1
|
de Paz JL, Nieto PM. Fluorescence polarization assays to study carbohydrate-protein interactions. Org Biomol Chem 2025; 23:2041-2058. [PMID: 39878128 DOI: 10.1039/d4ob02021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Fluorescence polarization (FP) is a useful technique to study the interactions between carbohydrates and proteins in solution, by using standard equipment and minimal sample consumption. Here, we will review the most recent FP-based approaches in this field, including the study of carbohydrate-lectin, carbohydrate-enzyme and glycosaminoglycan-protein interactions. Advantages and limitations of this methodology will be discussed. To develop a FP procedure for studying carbohydrate-protein interactions, the main requirement is the design and synthesis of a suitable fluorescent glycan probe showing high affinity for the protein of interest. Different synthetic strategies employed for this purpose will be described, including the conjugation of 2-aminoethyl glycosides with amine-reactive fluorescein derivatives, the cycloaddition reaction between azido-functionalized saccharides and alkynylated fluorescent derivatives, and the reaction of the reducing end aldehyde group of an oligosaccharide with a hydrazide-containing fluorescein molecule. Competition FP experiments are particularly interesting because they enable the rapid screening of hundreds/thousands of non-labelled compounds for the discovery of molecules that block carbohydrate-protein binding, potentially modulating the subsequent biological processes.
Collapse
Affiliation(s)
- José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
de Paz JL, García-Jiménez MJ, Jafari V, García-Domínguez M, Nieto PM. Synthesis and interaction with growth factors of sulfated oligosaccharides containing an anomeric fluorinated tail. Bioorg Chem 2023; 141:106929. [PMID: 37879181 DOI: 10.1016/j.bioorg.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction. Fluorescence polarization competition assays indicated that the synthesized oligosaccharides interacted with two heparin-binding growth factors, midkine (MK) and FGF-2, showing higher binding affinities than the natural oligosaccharides, and can be therefore considered as useful GAG mimetics. Moreover, NMR experiments showed that the 3D structure of these compounds is similar to that of the native sequences, in terms of sugar ring and glycosidic linkage conformations. Finally, we also demonstrated that these derivatives are able to block the MK-stimulating effect on NIH3T3 cells growth.
Collapse
Affiliation(s)
- José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - María José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - Vahid Jafari
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
4
|
Porter J, Parisi D, Miller T, Cheallaigh AN, Miller GJ. Chemical synthesis of amphiphilic glycoconjugates: Access to amino, fluorinated and sulfhydryl oleyl glucosides. Carbohydr Res 2023; 530:108854. [PMID: 37329646 DOI: 10.1016/j.carres.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors. We demonstrate capability for this methodology, extending it to synthesise the first examples of pyranose-component fluorination and sulfhydryl modifications within glucosides and glucosamines of oleyl alcohol. These compounds provide an exciting series of tools to explore processes and materials that utilise oleyl glycosides, including as probes for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Jack Porter
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Daniele Parisi
- Croda Europe Ltd., Oak Road, Clough Road, Hull, HU6 7PH, UK
| | - Timothy Miller
- Croda Europe Ltd., Oak Road, Clough Road, Hull, HU6 7PH, UK
| | - Aisling Ní Cheallaigh
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK; Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
5
|
Pleiotrophin Interaction with Synthetic Glycosaminoglycan Mimetics. Pharmaceuticals (Basel) 2022; 15:ph15050496. [PMID: 35631323 PMCID: PMC9147657 DOI: 10.3390/ph15050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chondroitin sulfate (CS) E is the natural ligand for pleiotrophin (PTN) in the central nervous system (CNS) of the embryo. Some structures of PTN in solution have been solved, but no precise location of the binding site has been reported yet. Using 15N-labelled PTN and HSQC NMR experiments, we studied the interactions with a synthetic CS-E tetrasaccharide corresponding to the minimum binding sequence. The results agree with the data for larger GAG (glycosaminoglycans) sequences and confirm our hypothesis that a synthetic tetrasaccharide is long enough to fully interact with PTN. We hypothesize that the central region of PTN is an intrinsically disordered region (IDR) and could modify its properties upon binding. The second tetrasaccharide has two benzyl groups and shows similar effects on PTN. Finally, the last measured compound aggregated but beforehand, showed a behavior compatible with a slow exchange in the NMR time scale. We propose the same binding site and mode for the tetrasaccharides with and without benzyl groups.
Collapse
|
6
|
The Interaction between Chondroitin Sulfate and Dermatan Sulfate Tetrasaccharides and Pleiotrophin. Int J Mol Sci 2022; 23:ijms23063026. [PMID: 35328448 PMCID: PMC8955691 DOI: 10.3390/ijms23063026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Pleiotrophin (PTN) is a neurotrophic factor that participates in the development of the embryonic central nervous system (CNS) and neural stem cell regulation by means of an interaction with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. We have previously studied the complexes between the tetrasaccharides used here and MK (Midkine) by ligand-observed NMR techniques. The present work describes the interactions between a tetrasaccharide library of synthetic models of CS-types and mimetics thereof with PTN using the same NMR transient techniques. We have concluded that: (1) global ligand structures do not change upon binding, (2) the introduction of lipophilic substituents in the structure of the ligand improves the strength of binding, (3) binding is weaker than for MK, (4) STD-NMR results are compatible with multiple binding modes, and (5) the replacement of GlcA for IdoA is not relevant for binding. Then we can conclude that the binding of CS derivatives to PTN and MK are similar and compatible with multiple binding modes of the same basic conformation.
Collapse
|
7
|
García‐Jiménez MJ, Gil‐Caballero S, Maza S, Corzana F, Juárez‐Vicente F, Miles JR, Sakamoto K, Kadomatsu K, García‐Domínguez M, de Paz JL, Nieto PM. Midkine Interaction with Chondroitin Sulfate Model Synthetic Tetrasaccharides and Their Mimetics: The Role of Aromatic Interactions. Chemistry 2021; 27:12395-12409. [PMID: 34213045 PMCID: PMC8457220 DOI: 10.1002/chem.202101674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/29/2022]
Abstract
Midkine (MK) is a neurotrophic factor that participates in the embryonic central nervous system (CNS) development and neural stem cell regulation, interacting with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. In this work, we describe the interactions between a library of synthetic models of CS-types and mimics. We did a structural study of this library by NMR and MD (Molecular Dynamics), concluding that the basic shape is controlled by similar geometry of the glycosidic linkages. Their 3D structures are a helix with four residues per turn, almost linear. We have studied the tetrasaccharide-midkine complexes by ligand observed NMR techniques and concluded that the shape of the ligands does not change upon binding. The ligand orientation into the complex is very variable. It is placed inside the central cavity of MK formed by the two structured beta-sheets domains linked by an intrinsically disordered region (IDR). Docking analysis confirmed the participation of aromatics residues from MK completed with electrostatic interactions. Finally, we test the biological activity by increasing the MK expression using CS tetrasaccharides and their capacity in enhancing the growth stimulation effect of MK in NIH3T3 cells.
Collapse
Affiliation(s)
- María José García‐Jiménez
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
| | - Sergio Gil‐Caballero
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
- Current Address: Universitat de GironaEdifici Jaume Casademont Porta E, Parc CientíficGironaSpain
| | - Susana Maza
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
| | - Francisco Corzana
- Department of ChemistryUniversity of La RiojaLogroño (La Rioja)Spain
| | - Francisco Juárez‐Vicente
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMERCSIC-Universidad de Sevilla-Universidad Pablo de OlavideC/ Américo Vespucio, 2441092SevillaSpain
| | - Jonathan R. Miles
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
| | - Kazuma Sakamoto
- Institute for Glyco-core Research (iGCORE)Departments of BiochemistryNagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-kuNagoya466-8550Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research (iGCORE)Departments of BiochemistryNagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-kuNagoya466-8550Japan
| | - Mario García‐Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMERCSIC-Universidad de Sevilla-Universidad Pablo de OlavideC/ Américo Vespucio, 2441092SevillaSpain
| | - José L. de Paz
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
| | - Pedro M. Nieto
- Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ)cicCartujaCSICUniversidad de SevillaC/ Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
8
|
Torres-Rico M, Maza S, de Paz JL, Nieto PM. Synthesis, structure and midkine binding of chondroitin sulfate oligosaccharide analogues. Org Biomol Chem 2021; 19:5312-5326. [PMID: 34048524 DOI: 10.1039/d1ob00882j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of chondroitin sulfate (CS) oligosaccharide mimetics, more easily synthesized than natural sequences, is a highly interesting task because these compounds pave the way for modulation of the biological processes in which CS is involved. Herein, we report the synthesis of CS type E analogues which present easily accessible glucose units instead of glucuronic acid (GlcA) moieties. NMR experiments and molecular dynamics simulations showed that the 3D structure of these compounds is similar to the structure of the natural CS-E oligosaccharides. In addition, fluorescence polarization (FP) and saturation transfer difference NMR (STD-NMR) experiments revealed that the synthesized CS-like derivatives were able to interact with midkine, a model heparin-binding growth factor, suggesting that the presence of the GlcA carboxylate groups is not essential for the binding. Overall, our results indicate that the synthesized glucose-containing oligosaccharides can be considered as functional and structural CS mimetics.
Collapse
Affiliation(s)
- Myriam Torres-Rico
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - Susana Maza
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
9
|
Zhang L, Xu P, Liu B, Yu B. Chemical Synthesis of Fucosylated Chondroitin Sulfate Oligosaccharides. J Org Chem 2020; 85:15908-15919. [PMID: 32567313 DOI: 10.1021/acs.joc.0c01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fucosylated chondroitin sulfates (FuCSs) are a unique type of polysaccharides occurring in sea cucumber that show a variety of biological activities. In particular, well-defined FuCS oligosaccharides, consisting of a trisaccharide repeating unit of β-d-GalNAc(4,6-diS)-(1→4)-[α-l-Fuc(2,4-diS)-(1→3)]-β-d-GlcUA, display potent anticoagulant activity via selective inhibition of the intrinsic tenase, which could be developed into anticoagulant drugs without bleeding risk. Herein, we report an effective approach to the synthesis of FuCS oligosaccharides, as demonstrated by the successful elaboration of FuCS tri-, hexa-, and nonasaccharides. The syntheses employ an orthogonally protected trisaccharide as a pivotal building block that can be readily converted into the donor and acceptor for glycosidic coupling. In addition, the internal patterns of protecting groups, involving N-trichloroacetyl for N-acetyl group, benzylidene and benzyl groups for sulfonated hydroxyl groups, and benzoyl and methyl esters for free hydroxyl and carboxylic acid, respectively, ensure stereoselective formation of the glycosidic linkages and sequential transformation into the desired FuCS oligosaccharides.
Collapse
Affiliation(s)
- Liangzhong Zhang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024,, China
| | - Benzhang Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024,, China
| |
Collapse
|
10
|
Abronina PI, Zinin AI, Chizhov AO, Kononov LO. Unusual Outcome of Glycosylation: Hydrogen‐Bond Mediated Control of Stereoselectivity by
N
‐Trifluoroacetyl Group? European J Org Chem 2020. [DOI: 10.1002/ejoc.202000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander O. Chizhov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Ramadan S, Li T, Yang W, Zhang J, Rashidijahanabad Z, Tan Z, Parameswaran N, Huang X. Chemical Synthesis and Anti-Inflammatory Activity of Bikunin Associated Chondroitin Sulfate 24-mer. ACS CENTRAL SCIENCE 2020; 6:913-920. [PMID: 32607438 PMCID: PMC7318065 DOI: 10.1021/acscentsci.9b01199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 05/09/2023]
Abstract
Bikunin, a chondroitin sulfate (CS) proteoglycan clinically used to treat acute inflammation and sepsis, contains a CS chain with more than 20 monosaccharide units. To understand the function of the CS chain of bikunin, synthesis of long CS chains is needed. After exploring multiple glycosylation approaches and protective group chemistry, we report herein the successful generation of the longest CS chain to date (24-mer) in an excellent overall yield on a multi-mg scale. The anti-inflammatory activities of both bikunin and the synthetic 24-mer were determined, and the results demonstrate that both the glycan and the core protein are important for anti-inflammatory activities of bikunin by reducing macrophage production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Sherif Ramadan
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Chemistry
Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tianlu Li
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Weizhun Yang
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jicheng Zhang
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zahra Rashidijahanabad
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zibin Tan
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Narayanan Parameswaran
- Department
of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
- E-mail:
| |
Collapse
|
12
|
de la Cruz N, Ramos-Soriano J, Reina JJ, de Paz JL, Thépaut M, Fieschi F, Sousa-Herves A, Rojo J. Influence of the reducing-end anomeric configuration of the Man9 epitope on DC-SIGN recognition. Org Biomol Chem 2020; 18:6086-6094. [DOI: 10.1039/d0ob01380c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anomeric configuration of the reducing end of Man9 does not influence the binding to DC-SIGN.
Collapse
Affiliation(s)
- Noelia de la Cruz
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Javier Ramos-Soriano
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - José J. Reina
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - José L. de Paz
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Michel Thépaut
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- 38000 Grenoble
| | - Franck Fieschi
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- 38000 Grenoble
| | - Ana Sousa-Herves
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Javier Rojo
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| |
Collapse
|
13
|
Synthesis of a Fluorous-Tagged Hexasaccharide and Interaction with Growth Factors Using Sugar-Coated Microplates. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24081591. [PMID: 31013665 PMCID: PMC6515340 DOI: 10.3390/molecules24081591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
Here, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks were successfully assembled and the target oligosaccharide was prepared in excellent yield. The use of more acid stable 4,6-O-silylidene protected glucosamine units was crucial for the efficiency of this strategy because harsh reaction conditions were needed in the glycosylations to avoid the formation of orthoester side products. Fluorescence polarization experiments demonstrated the strong interactions between the synthesized hexamer, and midkine and FGF-2. In addition, we have developed an alternative assay to analyse these molecular recognition events. The prepared oligosaccharide was non-covalently attached to a fluorous-functionalized microplate and the direct binding of the protein to the sugar-immobilized surface was measured, affording the corresponding KD,surf value.
Collapse
|
14
|
Mena-Barragán T, de Paz JL, Nieto PM. Unexpected loss of stereoselectivity in glycosylation reactions during the synthesis of chondroitin sulfate oligosaccharides. Beilstein J Org Chem 2019; 15:137-144. [PMID: 30745989 PMCID: PMC6350880 DOI: 10.3762/bjoc.15.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
Here, we present an exploratory study on the fluorous-assisted synthesis of chondroitin sulfate (CS) oligosaccharides. Following this approach, a CS tetrasaccharide was prepared. However, in contrast to our previous results, a significant loss of β-selectivity was observed in [2 + 2] glycosylations involving N-trifluoroacetyl-protected D-galactosamine donors and D-glucuronic acid (GlcA) acceptors. These results, together with those obtained from experiments employing model monosaccharide building blocks, highlight the impact of the glycosyl acceptor structure on the stereoselectivity of glycosylation reactions. Our study provides useful data about the substitution pattern of GlcA units for the efficient synthesis of CS oligomers.
Collapse
Affiliation(s)
- Teresa Mena-Barragán
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
15
|
Köhling S, Blaszkiewicz J, Ruiz-Gómez G, Fernández-Bachiller MI, Lemmnitzer K, Panitz N, Beck-Sickinger AG, Schiller J, Pisabarro MT, Rademann J. Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG-protein binding. Chem Sci 2018; 10:866-878. [PMID: 30774881 PMCID: PMC6346292 DOI: 10.1039/c8sc03649g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
High binding affinities of GAG toward extracellular regulatory proteins are governed by recognition diversity, sulfation pattern, length, and anomeric functionalization.
Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-β, FGF-1, FGF-2, and AT-III, and we establish structure–activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG–protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.
Collapse
Affiliation(s)
- Sebastian Köhling
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Joanna Blaszkiewicz
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | | | - Katharina Lemmnitzer
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - Nydia Panitz
- Institute of Biochemistry , University of Leipzig , Brüderstr. 34 , 04103 Leipzig , Germany
| | | | - Jürgen Schiller
- Institute of Medical Physics and Biophysics , University of Leipzig , Härtelstr. 16/18 , 04107 Leipzig , Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics , BIOTEC TU Dresden , Tatzberg 47-51 , Dresden 01307 , Germany .
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany .
| |
Collapse
|
16
|
Jadhav S, Gulumkar V, Deshpande P, Coffey ET, Lönnberg H, Virta P. Synthesis of Azide-Modified Chondroitin Sulfate Precursors: Substrates for "Click"- Conjugation with Fluorescent Labels and Oligonucleotides. Bioconjug Chem 2018; 29:2382-2393. [PMID: 29856920 PMCID: PMC6203187 DOI: 10.1021/acs.bioconjchem.8b00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Azidopropyl-modified
precursors of chondroitin sulfate (CS) tetrasaccharides
have been synthesized, which, after facile conversion to final CS
structures, may be conjugated with alkyne-modified target compounds
by a one-pot “click”-ligation. RP HPLC was used for
the monitoring of the key reaction steps (protecting group manipulation
and sulfation) and purification of the CS precursors (as partially
protected form, bearing the O-Lev, O-benzoyl, and N-trichloroacetyl groups and methyl
esters). Subsequent treatments with aqueous NaOH, concentrated ammonia,
and acetic anhydride (i.e., global deprotection and acetylation of
the galactosamine units) converted the precursors to final CS structures.
The azidopropyl group was exposed to a strain-promoted azide–alkyne
cycloaddition (SPAAC) with a dibenzylcyclooctyne-modified carboxyrhodamine
dye to give labeled CSs. Conjugation with a 5′-cyclooctyne-modified
oligonucleotide was additionally carried out to show the applicability
of the precursors for the synthesis of biomolecular hybrids.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland.,Department of Cellular and Molecular Medicine, School of Medicine , University of California, San Diego , La Jolla , California 92093 , United States
| | - Vijay Gulumkar
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| | - Prasannakumar Deshpande
- Turku Centre for Biotechnology , University of Turku, Åbo Akademi University , Tykistökatu 6 , FI 20520 Turku , Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology , University of Turku, Åbo Akademi University , Tykistökatu 6 , FI 20520 Turku , Finland
| | - Harri Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| |
Collapse
|
17
|
Pomin VH, Wang X. Synthetic Oligosaccharide Libraries and Microarray Technology: A Powerful Combination for the Success of Current Glycosaminoglycan Interactomics. ChemMedChem 2018; 13:648-661. [PMID: 29160016 PMCID: PMC5895483 DOI: 10.1002/cmdc.201700620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Glycosaminoglycans (GAGs) are extracellular matrix and/or cell-surface sulfated glycans crucial to the regulation of various signaling proteins, the functions of which are essential in many pathophysiological systems. Because structural heterogeneity is high in GAG chains and purification is difficult, the use of structurally defined GAG oligosaccharides from natural sources as molecular models in both biophysical and pharmacological assays is limited. To overcome this obstacle, GAG-like oligosaccharides of well-defined structures are currently being synthesized by chemical and/or enzymatic means in many research groups around the world. These synthetic GAG oligosaccharides serve as useful molecular tools in studies of GAG-protein interactions. In this review, besides discussing the commonest routes used for the synthesis of GAG oligosaccharides, we also survey some libraries of these synthetic models currently available for research and discuss their activities in interaction studies with functional proteins, especially through the microarray approach.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
18
|
Maza S, Gandia-Aguado N, de Paz JL, Nieto PM. Fluorous-tag assisted synthesis of a glycosaminoglycan mimetic tetrasaccharide as a high-affinity FGF-2 and midkine ligand. Bioorg Med Chem 2018; 26:1076-1085. [DOI: 10.1016/j.bmc.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
19
|
Li J, Su G, Liu J. Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC USA
| |
Collapse
|
20
|
Li J, Su G, Liu J. Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides. Angew Chem Int Ed Engl 2017; 56:11784-11787. [PMID: 28731518 DOI: 10.1002/anie.201705638] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/07/2022]
Abstract
Chondroitin sulfate (CS) is a sulfated polysaccharide that plays essential physiological roles. Here, we report an enzyme-based method for the synthesis of a library of 15 different CS oligosaccharides. This library covers 4-O-sulfated and 6-O-sulfated oligosaccharides ranging from trisaccharides to nonasaccharides. We also describe the synthesis of unnatural 6-O-sulfated CS pentasaccharides containing either a 6-O-sulfo-2-azidogalactosamine or a 6-O-sulfogalactosamine residue. The availability of structurally defined CS oligosaccharides offers a novel approach to investigate the biological functions of CS.
Collapse
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Guan T, Li T, Zhang T, Li Z, Wang Y, Yu H, Ruan P, Zhang J, Wang Y. Fluorescence polarization assay for the simultaneous determination of bisphenol A, bisphenol F and their diglycidyl ethers in canned tuna. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1358178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tianzhu Guan
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zhuolin Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongzhi Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ping Ruan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
22
|
Domínguez-Rodríguez P, Reina JJ, Gil-Caballero S, Nieto PM, de Paz JL, Rojo J. Glycodendrimers as Chondroitin Sulfate Mimetics: Synthesis and Binding to Growth Factor Midkine. Chemistry 2017. [DOI: 10.1002/chem.201701890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pedro Domínguez-Rodríguez
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - José J. Reina
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
- Current address: Singular Research Centre in Chemical Biology and Molecular Materials (CIQUS); Organic Chemistry Department; University of Santiago de Compostela (USC); Santiago de Compostela Spain
| | - Sergio Gil-Caballero
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - José L. de Paz
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| |
Collapse
|
23
|
García-Jiménez MJ, Gil-Caballero S, Canales Á, Jiménez-Barbero J, de Paz JL, Nieto PM. Interactions between a Heparin Trisaccharide Library and FGF-1 Analyzed by NMR Methods. Int J Mol Sci 2017. [PMID: 28629128 PMCID: PMC5486114 DOI: 10.3390/ijms18061293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
FGF-1 is a potent mitogen that, by interacting simultaneously with Heparan Sulfate Glycosaminoglycan HSGAG and the extracellular domains of its membrane receptor (FGFR), generates an intracellular signal that finally leads to cell division. The overall structure of the ternary complex Heparin:FGF-1:FGFR has been finally elucidated after some controversy and the interactions within the ternary complex have been deeply described. However, since the structure of the ternary complex was described, not much attention has been given to the molecular basis of the interaction between FGF-1 and the HSGAG. It is known that within the complex, the carbohydrate maintains the same helical structure of free heparin that leads to sulfate groups directed towards opposite directions along the molecular axis. The precise role of single individual interactions remains unclear, as sliding and/or rotating of the saccharide along the binding pocket are possibilities difficult to discard. The HSGAG binding pocket can be subdivided into two regions, the main one can accommodate a trisaccharide, while the other binds a disaccharide. We have studied and analyzed the interaction between FGF-1 and a library of trisaccharides by STD-NMR and selective longitudinal relaxation rates. The library of trisaccharides corresponds to the heparin backbone and it has been designed to interact with the main subsite of the protein.
Collapse
Affiliation(s)
- María José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Sergio Gil-Caballero
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Ángeles Canales
- Complutense University of Madrid, Fac CC Quim, Department Quim Organ 1, Avd Complutense S/N, E-28040 Madrid, Spain.
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain.
- Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain.
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain.
| | - José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
24
|
|
25
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Kakitsubata Y, Aramaki R, Nishioka K, Wakao M, Suda Y. Toward the construction of dermatan sulfate (DS) partial disaccharide library: efficient synthesis of building blocks, common intermediate, and ligand conjugate of type-B DS disaccharide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Solera C, Macchione G, Maza S, Kayser MM, Corzana F, de Paz JL, Nieto PM. Chondroitin Sulfate Tetrasaccharides: Synthesis, Three-Dimensional Structure and Interaction with Midkine. Chemistry 2016; 22:2356-69. [DOI: 10.1002/chem.201504440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Solera
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Giuseppe Macchione
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Susana Maza
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - M. Mar Kayser
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Francisco Corzana
- Departamento de Química; Centro de Investigación en Síntesis Química; Universidad de La Rioja; Madre de Dios, 51 26006 Logroño Spain
| | - José L. de Paz
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Pedro M. Nieto
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| |
Collapse
|
28
|
de Paz JL, Nieto PM. Improvement on binding of chondroitin sulfate derivatives to midkine by increasing hydrophobicity. Org Biomol Chem 2016; 14:3506-9. [DOI: 10.1039/c6ob00389c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The relative binding affinities of sulfated, fully protected chondroitin sulfate oligosaccharides for midkine are much higher than those displayed by the natural deprotected sequences.
Collapse
Affiliation(s)
- J. L. de Paz
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- cicCartuja
- CSIC and Universidad de Sevilla
- 41092 Sevilla
| | - P. M. Nieto
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- cicCartuja
- CSIC and Universidad de Sevilla
- 41092 Sevilla
| |
Collapse
|
29
|
Xu P, Laval S, Guo Z, Yu B. Microwave-assisted simultaneous O,N-sulfonation in the synthesis of heparin-like oligosaccharides. Org Chem Front 2016. [DOI: 10.1039/c5qo00320b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous O,N-sulfonation of heparin-like saccharides was achieved in short reaction times and excellent yields (>90%) under microwave irradiation.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zheng Guo
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
30
|
Mohamed S, Ferro V. Synthetic Approaches to L-Iduronic Acid and L-Idose: Key Building Blocks for the Preparation of Glycosaminoglycan Oligosaccharides. Adv Carbohydr Chem Biochem 2015; 72:21-61. [PMID: 26613814 DOI: 10.1016/bs.accb.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
L-Iduronic acid (IdoA) is an important monosaccharide component of glycosaminoglycans (GAGs) such as heparin, heparan sulfate and dermatan sulfate. GAGs are complex, highly sulfated polysaccharides that mediate a multitude of physiological and pathological processes via their interactions with a range of diverse proteins. The main challenge in the synthesis of GAG oligosaccharides is the efficient gram-scale preparation of IdoA building blocks since neither IdoA nor L-idose is commercially available or readily accessible from natural sources. In this review, the different synthetic approaches for the preparation of IdoA and its derivatives, including L-idose, are presented and discussed. Derivatives of the latter are often used in GAG synthesis and are elaborated to IdoA via selective oxidation at C-6 after incorporation into a GAG chain. Particular focus will be given to the preparation of IdoA synthons most commonly used for GAG oligosaccharide synthesis, and on the progress made since the last systematic review in this area.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Miller GJ, Broberg KR, Rudd C, Helliwell MR, Jayson GC, Gardiner JM. A latent reactive handle for functionalising heparin-like and LMWH deca- and dodecasaccharides. Org Biomol Chem 2015; 13:11208-19. [PMID: 26381107 PMCID: PMC4672752 DOI: 10.1039/c5ob01706h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disaccharide units containing a latent aldehyde surrogate at O4 provide late-stage access to terminal aldehyde LMWH and HS deca and dodecasaccharides.
d-Glucosamine derivatives bearing latent O4 functionality provide modified H/HS-type disaccharide donors for a final stage capping approach enabling introduction of conjugation-suitable, non-reducing terminal functionality to biologically important glycosaminoglycan oligosaccharides. Application to the synthesis of the first O4-terminus modified synthetic LMWH decasaccharide and an HS-like dodecasaccharide is reported.
Collapse
Affiliation(s)
- Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry, 131 Princess Street, University of Manchester M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Tu Z, Liu PK, Wu MC, Lin CH. Expeditious Synthesis of Orthogonally Protected Saccharides through Consecutive Protection/Glycosylation Steps. Isr J Chem 2015. [DOI: 10.1002/ijch.201400166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Wakao M, Obata R, Miyachi K, Kaitsubata Y, Kondo T, Sakami C, Suda Y. Synthesis of a chondroitin sulfate disaccharide library and a GAG-binding protein interaction analysis. Bioorg Med Chem Lett 2015; 25:1407-11. [PMID: 25765912 DOI: 10.1016/j.bmcl.2015.02.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
Chondroitin sulfate (CS), which belongs to the glycosaminoglycan (GAG) superfamily, is a linear sulfated polysaccharide involved in various biological processes. CS structure is very heterogeneous and contains various sulfation patterns owing to the multiple and random enzymatic modifications that occur during its biosynthesis. The resultant microdomain structure in the CS chain interacts with specific biomolecules to regulate biological functions. Therefore, an analysis of the structure-activity relationship of CS at the molecular level is necessary to clarify their biofunctions. In this study, we designed the common intermediate possessing an orthogonally removable protective group and systematically synthesized all 16 types of CS disaccharide structure generated by sulfation. In addition, we demonstrated the on-time analysis of the binding properties of GAG-binding proteins using 'Sugar Chip' immobilized CS disaccharide structures by surface plasmon resonance (SPR) imaging, indicating that our chip technology is effective for the evaluation of binding properties.
Collapse
Affiliation(s)
- Masahiro Wakao
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | - Rumi Obata
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kento Miyachi
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yuhei Kaitsubata
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Takao Kondo
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Chiho Sakami
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan; SUDx-Biotec Corporation, 1-41-1 Shiroyama, Kagoshima 890-0013, Japan.
| |
Collapse
|
34
|
Syntheses of chondroitin sulfate tetrasaccharide structures containing 4,6-disulfate patterns and analysis of their interaction with glycosaminoglycan-binding protein. Bioorg Med Chem Lett 2015; 25:1552-5. [PMID: 25752983 DOI: 10.1016/j.bmcl.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate tetrasaccharide ligand conjugates, namely GlcA-GalNAc6S-GlcA-GalNAc4S6S (CS-C+E) 1, GlcA2S-GalNAc6S-GlcA2S-GalNAc4S6S (CS-D+T) 2, GlcA-GalNAc4S6S-GlcA-GalNAc4S (CS-E+A) 3, GlcA-GalNAc4S6S-GlcA-GalNAc6S (CS-E+C) 4, and GlcA-GalNAc4S6S-GlcA-GalNAc4S6S (CS-E+E) 5, were systematically synthesized using a disaccharide building block 6. Synthesized CS tetrasaccharide structures were immobilized onto gold-coated chips to prepare array-type sugar chips, and the binding properties of protein were evaluated by surface plasmon resonance imaging biosensor. CS-D+T, CS-E+A, CS-E+C, and CS-E+E showed greater affinity for basic fibroblast growth factor than did other tetrasaccharides (CS-C+D, C+E, D+D).
Collapse
|
35
|
Macchione G, de Paz JL, Nieto PM. Synthesis of hyaluronic acid oligosaccharides and exploration of a fluorous-assisted approach. Carbohydr Res 2014; 394:17-25. [DOI: 10.1016/j.carres.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
|
36
|
Macchione G, Maza S, Mar Kayser M, de Paz JL, Nieto PM. Synthesis of Chondroitin Sulfate Oligosaccharides UsingN-(Tetrachlorophthaloyl)- andN-(Trifluoroacetyl)galactosamine Building Blocks. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|