1
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Zhang S, Zhang C, Guo A, Liu B, Su H, Sheng X. Computational mechanistic investigation of the kinetic resolution of α-methyl-phenylacetaldehyde by norcoclaurine synthase. Commun Chem 2024; 7:64. [PMID: 38538750 PMCID: PMC10973476 DOI: 10.1038/s42004-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Norcoclaurine synthase from Thalictrum flavum (TfNCS) demonstrated high stereospecificity and yield in catalyzing the Pictet-Spengler reaction of dopamine with chiral aldehydes, achieving kinetic resolution of aldehydes. However, the mechanism and the factors contributing to the stereoselectivity remain unclear. Herein, by using quantum chemical calculations, the mechanisms of TfNCS-catalyzed reactions of dopamine with both enantiomers of α-methyl-phenylacetaldehyde are studied. The calculations reveal a mechanism mirroring the reaction of natural substrates, for which the deprotonation of the C5-H of the cyclized intermediate is rate-limiting. The calculated overall barriers are 20.1 kcal mol-1 and 21.6 kcal mol-1 for the reactions of (R)- and (S)-α-methyl-phenylacetaldehyde, respectively. The M97 and L72 residues are proposed to be the key residues contributing to the stereospecificity. The obtained detailed information is helpful for designing new variants of TfNCS with extended substrate scope, and also advancing our understanding of TfNCS reactions for potential applications.
Collapse
Affiliation(s)
- Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, PR China
| | - Chenghua Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637100, PR China
| | - Aijing Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baoyan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, PR China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Bhat MF, Prats Luján A, Saifuddin M, Fodran P, Poelarends GJ. Multigram-scale chemoenzymatic synthesis of diverse aminopolycarboxylic acids as potential metallo-β-lactamase inhibitors. Org Biomol Chem 2024; 22:491-495. [PMID: 38126753 PMCID: PMC10792612 DOI: 10.1039/d3ob01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Toxin A, a precursor to naturally occurring aspergillomarasmine A, aspergillomarasmine B, lycomarasmine and related aminopolycarboxylic acids, was synthesized as the desired (2S,2'S)-diastereomer on a multigram-scale (>99% conversion, 82% isolated yield, dr > 95 : 5) from commercially available starting materials using the enzyme ethylenediamine-N,N'-disuccinic acid lyase. A single-step protection route of this chiral synthon was developed to aid N-sulfonylation/-alkylation and reductive amination at the terminal primary amine for easy derivatization, followed by global deprotection to give the corresponding toxin A derivatives, including lycomarasmine, in moderate to good yields (23-66%) and with high stereopurity (dr > 95 : 5). Furthermore, a chemoenzymatic route was developed to introduce a click handle on toxin A (yield 72%, dr > 95 : 5) and its cyclized congener for further analogue design. Finally, a chemoenzymatic route towards the synthesis of photocaged aspergillomarasmine B (yield 8%, dr > 95 : 5) was established, prompting further steps into smart prodrug design and precision delivery. These new synthetic methodologies have the prospective of facilitating research into the finding of more selective and potent metallo-β-lactamase (MBL) inhibitors, which are urgently needed to combat MBL-based infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Peter Fodran
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
4
|
Cigan E, Pletz J, Berger SA, Hierzberger B, Grilec-Zlamal M, Steiner A, Oroz-Guinea I, Kroutil W. Concise synthesis of ( R)-reticuline and (+)-salutaridine by combining early-stage organic synthesis and late-stage biocatalysis. Chem Sci 2023; 14:9863-9871. [PMID: 37736642 PMCID: PMC10510765 DOI: 10.1039/d3sc02304d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Efficient access to the morphinan scaffold remains a major challenge in both synthetic chemistry and biotechnology. Here, a biomimetic chemo-enzymatic strategy to synthesize the natural promorphinan intermediate (+)-salutaridine is demonstrated. By combining early-stage organic synthesis with enzymatic asymmetric key step transformations, the prochiral natural intermediate 1,2-dehydroreticuline was prepared and subsequently stereoselectively reduced by the enzyme 1,2-dehydroreticuline reductase obtaining (R)-reticuline in high ee and yield (>99% ee, up to quant. conversion, 92% isol. yield). In the final step, membrane-bound salutaridine synthase was used to perform the selective ortho-para phenol coupling to give (+)-salutaridine. The synthetic route shows the potential of combining early-stage advanced organic chemistry to minimize protecting group techniques with late-stage multi-step biocatalysis to provide an unprecedented access to the medicinally important compound class of promorphinans.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Jakob Pletz
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Sarah A Berger
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Hierzberger
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Michael Grilec-Zlamal
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Alexander Steiner
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Isabel Oroz-Guinea
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
5
|
Mou M, Zhang C, Zhang S, Chen F, Su H, Sheng X. Uncovering the Mechanism of Azepino-Indole Skeleton Formation via Pictet-Spengler Reaction by Strictosidine Synthase: A Quantum Chemical Investigation. ChemistryOpen 2023; 12:e202300043. [PMID: 37248801 PMCID: PMC10233217 DOI: 10.1002/open.202300043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Strictosidine synthase (STR) catalyzes the Pictet-Spengler (PS) reaction of tryptamine and secologanin to produce strictosidine. Recent studies demonstrated that the enzyme can also catalyze the reaction of non-natural substrates to form new alkaloid skeletons. For example, the PS condensation of 1H-indole-4-ethanamine with secologanin could be promoted by the STR from Rauvolfia serpentina (RsSTR) to generate a rare class of skeletons with a seven-membered ring, namely azepino-[3,4,5-cd]-indoles, which are precursors for the synthesis of new compounds displaying antimalarial activity. In the present study, the detailed reaction mechanism of RsSTR-catalyzed formation of the rare seven-membered azepino-indole skeleton through the PS reaction was revealed at the atomic level by quantum chemical calculations. The structures of the transition states and intermediates involved in the reaction pathway were optimized, and the energetics of the complete reaction were analyzed. Based on our calculation results, the most likely pathway of the enzyme-catalyzed reaction was determined, and the rate-determining step of the reaction was clarified. The mechanistic details obtained in the present study are important in understanding the promiscuous activity of RsSTR in the formation of the rare azepino-indole skeleton molecule and are also helpful in designing STR enzymes for the synthesis of other new alkaloid skeleton molecules.
Collapse
Affiliation(s)
- Mingqi Mou
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
| | - Chenghua Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- School of PharmacyNorth Sichuan Medical CollegeNanchong637100P.R. China
| | - Shiqing Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| | - Fuqiang Chen
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
| | - Hao Su
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P.R. China
- University of Chinese Academy of Sciences19 A Yuquan RoadBeijing100049P.R. China
- National Center of Technology Innovation for Synthetic BiologyNational Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon ManufacturingTianjin300308P.R. China
| |
Collapse
|
6
|
Liu Z, Gao H, Zhao Z, Huang M, Wang S, Zhan J. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: Update. Biomed Pharmacother 2023; 157:113990. [PMID: 36459712 DOI: 10.1016/j.biopha.2022.113990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a crucial therapeutic target for multiple human diseases comprising type 2 diabetes (T2DM) and obesity because it is a seminal part of a negative regulator in both insulin and leptin signaling pathways. PTP1B inhibitors increase insulin receptor sensitivity and have the ability to cure insulin resistance-related diseases. However, the few PTP1B inhibitors that entered the clinic (Ertiprotafib, ISIS-113715, Trodusquemine, and JTT-551) were discontinued due to side effects or low selectivity. Molecules with broad chemical diversity extracted from natural products have been reported to be potent PTP1B inhibitors with few side effects. This article summarizes the recent PTP1B inhibitors extracted from natural products, clarifying the current research progress, and providing new options for designing new and effective PTP1B inhibitors.
Collapse
Affiliation(s)
- Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | - Ziyu Zhao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Mengrui Huang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Shengnan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
7
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chen BS, Zhang D, de Souza FZR, Liu L. Recent Advances in the Synthesis of Marine-Derived Alkaloids via Enzymatic Reactions. Mar Drugs 2022; 20:md20060368. [PMID: 35736171 PMCID: PMC9229328 DOI: 10.3390/md20060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alkaloids are a large and structurally diverse group of marine-derived natural products. Most marine-derived alkaloids are biologically active and show promising applications in modern (agro)chemical, pharmaceutical, and fine chemical industries. Different approaches have been established to access these marine-derived alkaloids. Among these employed methods, biotechnological approaches, namely, (chemo)enzymatic synthesis, have significant potential for playing a central role in alkaloid production on an industrial scale. In this review, we discuss research progress on marine-derived alkaloid synthesis via enzymatic reactions and note the advantages and disadvantages of their applications for industrial production, as well as green chemistry for marine natural product research.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Di Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fayene Zeferino Ribeiro de Souza
- Centro Universitário Planalto do Distrito Federal, Universidade Virtual do Estado de São Paulo (UNIPLAN), Campus Bauru 17014-350, Brazil
- Correspondence: ; Tel.: +55-014-32452580
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
9
|
Gorantla JN, Maniganda S, Pengthaisong S, Ngiwsara L, Sawangareetrakul P, Chokchaisiri S, Kittakoop P, Svasti J, Ketudat Cairns JR. Chemoenzymatic and Protecting-Group-Free Synthesis of 1,4-Substituted 1,2,3-Triazole-α-d-glucosides with Potent Inhibitory Activity toward Lysosomal α-Glucosidase. ACS OMEGA 2021; 6:25710-25719. [PMID: 34632227 PMCID: PMC8495876 DOI: 10.1021/acsomega.1c03928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
α-Glucosyl triazoles have rarely been tested as α-glucosidase inhibitors, partly due to inefficient synthesis of their precursor α-d-glucosylazide (αGA1). Glycosynthase enzymes, made by nucleophile mutations of retaining β-glucosidases, produce αGA1 in chemical rescue experiments. Thermoanaerobacterium xylanolyticus glucosyl hydrolase 116 β-glucosidase (TxGH116) E441G nucleophile mutant catalyzed synthesis of αGA1 from sodium azide and pNP-β-d-glucoside (pNPGlc) or cellobiose in aqueous medium at 45 °C. The pNPGlc and azide reaction product was purified by Sephadex LH-20 column chromatography to yield 280 mg of pure αGA1 (68% yield). αGA1 was successfully conjugated with alkynes attached to different functional groups, including aryl, ether, amine, amide, ester, alcohol, and flavone via copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reactions. These reactions afforded the 1,4-substituted 1,2,3-triazole-α-d-glucoside derivatives AGT2-14 without protection and deprotection. Several of these glucosyl triazoles exhibited strong inhibition of human lysosomal α-glucosidase, with IC50 values for AGT4 and AGT14 more than 60-fold lower than that of the commercial α-glucosidase inhibitor acarbose.
Collapse
Affiliation(s)
- Jaggaiah N. Gorantla
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Santhi Maniganda
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Lukana Ngiwsara
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Suwadee Chokchaisiri
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Prasat Kittakoop
- Chulabhorn
Graduate Institute, Chemical Sciences Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - James R. Ketudat Cairns
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
10
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
11
|
Ke S, Xu T, Min Y, Wan Z, Yang Z, Wang K. Marine Alkaloid Pityriacitrin and Its Analogues: Discovery, Structures, Synthetic Methods and Biological Properties. Mini Rev Med Chem 2021; 21:233-244. [PMID: 33200706 DOI: 10.2174/1389557520666201116144156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Pityriacitrin is a natural marine alkaloid with a typical β-carboline scaffold, and which has been demonstrated to exhibit diverse biological functions. The special structural features for pityriacitrin lead to the increasing research interest and the emergence of versatile derivatives, and many pityriacitrin analogues have been isolated or synthesized over the past decades. The structural diversity and evolved biological activity of these natural alkaloids can offer opportunities for the development of highly potential novel drugs with a new mechanism of action, and therefore, the aim of this brief review is to describe the discovery, synthesis, and biological properties of natural pityriacitrin and its derivatives, as well as the isolation source.
Collapse
Affiliation(s)
- Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tingting Xu
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ziwen Yang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
12
|
Corrado ML, Knaus T, Mutti FG. High Regio- and Stereoselective Multi-enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from β-Methylstyrene. Chembiochem 2021; 22:2345-2350. [PMID: 33880862 PMCID: PMC8359840 DOI: 10.1002/cbic.202100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Indexed: 12/16/2022]
Abstract
We present a one-pot cascade for the synthesis of phenylpropanolamines (PPAs) in high optical purities (er and dr up to >99.5 %) and analytical yields (up to 95 %) by using 1-phenylpropane-1,2-diols as key intermediates. This bioamination entails the combination of an alcohol dehydrogenase (ADH), an ω-transaminase (ωTA) and an alanine dehydrogenase to create a redox-neutral network, which harnesses the exquisite and complementary regio- and stereo-selectivities of the selected ADHs and ωTAs. The requisite 1-phenylpropane-1,2-diol intermediates were obtained from trans- or cis-β-methylstyrene by combining a styrene monooxygenase with epoxide hydrolases. Furthermore, in selected cases, the envisioned cascade enabled to obtain the structural isomer (1S,2R)-1-amino-1-phenylpropan-2-ol in high optical purity (er and dr >99.5 %). This is the first report on an enzymatic method that enables to obtain all of the four possible PPA stereoisomers in great enantio- and diastereo-selectivity.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
13
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
14
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
15
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
16
|
Lipase-Catalyzed Kinetic Resolution of Alcohols as Intermediates for the Synthesis of Heart Rate Reducing Agent Ivabradine. Catalysts 2021. [DOI: 10.3390/catal11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ivabradine (Corlanor®), is a chiral benzocycloalkane currently employed and commercialized for the treatment of chronic stable angina pectoris and for the reduction in sinus tachycardia. The eutomer (S)-ivabradine is usually produced via chiral resolution of intermediates, by employing enantiopure auxiliary molecules or through preparative chiral HPLC separations. Recently, more sustainable biocatalytic approaches have been reported in literature for the preparation of the chiral amine precursor. In this work, we report on a novel biocatalyzed pathway, via a resolution study of a key alcohol intermediate used as a precursor of the chiral amine. After screening several enzymatic reaction conditions, employing different lipases and esterases both for the esterification and hydrolysis reactions, the best result was achieved with Pseudomonas cepacia Lipase and the final product was obtained in up to 96:4 enantiomeric ratio (e.r.) of an ivabradine alcohol precursor. This enantiomer was then efficiently converted into the desired amine in a facile three step synthetic sequence.
Collapse
|
17
|
Sheng X, Himo F. Computational Study of Pictet–Spenglerase Strictosidine Synthase: Reaction Mechanism and Origins of Enantioselectivity of Natural and Non-Natural Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
18
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
19
|
Sahoo AR, Lalitha G, Murugesh V, Bruneau C, Sharma GVM, Suresh S, Achard M. Direct Access to (±)‐10‐Desbromoarborescidine A from Tryptamine and Pentane‐1,5‐diol. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Apurba Ranjan Sahoo
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Gummidi Lalitha
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - V. Murugesh
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Christian Bruneau
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Gangavaram V. M. Sharma
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Mathieu Achard
- Univ RennesISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
20
|
Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. The Pictet-Spengler Reaction Updates Its Habits. Molecules 2020; 25:E414. [PMID: 31963860 PMCID: PMC7024544 DOI: 10.3390/molecules25020414] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydro-isoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011-2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations.
Collapse
Affiliation(s)
- Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Laura Mangiardi
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Giuliano Delle Monache
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Silvia Balducci
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Simone Berardozzi
- Department of Chemistry and Applied Biosciences, ETH-Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Roberta Franzini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
21
|
Thorpe TW, France SP, Hussain S, Marshall JR, Zawodny W, Mangas-Sanchez J, Montgomery SL, Howard RM, Daniels DSB, Kumar R, Parmeggiani F, Turner NJ. One-Pot Biocatalytic Cascade Reduction of Cyclic Enimines for the Preparation of Diastereomerically Enriched N-Heterocycles. J Am Chem Soc 2019; 141:19208-19213. [DOI: 10.1021/jacs.9b10053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thomas W. Thorpe
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Scott P. France
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shahed Hussain
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - James R. Marshall
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Wojciech Zawodny
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sarah L. Montgomery
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Roger M. Howard
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - David S. B. Daniels
- Pfizer Worldwide Research and Development Discovery Park, Sandwich, Kent CT13 9NJ, U.K
| | - Rajesh Kumar
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
22
|
Sheng X, Himo F. Enzymatic Pictet–Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase. J Am Chem Soc 2019; 141:11230-11238. [DOI: 10.1021/jacs.9b04591] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
23
|
Xu T, Shi L, Zhang Y, Wang K, Yang Z, Ke S. Synthesis and biological evaluation of marine alkaloid-oriented β-carboline analogues. Eur J Med Chem 2019; 168:293-300. [DOI: 10.1016/j.ejmech.2019.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022]
|
24
|
Lambruschini C, Basso A, Banfi L. Integrating biocatalysis and multicomponent reactions. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 29:3-9. [PMID: 30471671 DOI: 10.1016/j.ddtec.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/08/2018] [Indexed: 06/09/2023]
Abstract
While often multicomponent reactions (MCR) are used for the diversity-oriented synthesis of racemic (or achiral) molecular entities, this short review describes two alternative approaches for accessing enantiopure products exploiting the power of biocatalysis. Enzymes or microorganisms may be used for preparing enantiopure MCR inputs or for resolving racemic (or achiral) MCR adducts.
Collapse
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy.
| |
Collapse
|
25
|
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018. [DOI: 10.1002/cctc.201801130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| | - Gideon Grogan
- Department of ChemistryUniversity of York Heslington York, YO10 5DD UK
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| |
Collapse
|
26
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine N-Methyltransferase. Angew Chem Int Ed Engl 2018; 57:10600-10604. [PMID: 29791083 PMCID: PMC6099451 DOI: 10.1002/anie.201805060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/03/2022]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites, which have been exploited to develop analgesics, antibiotics, antitumor agents, and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives.
Collapse
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
27
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine
N
‐Methyltransferase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
28
|
Nishida Y, Takeda N, Matsuno K, Miyata O, Ueda M. Acylative Coupling of Amine and Indole Using Chloroform as a Carbonyl Group. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuika Nishida
- Kobe Pharmaceutical University; Motoyamakita, Higashinada 658-8558 Kobe Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University; Motoyamakita, Higashinada 658-8558 Kobe Japan
| | - Kenji Matsuno
- Department of Chemistry and Life Science; Kogakuin University; Nakano, Hachi-oji 192-0015 Tokyo Japan
| | - Okiko Miyata
- Kobe Pharmaceutical University; Motoyamakita, Higashinada 658-8558 Kobe Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University; Motoyamakita, Higashinada 658-8558 Kobe Japan
| |
Collapse
|
29
|
Marx L, Ríos‐Lombardía N, Farnberger JF, Kroutil W, Benítez‐Mateos AI, López‐Gallego F, Morís F, González‐Sabín J, Berglund P. Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent Cinacalcet Employing Transaminases and Ketoreductases. Adv Synth Catal 2018; 360:2157-2165. [PMID: 29937706 PMCID: PMC6001662 DOI: 10.1002/adsc.201701485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Several chemoenzymatic routes have been explored for the preparation of cinacalcet, a calcimimetic agent. Transaminases (TAs) and ketoreductases (KREDs) turned out to be useful biocatalysts for the preparation of key optically active precursors. Thus, the asymmetric amination of 1-acetonaphthone yielded an enantiopure (R)-amine, which can be alkylated in one step to yield cinacalcet. Alternatively, the bioreduction of the same ketone resulted in an enantiopure (S)-alcohol, which was easily converted into the previous (R)-amine. In addition, the reduction was efficiently performed with the KRED and its cofactor co-immobilized on the same porous surface. This self-sufficient heterogeneous biocatalyst presented an accumulated total turnover number (TTN) for the cofactor of 675 after 5 consecutive operational cycles. Finally, in a preparative scale synthesis the TA-based approach was performed in aqueous medium and led to enantiopure cinacalcet in two steps and 50% overall yield.
Collapse
Affiliation(s)
- Lisa Marx
- KTH Royal Institute of TechnologyDepartment of Industrial BiotechnologySE-106 91StockholmSweden
- EntreChem, S.L.Vivero Ciencias de la SaludSanto Domingo de Guzmán33011OviedoSpain
| | | | - Judith F. Farnberger
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of GrazHarrachgasse 218010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryOrganic and Bioorganic ChemistryUniversity of GrazHarrachgasse 218010GrazAustria
| | - Ana I. Benítez‐Mateos
- Heterogeneous biocatalysis groupCIC biomaGUNEEdificio Empresarial “C”Paseo de Miramón 18220009DonostiaSpain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis groupCIC biomaGUNEEdificio Empresarial “C”Paseo de Miramón 18220009DonostiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Francisco Morís
- EntreChem, S.L.Vivero Ciencias de la SaludSanto Domingo de Guzmán33011OviedoSpain
| | | | - Per Berglund
- KTH Royal Institute of TechnologyDepartment of Industrial BiotechnologySE-106 91StockholmSweden
| |
Collapse
|
30
|
Zhao J, Lichman BR, Ward JM, Hailes HC. One-pot chemoenzymatic synthesis of trolline and tetrahydroisoquinoline analogues. Chem Commun (Camb) 2018; 54:1323-1326. [PMID: 29345260 PMCID: PMC5804477 DOI: 10.1039/c7cc08024g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
Chemoenzymatic reaction cascades can provide access to chiral compounds from low-cost starting materials in one pot. Here we describe one-pot asymmetric routes to tetrahydroisoquinoline alkaloids (THIAs) using the Pictet-Spenglerase norcoclaurine synthase (NCS) followed by a cyclisation, to give alkaloids with two new heterocyclic rings. These reactions operated with a high atom economy to generate THIAs in high yields.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London , WC1H 0AJ , UK .
| | - Benjamin R. Lichman
- Department of Biochemical Engineering , University College London , Gower Street , London , WC1E 6BT , UK
| | - John M. Ward
- Department of Biochemical Engineering , University College London , Gower Street , London , WC1E 6BT , UK
| | - Helen C. Hailes
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London , WC1H 0AJ , UK .
| |
Collapse
|
31
|
Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch Pharm Res 2017; 41:130-161. [PMID: 29214599 DOI: 10.1007/s12272-017-0997-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
Abstract
Since PTP1B enzyme was discovered in 1988, it has captured the research community's attention. This landmark discovery has stimulated numerous research studies on a variety of human diseases, including cancer, inflammation, and diabetes. Tremendous progress has been made in finding PTP1B inhibitors and exploring PTP1B regulatory mechanisms. This review investigates for the natural PTP1B inhibitors, and focuses on the common characteristics of the discovered structures and structure-activity relationships. To facilitate understanding, all the natural compounds are here divided into five different classes (fatty acids, phenolics, terpenoids, steroids, and alkaloids), according to their skeletons. These PTP1B inhibitors of scaffold structures could serve as a theoretical basis for new concept drug discovery and design.
Collapse
|
32
|
Payer SE, Schrittwieser JH, Kroutil W. Vicinal Diamines as Smart Cosubstrates in the Transaminase-Catalyzed Asymmetric Amination of Ketones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700253] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan E. Payer
- Institute of Chemistry; University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H. Schrittwieser
- Institute of Chemistry; University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry; University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
33
|
Pedragosa-Moreau S, Le Flohic A, Thienpondt V, Lefoulon F, Petit AM, Ríos-Lombardía N, Morís F, González-Sabín J. Exploiting the Biocatalytic Toolbox for the Asymmetric Synthesis of the Heart-Rate Reducing Agent Ivabradine. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - François Lefoulon
- Technologie Servier; Research and Biopharmacy Centre; 27 rue Eugène Vignat 45000 Orléans France
| | - Anne-Marie Petit
- Technologie Servier; Research and Biopharmacy Centre; 27 rue Eugène Vignat 45000 Orléans France
| | | | - Francisco Morís
- EntreChem, S.L.; Edificio Científico Tecnológico; Campus El Cristo 33006 Oviedo Spain
| | - Javier González-Sabín
- EntreChem, S.L.; Edificio Científico Tecnológico; Campus El Cristo 33006 Oviedo Spain
| |
Collapse
|
34
|
Kandepedu N, Abrunhosa-Thomas I, Troin Y. Stereoselective strategies for the construction of polysubstituted piperidinic compounds and their applications in natural products’ synthesis. Org Chem Front 2017. [DOI: 10.1039/c7qo00262a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An abridged and far-reaching review communication on the construction of the polysubstituted piperidinic core using diverse methodologies for the benefit of organic chemists interested in the total synthesis of biologically active compounds.
Collapse
Affiliation(s)
- Nishanth Kandepedu
- Université Clermont Auvergne
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - Isabelle Abrunhosa-Thomas
- Université Clermont Auvergne
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - Yves Troin
- Université Clermont Auvergne
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| |
Collapse
|
35
|
Peng H, Wei E, Wang J, Zhang Y, Cheng L, Ma H, Deng Z, Qu X. Deciphering Piperidine Formation in Polyketide-Derived Indolizidines Reveals a Thioester Reduction, Transamination, and Unusual Imine Reduction Process. ACS Chem Biol 2016; 11:3278-3283. [PMID: 27791349 DOI: 10.1021/acschembio.6b00875] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Piperidine and indolizidine are two basic units of alkaloids that are frequently observed in natural and synthetic compounds. Their biosynthesis in natural products is highly conserved and mostly derived from the incorporation of lysine cyclization products. Through in vitro reconstitution, we herein identified a novel pathway involving a group of polyketide-derived indolizidines, which comprises the processes of tandem two-electron thioester reduction, transamination, and imine reduction to convert acyl carrier protein (ACP)-tethered polyketide chains into the piperidine moieties of their indolizidine scaffolds. The enzymes that catalyze the imine reduction are distinct from previous known imine reductases, which have a fold of acyl-CoA dehydrogenase but do not require flavin for reduction. Our results not only provide a new way for the biosynthesis of the basic units of alkaloids but also show a novel class of imine reductases that may benefit the fields of biocatalysis and biomanufacturing.
Collapse
Affiliation(s)
- Haidong Peng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Erman Wei
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Jiali Wang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Yanan Zhang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Lin Cheng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Hongmin Ma
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Xudong Qu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), 200 North Zhongshan Road, Nanjing 210009, China
| |
Collapse
|
36
|
Chrzanowska M, Grajewska A, Rozwadowska MD. Asymmetric Synthesis of Isoquinoline Alkaloids: 2004-2015. Chem Rev 2016; 116:12369-12465. [PMID: 27680197 DOI: 10.1021/acs.chemrev.6b00315] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, the asymmetric synthesis of chiral nonracemic isoquinoline alkaloids, a family of natural products showing a wide range of structural diversity and biological and pharmaceutical activity, has been based either on continuation or improvement of known traditional methods or on new, recently developed, strategies. Both diastereoselective and enantioselective catalytic methods have been applied. This review describes the stereochemically modified traditional syntheses (the Pictet-Spengler, the Bischler-Napieralski, and the Pomeranz-Fritsch-Bobbitt) along with strategies based on closing of the nitrogen-containing ring B of the isoquinoline core by the formation of bonds between C1-N2, N2-C3, C1-N2/N2-C3, and C1-N2/C4-C4a atoms. Methods involving introduction of substituents at the C1 carbon of isoquinoline core along with syntheses applying various biocatalytic techniques have also been reviewed.
Collapse
Affiliation(s)
- Maria Chrzanowska
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznań, Poland
| | - Agnieszka Grajewska
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznań, Poland
| | - Maria D Rozwadowska
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
37
|
Wetzl D, Gand M, Ross A, Müller H, Matzel P, Hanlon SP, Müller M, Wirz B, Höhne M, Iding H. Asymmetric Reductive Amination of Ketones Catalyzed by Imine Reductases. ChemCatChem 2016. [DOI: 10.1002/cctc.201600384] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dennis Wetzl
- Process Research & Development; F. Hoffmann-La Roche Ltd.; CH-4070 Basel Switzerland
| | - Martin Gand
- Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Alfred Ross
- Pharmaceutical Research and Early Development; F. Hoffmann-La Roche Ltd.; CH-4070 Basel Switzerland
| | - Hubertus Müller
- Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Philipp Matzel
- Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Steven P. Hanlon
- Process Research & Development; F. Hoffmann-La Roche Ltd.; CH-4070 Basel Switzerland
| | - Michael Müller
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Beat Wirz
- Process Research & Development; F. Hoffmann-La Roche Ltd.; CH-4070 Basel Switzerland
| | - Matthias Höhne
- Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Hans Iding
- Process Research & Development; F. Hoffmann-La Roche Ltd.; CH-4070 Basel Switzerland
| |
Collapse
|
38
|
Zhu XY, Chen C, Chen PC, Gao QL, Fang F, Li J, Huang XJ. High-performance enzymatic membrane bioreactor based on a radial gradient of pores in a PSF membrane via facile enzyme immobilization. RSC Adv 2016. [DOI: 10.1039/c5ra25602j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hollow fiber polysulfone membranes with perfect radial gradient distributed pores were selected as substrates, and subsequently the enzyme-immobilization process was achieved by filtration and crosslinking, to finally construct an enhanced EMBR.
Collapse
Affiliation(s)
- Xue-Yan Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Chen Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Peng-Cheng Chen
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Qiao-Ling Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Fei Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
39
|
Bassanini I, Hult K, Riva S. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers. Beilstein J Org Chem 2015; 11:1583-95. [PMID: 26664578 PMCID: PMC4660951 DOI: 10.3762/bjoc.11.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| | - Karl Hult
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy ; School of Biotechnology, Department of Industrial Biotechnology, Albanova KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| |
Collapse
|
40
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 481] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
41
|
|
42
|
|
43
|
de Miranda AS, Simon RC, Grischek B, de Paula GC, Horta BAC, de Miranda LSM, Kroutil W, Kappe CO, de Souza ROMA. Chiral Chlorohydrins from the Biocatalyzed Reduction of Chloroketones: Chiral Building Blocks for Antiretroviral Drugs. ChemCatChem 2015. [DOI: 10.1002/cctc.201403023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Rueda N, dos Santos JCS, Torres R, Barbosa O, Ortiz C, Fernandez-Lafuente R. Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Adv 2015. [DOI: 10.1039/c5ra07379k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lipases immobilized on octyl–glyoxyl agarose may be partially reactivated by unfolding/refolding strategies.
Collapse
Affiliation(s)
- Nazzoly Rueda
- ICP – CSIC
- Campus UAM – CSIC
- 28049 Madrid
- Spain
- Escuela de Química
| | | | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Oveimar Barbosa
- Grupo de investigación en productos naturales (GIPRONUT)
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
| | - Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | | |
Collapse
|
45
|
Sudar M, Findrik Z, Vasić-Rački Đ, Soler A, Clapés P. A new concept for production of (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose, a precursor of d-fagomine. RSC Adv 2015. [DOI: 10.1039/c5ra14414k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel cascade reaction combining three enzymes in one pot for the production of aldol adduct (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose was studied and 79% yield on aldol adduct was achieved in the batch reactor.
Collapse
Affiliation(s)
- Martina Sudar
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - Zvjezdana Findrik
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - Đurđa Vasić-Rački
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - Anna Soler
- Institute of Advanced Chemistry of Catalonia
- Biotransformation and Bioactive Molecules Group
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Pere Clapés
- Institute of Advanced Chemistry of Catalonia
- Biotransformation and Bioactive Molecules Group
- IQAC-CSIC
- 08034 Barcelona
- Spain
| |
Collapse
|
46
|
Mi R, Bai XT, Tu B, Hu YJ. Unraveling the coptisine–ctDNA binding mechanism by multispectroscopic, electrochemical and molecular docking methods. RSC Adv 2015. [DOI: 10.1039/c5ra08790b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study provides evidences of coptisine–DNA intercalation, which may help to develop new efficient, safe probes for the fluorometric detection of DNA instead of traditional toxic and carcinogenic probes.
Collapse
Affiliation(s)
- Ran Mi
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Xiao-Ting Bai
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Bao Tu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| | - Yan-Jun Hu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology
- Department of Chemistry
- Hubei Normal University
- Huangshi 435002
| |
Collapse
|
47
|
Efforts towards the synthesis of microsporin B: ready access to both the enantiomers of the key amino acid fragment. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Schrittwieser JH, Groenendaal B, Resch V, Ghislieri D, Wallner S, Fischereder EM, Fuchs E, Grischek B, Sattler JH, Macheroux P, Turner NJ, Kroutil W. Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion. Angew Chem Int Ed Engl 2014; 53:3731-4. [PMID: 24615790 PMCID: PMC4499246 DOI: 10.1002/anie.201400027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Indexed: 11/21/2022]
Abstract
Deracemization, that is, the transformation of a racemate into a single product enantiomer with theoretically 100% conversion and 100% ee, is an appealing but also challenging option for asymmetric synthesis. Herein a novel chemo-enzymatic deracemization concept by a cascade is described: the pathway involves two enantioselective oxidation steps and one non-stereoselective reduction step, enabling stereoinversion and a simultaneous kinetic resolution. The concept was exemplified for the transformation of rac-benzylisoquinolines to optically pure (S)-berbines. The racemic substrates were transformed to optically pure products (ee>97%) with up to 98% conversion and up to 88% yield of isolated product.
Collapse
Affiliation(s)
- Joerg H Schrittwieser
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Bas Groenendaal
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester, M1 7DN (UK)
| | - Verena Resch
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Diego Ghislieri
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester, M1 7DN (UK)
| | - Silvia Wallner
- Institut für Biochemie, Technische Universität GrazPetersgasse 12, 8010 Graz (Austria)
| | - Eva-Maria Fischereder
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Elisabeth Fuchs
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Barbara Grischek
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Johann H Sattler
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| | - Peter Macheroux
- Institut für Biochemie, Technische Universität GrazPetersgasse 12, 8010 Graz (Austria)
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester, M1 7DN (UK)
| | - Wolfgang Kroutil
- Institut für Chemie, Organische und Bioorganische Chemie, Karl-Franzens-Universität GrazHeinrichstrasse 28, A-8010 Graz (Austria)
| |
Collapse
|
49
|
Schrittwieser JH, Groenendaal B, Resch V, Ghislieri D, Wallner S, Fischereder EM, Fuchs E, Grischek B, Sattler JH, Macheroux P, Turner NJ, Kroutil W. Deracemisierung durch simultane bio-oxidative Racematspaltung und Stereoinversion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Simon RC, Sattler JH, Farnberger JE, Fuchs CS, Richter N, Zepeck F, Kroutil W. Enzymatic asymmetric synthesis of the silodosin amine intermediate. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2013.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|