications. Sci Rep 2025; 15:9340. [PMID: 40102432 PMCID: PMC11920066 DOI: 10.1038/s41598-025-87531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Gamma rays are a powerful tool for enhancing crop quality and production. They can cause mutations that improve plant traits and are commonly used in agriculture. The present study aimed to examine the effects of gamma irradiation on maize hybrids' triple white seeds (Giza 321) using different doses (10, 20, and 50 Gy) from different radiation sources 60Co or 137Cs). The maize treated with gamma rays from the Co-60 source at 10 Gy exhibited the lowest shoot length percentage of 37.5%, compared to control groups, while root lengths were unaffected at 10 and 50 Gy Cs-137 doses. In addition, the study revealed that gamma irradiation stimulated the excess production of proline, protein, and antioxidant enzymes, which revealed the defense strategy of the plant that tolerates stress. The study also revealed that gamma rays caused a significant reduction in chlorophyll content for all doses, while carotenoid content increased. DNA tail length indicated that minimal damage occurred at 50 Gy of 60Co and 137Cs, respectively. Moreover, the analysis of tail DNA% and tail moment showed that the lowest damage was determined for 20 Gy of 60Co and 137Cs, respectively. SDS-PAGE analysis showed that the 20 Gy Co treatments had the largest number of bands (15), while the 20 Gy Cs dose had the minimum number of bands (10). Ultimately, the proline content and peroxidase enzymes respond exponentially with the dose, making them potential radiation biomarkers for dosimetric purposes. However, further dosimetric features of these two parameters are necessary to be defined in future work. The present results showed that the treatment of plants with gamma rays enhanced the defense system of the maize at a specific dose, thereby, a large-scale study is recommended for using this radiation to enhance the defense and/or the tolerance of a wide range of crops as well as evaluate its safety, applicability, and reproducibility at field scale.
Collapse
Affiliation(s)
- Mahmoud S Abozahra
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Amin
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Tushar C Sarker
- Texas A & M AgriLife Research Center, Overton, TX, 75684, USA
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards (NIS), Giza, 12211, Egypt.
| |
Collapse
|
2
|
Xu F, Chen H, Chen C, Liu J, Song Z, Ding C. The mutagenic effect of cold plasma on Medicago sativa L. Free Radic Biol Med 2024; 223:18-29. [PMID: 39053862 DOI: 10.1016/j.freeradbiomed.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
To explore the feasibility of using cold plasma as a mutagenesis breeding technology for forage crops, in this study we used the Medicago sativa L. cultivar, Zhongcao No. 3, as the experimental material. The effects of plasma treatments on Medicago sativa L. were analyzed through the use of plasma and activated water. Treatments with plasma and activated water inhibited plant height but promoted root growth. By creating a closed environment, adding a dielectric barrier plate, and combining these two treatment methods, the greatest impact can be had on the growth of Medicago sativa L. seeds. After treatment, the plant heights were approximately half those of the control group, and the root lengths were approximately 1.6 times those of the control group. Through emission spectroscopy, it was found that active particles such as O, NO2, and N2* were present and could be considered to have produced plasma-activated water through contact with the water surface, thus affecting the survival and growth of the seeds. Whole-genome resequencing (WGRS) was performed on the wild-type and selected mutants after treatment, with an average sequencing depth of 115.93×, an average genome alignment rate of 91.72 %, and an average genome coverage rate of 91.85 %. Various types of mutations were detected and annotated. After filtering, 7,822,324 SNP (single nucleotide polymorphisms) sites, 2,161,917 indel sites, 200,544 SV sites, 238 CNV (copy number variation) sites. The SNPs, indels (insertions/deletions), and SVs (structural variations) were mainly heterozygous, with heterozygosity rates of 87.13 %, 92.16 %, and 83.49 %, respectively. The CNVs were dominated by low copy numbers, accounting for 53.77 %. These results indicate that plasma treatment has significant effects on plant growth and genome of Medicago sativa L.
Collapse
Affiliation(s)
- Fei Xu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China.
| | - Chan Chen
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jiaqi Liu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhiqing Song
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Discharge Plasma and Functional Materials Application Laboratory, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
3
|
Li Y, Xiong H, Zhang J, Guo H, Zhou C, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Fang Z, Liu L. Genome-Wide and Exome-Capturing Sequencing of a Gamma-Ray-Induced Mutant Reveals Biased Variations in Common Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:793496. [PMID: 35095966 PMCID: PMC8790116 DOI: 10.3389/fpls.2021.793496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
Induced mutagenesis is a powerful approach for the creation of novel germplasm and the improvement of agronomic traits. The evaluation of mutagenic effects and functional variations in crops is needed for breeding mutant strains. To investigate the mutagenic effects of gamma-ray irradiation in wheat, this study characterized genomic variations of wheat early heading mutant (eh1) as compared to wild-type (WT) Zhongyuan 9 (ZY9). Whole-genome resequencing of eh1 and ZY9 produced 737.7 Gb sequencing data and identified a total of 23,537,117 homozygous single nucleotide polymorphism (SNP) and 1,608,468 Indel. Analysis of SNP distribution across the chromosome suggests that mutation hotspots existed in certain chromosomal regions. Among the three subgenomes, the variation frequency in subgenome D was significantly lower than in subgenomes A and B. A total of 27.8 Gb data were obtained by exome-capturing sequencing, while 217,948 SNP and 13,554 Indel were identified. Variation annotation in the gene-coding sequences demonstrated that 5.0% of the SNP and 5.3% of the Indel were functionally important. Characterization of exomic variations in 12 additional gamma-ray-induced mutant lines further provided additional insights into the mutagenic effects of this approach. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis suggested that genes with functional variations were enriched in several metabolic pathways, including plant-pathogen interactions and ADP binding. Kompetitive allele-specific PCR (KASP) genotyping with selected SNP within functional genes indicated that 85.7% of the SNPs were polymorphic between the eh1 and wild type. This study provides a basic understanding of the mechanism behind gamma-ray irradiation in hexaploid wheat.
Collapse
Affiliation(s)
- Yuting Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiazi Zhang
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengwu Fang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- Zhengwu Fang,
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Luxiang Liu,
| |
Collapse
|
4
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhou L, Wang C, Gao X, Ding Y, Cheng B, Zhang G, Cao N, Xu Y, Shao M, Zhang L. Genome-wide variations analysis of sorghum cultivar Hongyingzi for brewing Moutai liquor. Hereditas 2020; 157:19. [PMID: 32410666 PMCID: PMC7227080 DOI: 10.1186/s41065-020-00130-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
Background Hongyingzi is a sorghum (Sorghum bicolor L. Moench) cultivar for brewing Moutai liquor. For an overall understanding of the whole genome of Hongyingzi, we performed whole-genome resequencing technology to reveal its comprehensive variations. Results Compared with the BTx623 reference genome, we uncovered 1,885,774 single nucleotide polymorphisms (SNPs), 309,381 small fragments insertions and deletions (Indels), 31,966 structural variations (SVs), and 217,273 copy number variations (CNVs). These alterations conferred 29,614 gene variations. It was also predicted that 35 gene variations were related to the multidrug and toxic efflux (MATE) transporter, chalcone synthase (CHS), ATPase isoform 10 (AHA10) transporter, dihydroflavonol-4-reductase (DFR), the laccase 15 (LAC15), flavonol 3′-hydroxylase (F3′H), flavanone 3-hydroxylase (F3H), O-methyltransferase (OMT), flavonoid 3′5′ hydroxylase (F3′5′H), UDP-glucose:sterol-glucosyltransferase (SGT), flavonol synthase (FLS), and chalcone isomerase (CHI) involved in the tannin synthesis. Conclusions These results would provide theoretical supports for the molecular markers developments and gene function studies related to the tannin synthesis, and the genetic improvement of liquor-making sorghum based on the genome editing technology.
Collapse
Affiliation(s)
- Lingbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Can Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Xu Gao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yanqing Ding
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Bin Cheng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Guobing Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Ning Cao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yan Xu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Liyi Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
6
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int J Mol Sci 2019; 20:ijms20194723. [PMID: 31554154 PMCID: PMC6801639 DOI: 10.3390/ijms20194723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
7
|
Genome-wide analysis of genetic variations between dominant and recessive NILs of glanded and glandless cottons. Sci Rep 2019; 9:9226. [PMID: 31239518 PMCID: PMC6593120 DOI: 10.1038/s41598-019-45454-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
Cotton is an important economic crop in worldwide. It produces fiber for the textile industry and provides cottonseeds with high-quality protein and oil. However, the presence of gossypol limits the utilization of cottonseed. Two pairs of cotton near isogenic lines (NILs) with different pigment glands, i.e., Coker 312 vs Coker 312 W and CCRI12 vs CCRI12W, exhibit different gossypol contents. The glandless traits of Coker 312 W and CCRI12W are controlled by recessive and dominant genes, respectively. However, knowledge regarding the genomic variations in the NILs is limited. Therefore, the NILs genomes were resequenced and the sequencing depths were greater than 34×. Compared with the TM-1 genome, numerous SNPs, Indels, SVs, and CNVs were discovered. KEGG pathway analysis revealed that genes with SNPs and Indels from the recessive NILs and genes with Indels from the dominant NILs shared only one enriched pathway, i.e., the sesquiterpenoid and triterpenoid biosynthesis pathway, which is relevant to gossypol biosynthesis. Expression analysis revealed that key genes with variations that participate in the gossypol biosynthesis and pigment gland formation pathways had different expression patterns among the dominant, recessive glandless and glanded plants. The expression levels in the glanded organs were higher than those in their NILs. Altogether, our results provide deeper insight into cotton NILs with different pigment glands.
Collapse
|
8
|
Ji-Lun H, Xiao-Yan Z, Gui-Xing W, Zhao-Hui S, Wei D, Ya-Xian Z, Fei S, Li-Yan W, Xin-Hui X, Yu-Fen W. Novel breeding approach for Japanese flounder using atmosphere and room temperature plasma mutagenesis tool. BMC Genomics 2019; 20:323. [PMID: 31035925 PMCID: PMC6489211 DOI: 10.1186/s12864-019-5681-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Background Artificial induction of mutagenesis is effective for genetic resource innovation and breeding. However, the traditional mutation methods for fish breeding are not convenient or safe for daily use. Hence, development of a simple, safe and effective mutagenesis method with a high mutation rate and applicability to multiple fish species, is needed. Results We reported the first successful mutagenesis in a marine aquaculture fish species, Japanese flounder, Paralichthys olivaceus, using a novel atmosphere and room temperature plasma (ARTP) mutagenesis tool. ARTP treatment time was optimized for the fertilized eggs and sperm, respectively. Eggs fertilized for 60 min were treated by ARTP with a radio-frequency power input of 120 W, and the ARTP treatment time was 25 min. Under an ARTP radio-frequency power input of 200 W, the optimal treatment time for sperm diluted with Ringer’s solution by 1:40 v/v was 10 min. The ARTP-treated group presented differences in morphological traits such as body height, total length among individuals at day 90 after hatching. Whole-genome sequencing was used to reveal the mutation features of ARTP-treated individuals collected at day 120 after hatching. In total, 69.25Gb clean data were obtained from three controls and eight randomly selected ARTP-treated individuals, revealing 240,722 to 322,978 SNPs and 82,149 to 86,798 InDels located in 17,394~18,457 and 12,907~13,333 genes, respectively. The average mutation rate reached 0.064% at the genome level. Gene ontology clustering indicated that genes associated with cell components, binding function, catalytic activity, cellular process, metabolic process and biological regulation processes had higher mutation rates. Conclusions ARTP mutagenesis is a useful method for breeding of fish species to accelerate the selection of economically important traits that would benefit the aquaculture industry, given the variety of mutations detected.
Collapse
Affiliation(s)
- Hou Ji-Lun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, China.,Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhang Xiao-Yan
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Wang Gui-Xing
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Sun Zhao-Hui
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Du Wei
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhao Ya-Xian
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Si Fei
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Wang Li-Yan
- TmaxTree Biotechnology Company, Luoyang, China
| | - Xing Xin-Hui
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Wang Yu-Fen
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China.
| |
Collapse
|
9
|
Zheng J, He J, Liao S, Cheng Z, Lin J, Huang K, Li X, Zheng K, Chen X, Lin L, Xia F, Liu J, Xu M, Chen T, Huang X, Cao X, Yang Z. Preventive effects of combinative natural foods produced by elite crop varieties rich in anticancer effects on N-nitrosodiethylamine-induced hepatocellular carcinoma in rats. Food Sci Nutr 2019; 7:339-355. [PMID: 30680188 PMCID: PMC6341211 DOI: 10.1002/fsn3.896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
The World Cancer Research Fund International has released 32 anticancer effects (ACEs) that targeted every stage of cancer processes. Thus, we designed two formulas of natural food combination Diet I and Diet II, mainly produced by elite crop varieties rich in ACEs with different mixture ratios, and evaluated their cancer preventive effects on N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis. After 20 weeks of dietary intervention, Diet I and Diet II reduced incidence, size, and number of hepatic nodules (p < 0.01) and prevented hepatic tumor formation in NDEA-induced hepatocarcinogenesis rats. Low-grade hepatic dysplasia incidence was 20% for Diet II and 40% for Diet I, and apparent hepatocellular carcinomas (HCC) rates were both 0, while 90% HCC in control diet treatment group (p < 0.01). Diet I and Diet II ameliorated abnormal liver function enzymes, reduced serum alpha fetal protein, tumor-specific growth factor, dickkopf-related protein 1, tumor necrosis factor-alpha and interleukin-6 levels, regulated hepatic phase I and II xenobiotic-metabolizing enzymes, enhanced antioxidant capacity, suppressed NDEA-initiated oxidative DNA damage, and induced apoptosis coupled to down-regulation of proinflammatory, invasion, and angiogenesis markers. Daily intake of combination diet produced from ACEs-rich elite crop varieties can effectively prevent or delay occurrence and development of NDEA-induced hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Jingui Zheng
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jun He
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijingChina
| | - Sufeng Liao
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zuxin Cheng
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinke Lin
- Anxi College of Tea ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Huang
- College of Horticulture and LandscapeHunan Agricultural UniversityChangshaChina
| | - Xiaocen Li
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijingChina
| | - Kaibin Zheng
- Institute of Sub‐tropical AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Xuanyang Chen
- Key Laboratory of Ministry for Education for Genetics, Breeding and Multiple Utilization of CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Lin
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fagang Xia
- Key Laboratory of Ministry for Education for Genetics, Breeding and Multiple Utilization of CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianghong Liu
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ming Xu
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tuansheng Chen
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinying Huang
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaohua Cao
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhijian Yang
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
10
|
Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. FRONTIERS IN PLANT SCIENCE 2018; 9:847. [PMID: 29997637 PMCID: PMC6028737 DOI: 10.3389/fpls.2018.00847] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 05/09/2023]
Abstract
Understanding the effects of ionizing radiation (IR) on plants is important for environmental protection, for agriculture and horticulture, and for space science but plants have significant biological differences to the animals from which much relevant knowledge is derived. The effects of IR on plants are understood best at acute high doses because there have been; (a) controlled experiments in the field using point sources, (b) field studies in the immediate aftermath of nuclear accidents, and (c) controlled laboratory experiments. A compilation of studies of the effects of IR on plants reveals that although there are numerous field studies of the effects of chronic low doses on plants, there are few controlled experiments that used chronic low doses. Using the Bradford-Hill criteria widely used in epidemiological studies we suggest that a new phase of chronic low-level radiation research on plants is desirable if its effects are to be properly elucidated. We emphasize the plant biological contexts that should direct such research. We review previously reported effects from the molecular to community level and, using a plant stress biology context, discuss a variety of acute high- and chronic low-dose data against Derived Consideration Reference Levels (DCRLs) used for environmental protection. We suggest that chronic low-level IR can sometimes have effects at the molecular and cytogenetic level at DCRL dose rates (and perhaps below) but that there are unlikely to be environmentally significant effects at higher levels of biological organization. We conclude that, although current data meets only some of the Bradford-Hill criteria, current DCRLs for plants are very likely to be appropriate at biological scales relevant to environmental protection (and for which they were intended) but that research designed with an appropriate biological context and with more of the Bradford-Hill criteria in mind would strengthen this assertion. We note that the effects of IR have been investigated on only a small proportion of plant species and that research with a wider range of species might improve not only the understanding of the biological effects of radiation but also that of the response of plants to environmental stress.
Collapse
Affiliation(s)
| | - Neil Willey
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| |
Collapse
|