1
|
Hoffmann M, Schedel CA, Mayer M, Rossner C, Scheele M, Fery A. Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091466. [PMID: 37177011 PMCID: PMC10179793 DOI: 10.3390/nano13091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Metal nanoparticles are increasingly used as key elements in the fabrication and processing of advanced electronic systems and devices. For future device integration, their charge transport properties are essential. This has been exploited, e.g., in the development of gold-nanoparticle-based conductive inks and chemiresistive sensors. Colloidal wires and metal nanoparticle lines can also be used as interconnection structures to build directional electrical circuits, e.g., for signal transduction. Our scalable bottom-up, template-assisted self-assembly creates gold-nanorod (AuNR) lines that feature comparably small widths, as well as good conductivity. However, the bottom-up approach poses the question about the consistency of charge transport properties between individual lines, as this approach leads to heterogeneities among those lines with regard to AuNR orientation, as well as line defects. Therefore, we test the conductance of the AuNR lines and identify requirements for a reliable performance. We reveal that multiple parallel AuNR lines (>11) are necessary to achieve predictable conductivity properties, defining the level of miniaturization possible in such a setup. With this system, even an active area of only 16 µm2 shows a higher conductance (~10-5 S) than a monolayer of gold nanospheres with dithiolated-conjugated ligands and additionally features the advantage of anisotropic conductance.
Collapse
Affiliation(s)
- Marisa Hoffmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| | - Christine Alexandra Schedel
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, 01069 Dresden, Germany
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany
| |
Collapse
|
2
|
Ramasamy M, Ha JW. Influence of Oxygen Plasma Treatment on Structural and Spectral Changes in Gold Nanorods Immobilized on Indium Tin Oxide Surfaces. J Chem Phys 2022; 157:014702. [DOI: 10.1063/5.0097220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxygen plasma treatment is commonly used to sterilize gold nanoparticles by removing chemical contaminants from their surface while simultaneously inducing surface activation and functionalization of nanoparticles for biological, electrocatalytic, or electrochemical studies. In this study, we investigate the influence of oxygen plasma treatment on structural and localized surface plasmon resonance (LSPR) spectral changes of anisotropic gold nanorods (AuNRs) immobilized on an indium tin oxide (ITO) glass substrate. Unlike AuNRs deposited on a glass slide, no noticeable structural change or deformation of AuNRs on ITO was observed while increasing the oxygen plasma treatment time. This result indicates that ITO provides structural stability to AuNRs immobilized on its surface. Additionally, single-particle scattering spectra of AuNRs showed the broadening of LSPR linewidth within 60 s of oxygen plasma treatment as a result of the plasmon energy loss contributed from plasmon damping to ITO due to the removal of capping material from the AuNR surface. Nevertheless, an increase in the surface charge on the AuNR surface was observed by narrowing the LSPR linewidth after 180 s of plasma treatment. The electrochemical study of AuNRs immobilized on ITO electrodes revealed the surface activation and functionalization of AuNRs by increasing plasma treatment. Hence, in this study, a significant understanding of oxygen plasma treatment on AuNRs immobilized on ITO surfaces is provided.
Collapse
Affiliation(s)
| | - Ji Won Ha
- Chemistry, University of Ulsan, Korea, Republic of (South Korea)
| |
Collapse
|
3
|
Al-Zubeidi A, Hoener BS, Collins SSE, Wang W, Kirchner SR, Hosseini Jebeli SA, Joplin A, Chang WS, Link S, Landes CF. Hot Holes Assist Plasmonic Nanoelectrode Dissolution. NANO LETTERS 2019; 19:1301-1306. [PMID: 30616352 DOI: 10.1021/acs.nanolett.8b04894] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strong light-absorbing properties allow plasmonic metal nanoparticles to serve as antennas for other catalysts to function as photocatalysts. To achieve plasmonic photocatalysis, the hot charge carriers created when light is absorbed must be harnessed before they decay through internal relaxation pathways. We demonstrate the role of photogenerated hot holes in the oxidative dissolution of individual gold nanorods with millisecond time resolution while tuning charge-carrier density and photon energy using snapshot hyperspectral imaging. We show that light-induced hot charge carriers enhance the rate of gold oxidation and subsequent electrodissolution. Importantly, we distinguish how hot holes generated from interband transitions versus hot holes around the Fermi level contribute to photooxidative dissolution. The results provide new insights into hot-hole-driven processes with relevance to photocatalysis while emphasizing the need for statistical descriptions of nonequilibrium processes on innately heterogeneous nanoparticle supports.
Collapse
|
4
|
Liang JX, Wu Y, Deng H, Long C, Zhu C. Theoretical investigation on the electronic structure of one dimensional infinite monatomic gold wire: insights into conducting properties. RSC Adv 2019; 9:1373-1377. [PMID: 35518005 PMCID: PMC9059624 DOI: 10.1039/c8ra08286c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023] Open
Abstract
Mixed-valence metal-organic nanostructures show unusual electronic properties. In our pervious investigation, we have designed and predicted a unique one-dimensional infinite monatomic gold wire (1D-IMGW) with excellent conductivity and the interesting characteristic of mixed valency (Auc 3+ and Au0 i). For further exploring its conduction properties and stability in conducting state, here we select one electron as a probe to explore the electron transport channel and investigate its electronic structure in conducting state. Density functional theory (DFT) calculations show the 1D-IMGW maintains its original structure in conducting state illustrating its excellent stability. Moreover, while adding an electron, 1D-IMGW is transformed from a semiconductor to a conductor with the energy band mixed with Auc (5d) and Aui (6s) through the Fermi level. Thus 1D-IMGW will conduct along its gold atom chain demonstrating good application prospect in nanodevices.
Collapse
Affiliation(s)
- Jin-Xia Liang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University Guiyang 550018 China
| | - Yanxian Wu
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University Guiyang 550018 China
| | - Hongfang Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University Guiyang 550018 China
| | - Changliang Long
- School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University Guiyang 550025 China
| |
Collapse
|
5
|
Tiefenauer RF, Tybrandt K, Aramesh M, Vörös J. Fast and Versatile Multiscale Patterning by Combining Template-Stripping with Nanotransfer Printing. ACS NANO 2018; 12:2514-2520. [PMID: 29480710 DOI: 10.1021/acsnano.7b08290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal nanostructures are widely used in plasmonic and electronic applications due to their inherent properties. Often, the fabrication of such nanostructures is limited to small areas, as the processing is costly, low-throughput, and comprises harsh fabrication conditions. Here, we introduce a template-stripping based nanotransfer printing method to overcome these limitations. This versatile technique enables the transfer of arbitrary thin film metal structures onto a variety of substrates, including glass, Kapton, silicon, and PDMS. Structures can range from tens of nanometers to hundreds of micrometers over a wafer scale area. The process is organic solvent-free, multilayer compatible, and only takes minutes to perform. The stability of the transferred gold structures on glass exceeds by far those fabricated by e-beam evaporation. Therefore, an adhesion layer is no longer needed, enabling a faster and cheaper fabrication as well as the production of superior nanostructures. Structures can be transferred onto curved substrates, and the technique is compatible with roll-to-roll fabrication; thus, the process is suitable for flexible and stretchable electronics.
Collapse
Affiliation(s)
- Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| | - Klas Tybrandt
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , 601 74 Norrköping , Sweden
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
6
|
Hoener BS, Zhang H, Heiderscheit TS, Kirchner SR, De Silva Indrasekara AS, Baiyasi R, Cai Y, Nordlander P, Link S, Landes CF, Chang WS. Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. J Phys Chem Lett 2017; 8:2681-2688. [PMID: 28534621 DOI: 10.1021/acs.jpclett.7b00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a study of the shape-dependent spectral response of the gold nanoparticle surface plasmon resonance at various electron densities to provide mechanistic insight into the role of capacitive charging, a topic of some debate. We demonstrate a morphology-dependent spectral response for gold nanoparticles due to capacitive charging using single-particle spectroscopy in an inert electrochemical environment. A decrease in plasmon energy and increase in spectral width for gold nanospheres and nanorods was observed as the electron density was tuned through a potential window of -0.3 to 0.1 V. The combined observations could not be explained by existing theories. A new quantum theory for charging based on the random phase approximation was developed. Additionally, the redox reaction of gold oxide formation was probed using single-particle plasmon voltammetry to reproduce the reduction peak from the bulk cyclic voltammetry. These results deepen our understanding of the relationship between optical and electronic properties in plasmonic nanoparticles and provide insight toward their potential applications in directed electrocatalysis.
Collapse
Affiliation(s)
- Benjamin S Hoener
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Hui Zhang
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Thomas S Heiderscheit
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Silke R Kirchner
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Agampodi S De Silva Indrasekara
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Rashad Baiyasi
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Yiyu Cai
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Dryden DM, Vidu R, Stroeve P. Nanowire formation is preceded by nanotube growth in templated electrodeposition of cobalt hybrid nanostructures. NANOTECHNOLOGY 2016; 27:445302. [PMID: 27678075 DOI: 10.1088/0957-4484/27/44/445302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cobalt fluted nanowires, novel nanostructures with a diameter of 200 nm consisting of a solid nanowire base and a thin, nanotubular flute shape, were grown in track-etched polycarbonate membranes via templated electrodeposition. The structures were characterized electrochemically via cyclic voltammetry, chronoamperometry, and charge stripping, and structurally via scanning electron microscopy, transmission electron microscopy, and focused ion beam cross-sectioning. Electrochemical and structural analysis reveals details of their deposition kinetics, structure, and morphology, and indicate possible mechanisms for their formation and control. These unique structures provide inspiration for an array of possible applications in electronics, photonics, and other fields.
Collapse
Affiliation(s)
- Daniel M Dryden
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA. Department of Materials Science and Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
8
|
Byers CP, Hoener BS, Chang WS, Link S, Landes CF. Single-Particle Plasmon Voltammetry (spPV) for Detecting Anion Adsorption. NANO LETTERS 2016; 16:2314-2321. [PMID: 27006995 DOI: 10.1021/acs.nanolett.5b04990] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoparticle and thin film surface plasmons are highly sensitive to electrochemically induced dielectric changes. We exploited this sensitivity to detect reversible electrochemical potential-driven anion adsorption by developing single-particle plasmon voltammetry (spPV) using plasmonic nanoparticles. spPV was used to detect sulfate electroadsorption to individual Au nanoparticles. By comparing both semiconducting and metallic thin film substrates with Au nanoparticle monomers and dimers, we demonstrated that using Au film substrates improved the signal in detecting sulfate electroadsorption and desorption through adsorbate modulated thin film conductance. Using single-particle surface plasmon spectroscopic techniques, we constructed spPV to sense sulfate, acetate, and perchlorate adsorption on coupled Au nanoparticles. spPV extends dynamic spectroelectrochemical sensing to the single-nanoparticle level using both individual plasmon resonance modes and total scattering intensity fluctuations.
Collapse
Affiliation(s)
- Chad P Byers
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Benjamin S Hoener
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Stephan Link
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Christy F Landes
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
9
|
Byers CP, Zhang H, Swearer DF, Yorulmaz M, Hoener BS, Huang D, Hoggard A, Chang WS, Mulvaney P, Ringe E, Halas NJ, Nordlander P, Link S, Landes CF. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. SCIENCE ADVANCES 2015; 1:e1500988. [PMID: 26665175 PMCID: PMC4672758 DOI: 10.1126/sciadv.1500988] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/28/2015] [Indexed: 05/17/2023]
Abstract
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.
Collapse
Affiliation(s)
- Chad P. Byers
- Smalley-Curl Institute Applied Physics Program, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Hui Zhang
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Dayne F. Swearer
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mustafa Yorulmaz
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | - Da Huang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Anneli Hoggard
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Wei-Shun Chang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Paul Mulvaney
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emilie Ringe
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Naomi J. Halas
- Smalley-Curl Institute Applied Physics Program, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Peter Nordlander
- Smalley-Curl Institute Applied Physics Program, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Stephan Link
- Smalley-Curl Institute Applied Physics Program, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Christy F. Landes
- Smalley-Curl Institute Applied Physics Program, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Corresponding author. E-mail:
| |
Collapse
|
10
|
Dielacher B, Tiefenauer RF, Junesch J, Vörös J. Iodide sensing via electrochemical etching of ultrathin gold films. NANOTECHNOLOGY 2015; 26:025202. [PMID: 25513753 DOI: 10.1088/0957-4484/26/2/025202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L(-1)) and 2 μM (254 μg L(-1)), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance.
Collapse
Affiliation(s)
- Bernd Dielacher
- Laboratory of Biosensors & Bioelectronics, ETH Zurich, Gloriastrasse 35, 8092 Zurich Switzerland
| | | | | | | |
Collapse
|
11
|
Mostafalu P, Sonkusale S. A high-density nanowire electrode on paper for biomedical applications. RSC Adv 2015. [DOI: 10.1039/c4ra12373e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different types of nanowires made from platinum, nickel and copper are fabricated and patterned with microscale resolution on paper substrates and employed for biomedical applications.
Collapse
Affiliation(s)
- P. Mostafalu
- NanoLab
- Electrical and Computer Engineering Department
- Tufts University
- Medford
- USA
| | - S. Sonkusale
- NanoLab
- Electrical and Computer Engineering Department
- Tufts University
- Medford
- USA
| |
Collapse
|
12
|
Byers CP, Hoener BS, Chang WS, Yorulmaz M, Link S, Landes CF. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J Phys Chem B 2014; 118:14047-55. [PMID: 24971712 PMCID: PMC4266331 DOI: 10.1021/jp504454y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A hyperspectral imaging method was developed that allowed the identification of heterogeneous plasmon response from 50 nm diameter gold colloidal particles on a conducting substrate in a transparent three-electrode spectroelectrochemical cell under non-Faradaic conditions. At cathodic potentials, we identified three distinct behaviors from different nanoparticles within the same sample: irreversible chemical reactions, reversible chemical reactions, and reversible charge density tuning. The irreversible reactions in particular would be difficult to discern in alternate methodologies. Additional heterogeneity was observed when single nanoparticles demonstrating reversible charge density tuning in the cathodic regime were measured dynamically in anodic potential ranges. Some nanoparticles that showed charge density tuning in the cathodic range also showed signs of an additional chemical tuning mechanism in the anodic range. The expected changes in nanoparticle free-electron density were modeled using a charge density-modified Drude dielectric function and Mie theory, a commonly used model in colloidal spectroelectrochemistry. Inconsistencies between experimental results and predictions of this common physical model were identified and highlighted. The broad range of responses on even a simple sample highlights the rich experimental and theoretical playgrounds that hyperspectral single-particle electrochemistry opens.
Collapse
Affiliation(s)
- Chad P Byers
- Department of Chemistry, Rice Quantum Institute, Laboratory for Nanophotonics and ‡Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | | | | | | | | | | |
Collapse
|