1
|
Wu M, Torrence I, Liu Y, Wu J, Ge R, Ma K, Liu D, Ren J, Fan S, Ma M, Siegel JB, Tantillo DJ, Lin W, Fan A. Characterization and Engineering of a Bisabolene Synthase Reveal an Unusual Hydride Shift and Key Residues Critical for Mono-, Bi-, and Tricyclic Sesquiterpenes Formation. J Am Chem Soc 2025; 147:10413-10422. [PMID: 40071547 DOI: 10.1021/jacs.4c17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene 6 with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of 6 involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-epi-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.
Collapse
Affiliation(s)
- Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ian Torrence
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Yuanning Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Justin B Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Chen B, Mao J, Xu K, Liu L, Lin W, Guo YW, Wu R, Wang C, Xu B. Mining coral-derived terpene synthases and mechanistic studies of the coral biflorane synthase. SCIENCE ADVANCES 2025; 11:eadv0805. [PMID: 40009671 PMCID: PMC11864185 DOI: 10.1126/sciadv.adv0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Biflorane diterpenoids are unique natural products often seen in marine animals. Recent studies have reported a small number of biflorane synthases. However, the catalytic mechanism and structural basis for biflorane formation remain unclear. To address these issues, we conducted genome mining of terpene synthases from the sea whip coral Paramuricea clavata, resulting in the discovery of a biflorane synthase PcTS1. We performed a series of isotope labeling, crystallography, quantum mechanics/molecular mechanics calculations, and mutagenesis studies toward PcTS1 to investigate the mechanism. Isotopic labeling studies, together with calculations, elucidate a cascade of 1,10-cyclization, 1,3-hydride shift, 1,6-cyclization, 1,2-hydride shift, 2,6-cyclization, cyclopropane ring opening, and deprotonation by the generated pyrophosphate, forming the biflorane scaffold. Crystallography, quantum mechanics/molecular mechanics, and mutagenesis studies confirmed the cascade and produced different terpene scaffolds. Our work demonstrated the mechanism of marine biflorane formation, elucidated the second crystal structure of a coral terpene synthase, and realized the terpene skeleton expansion.
Collapse
Affiliation(s)
- Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jingjing Mao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Drum Tower Hospital, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Wei Lin
- Nanjing Drum Tower Hospital, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chengyuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| |
Collapse
|
3
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. Biochemistry 2024; 63:2904-2915. [PMID: 39400323 DOI: 10.1021/acs.biochem.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus, with and without an inactive analog of the farnesyl diphosphate (FPP) substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP structure was solved to 2.65 Å resolution and showed the ligand in an elongated orientation, incapable of undergoing the initial cyclization event to form a C1-C11 bond. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case, well fit by a curled-up tetraethylene glycol molecule recruited, presumably, from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotation of some active-site residues in comparison to the 2FFPP-structure. Most notably, W56 and F183 undergo 90° rotations between the 2FFPP complex and apoenzyme structures, suggesting that these residues provide interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L and F183A variants were observed to be severely restricted in their ability to catalyze C1-C11 cyclization of the FPP substrate and instead produced predominantly acyclic terpene products dominated by farnesol, β-farnesene, and nerolidol.
Collapse
Affiliation(s)
- Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Brandon Y Black
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - William H Ellenburg
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jacob A Gehtman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
4
|
Zhang W, Wang X, Zhu G, Zhu B, Peng K, Hsiang T, Zhang L, Liu X. Function Switch of a Fungal Sesterterpene Synthase through Molecular Dynamics Simulation Assisted Alteration of an Aromatic Residue Cluster in the Active Pocket of PfNS. Angew Chem Int Ed Engl 2024; 63:e202406246. [PMID: 38934471 DOI: 10.1002/anie.202406246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
- School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Kaitong Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| |
Collapse
|
5
|
Torrence IS, O'Brien TE, Siegel JB, Tantillo DJ. Docking carbocations into terpene synthase active sites using chemically meaningful constraints-The TerDockin approach. Methods Enzymol 2024; 699:231-263. [PMID: 38942505 DOI: 10.1016/bs.mie.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes are a diverse class of natural products which have long been sought after for their chemical properties as medicine, perfumes, and for food flavoring. Computational docking studies of terpene mechanisms have been a challenge due to the lack of strong directing groups which many docking programs rely on. In this chapter, we dive into our computational method Terdockin (Terpene-Docking) as a successful methodology in modeling terpene synthase mechanisms. This method could also be used as inspiration for any multi-ligand docking project.
Collapse
Affiliation(s)
- Ian S Torrence
- Department of Chemistry, University of California Davis, Davis, CA, United States
| | - Terrence E O'Brien
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, United States
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, Davis, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, United States; Genome Center, University of California Davis, Davis, CA, Untied States.
| | - Dean J Tantillo
- Department of Chemistry, University of California Davis, Davis, CA, United States
| |
Collapse
|
6
|
McNamee RE, Frank N, Christensen KE, Duarte F, Anderson EA. Taming nonclassical carbocations to control small ring reactivity. SCIENCE ADVANCES 2024; 10:eadj9695. [PMID: 38215201 PMCID: PMC10786418 DOI: 10.1126/sciadv.adj9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Prediction of the outcome of ring opening of small organic rings under cationic conditions can be challenging due to the intermediacy of nonclassical carbocations. For example, the solvolysis of cyclobutyl or cyclopropylmethyl derivatives generates up to four products on nucleophilic capture or elimination via cyclopropylcarbinyl and bicyclobutonium ions. Here, we show that such reaction outcomes can be controlled by subtle changes to the structure of nonclassical carbocation. Using bicyclo[1.1.0]butanes as cation precursors, the regio- and stereochemistry of ring opening is shown to depend on the degree and nature of the substituents on the cationic intermediates. Reaction outcomes are rationalized using computational models, resulting in a flowchart to predict product formation from a given cation precursor.
Collapse
Affiliation(s)
| | | | | | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
7
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
8
|
Nakano M, Gemma R, Sato H. Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B. Beilstein J Org Chem 2023; 19:1503-1510. [PMID: 37799177 PMCID: PMC10548252 DOI: 10.3762/bjoc.19.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Terpene cyclization reactions involve a number of carbocation intermediates. In some cases, these carbocations are stabilized by through-space interactions with π orbitals. Several terpene/terpenoids, such as sativene, santalene, bergamotene, ophiobolin and mangicol, possess prenyl side chains that do not participate in the cyclization reaction. The role of these prenyl side chains has been partially investigated, but remains elusive in the cyclization cascade. In this study, we focus on variexenol B that is synthesized from iso-GGPP, as recently reported by Dickschat and co-workers, and investigate the possibility of through-space interactions with prenyl side chains using DFT calculations. Our calculations show that (i) the unstable secondary carbocation is stabilized by the cation-π interaction from prenyl side chains, thereby lowering the activation energy, (ii) the four-membered ring formation is completed through bridging from the exomethylene group, and (iii) the annulation from the exomethylene group proceeds in a barrier-free manner.
Collapse
Affiliation(s)
- Moe Nakano
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Rintaro Gemma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
9
|
Spencer TA, Ditchfield R. Tryptophan Stabilization of a Biochemical Carbocation Evaluated by Analysis of π Complexes of 3-Ethylindole with the t-Butyl Cation. ACS OMEGA 2023; 8:26497-26507. [PMID: 37521644 PMCID: PMC10373456 DOI: 10.1021/acsomega.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Understanding how the highly unstable carbocation intermediates in terpenoid biosynthesis are stabilized and protected during their transient existence in enzyme active sites is an intriguing challenge which has to be addressed computationally. Our efforts have focused on evaluating the stabilization afforded via carbocation-π complexation between a biochemical carbocation and an aromatic amino acid residue. This has involved making measurements on an X-ray structure of an enzyme active site that shows a π donor proximate to a putative carbocation site and using these to build models which are analyzed computationally to provide an estimated stabilization energy (SE). Previously, we reported estimated SEs for several such carbocation-π complexes involving phenylalanine. Herein, we report the first such estimate involving tryptophan as the π donor. Because there was almost no published information about indole as a π-complexation donor, we first located computationally equilibrium π and σ complexes of 3-ethylindole with the t-butyl cation as relevant background information. Then, measurements on the X-ray structure of the enzyme CotB2 complexed with geranylgeranyl thiodiphosphate (GGSPP), specifically on the geometric relationship of the putative carbocation at C15 of GGSPP to W186, were used to build a model that afforded a computed SE of -15.3 kcal/mol.
Collapse
|
10
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
11
|
Jiang L, Yang H, Zhang X, Li X, Lv K, Zhang W, Zhu G, Liu C, Wang Y, Hsiang T, Zhang L, Liu X. Schultriene and nigtetraene: two sesterterpenes characterized from pathogenetic fungi via genome mining approach. Appl Microbiol Biotechnol 2022; 106:6047-6057. [PMID: 36040489 DOI: 10.1007/s00253-022-12125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023]
Abstract
Fungal bifunctional terpene synthases (BFTSs) have been reported to contribute to the biosynthesis of a variety of di/sesterterpenes via different carbocation transportation pathways. Genome mining of new BFTSs from unique fungal resources will, theoretically, allow for the identification of new terpenes. In this study, we surveyed the distribution of BFTSs in our in-house collection of 430 pathogenetic fungi and preferred two BFTSs (CsSS and NnNS), long distance from previously characterized BFTSs and located in relatively independent branches, based on the established phylogenetic tree. The heterologous expression of the two BFTSs in Aspergillus oryzae and Saccharomyces cerevisiae led to the identification of two new sesterterpenes separately, 5/12/5 tricyclic type-A sesterterpene (schultriene, 1) for CsSS and 5/11 bicyclic type-B sesterterpene (nigtetraene, 2) for NnNS. In addition, to the best of our knowledge, 2 is the first 5/11 bicyclic type-B characterized sesterterpene to date. On the basis of this, the plausible cyclization mechanisms of 1 and 2 were proposed based on density functional theory calculations. These new enzymes and their corresponding terpenes suggest that the chemical spaces produced by BFTSs remain large and also provide important evidences for further protein engineering for new terpenes and for understanding of cyclization mechanism catalyzed by BFTSs. KEY POINTS: • Genome mining of two BFTSs yields two new sesterterpenoids correspondingly. • Identification of the first 5/11 ring system type-B product. • Parse out the rational cyclization mechanism of isolated sesterterpenoids.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Chengwei Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongheng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China.
| |
Collapse
|
12
|
Nguyen QNN, Xia KT, Zhang Y, Chen N, Morimoto M, Pei X, Ha Y, Guo J, Yang W, Wang LP, Bergman RG, Raymond KN, Toste FD, Tantillo DJ. Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. J Am Chem Soc 2022; 144:11413-11424. [PMID: 35699585 DOI: 10.1021/jacs.2c04179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.
Collapse
Affiliation(s)
- Quynh Nhu N Nguyen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Kay T Xia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yue Zhang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Mariko Morimoto
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
13
|
Wang X, Wang Z, Zhu G, Jiang L, Zhang W, Huang Y, Cong Z, Zhao YL, Xu JH, Hsiang T, Zhang L, Chen Q, Liu X. Chemical control over the conversion between bicyclic and polycyclic terpenes by fungal bifunctional terpene synthases. Chem Commun (Camb) 2022; 58:9476-9479. [DOI: 10.1039/d2cc03644d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mutation on site 89 in the BFTSs alters the carbocation transportation pathway, which changes the sesterterpene structure.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiyi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Spencer TA, Ditchfield R. A simpler method affords evaluation of π stabilization by phenylalanine of several biochemical carbocations. Org Biomol Chem 2020; 18:7597-7607. [PMID: 32955057 DOI: 10.1039/d0ob01565b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Carbocations are important intermediates in the biosynthesis of terpenes and steroids, and it is challenging to try to understand how these relatively unstable species survive even transiently during biochemical reactions. Carbocation-π interaction with aromatic amino acid residues is an important factor in helping to stabilize these positively charged species. However, the short lifetimes of these active site carbocations makes experimental evaluation of the stabilization afforded by such interaction impossible. Computational studies, however, have provided some insight into this phenomenon. Herein we report a simple, computationally efficient method to estimate such stabilization energies afforded by phenylalanine to biochemical carbocation intermediates. A model is constructed in which the biochemical carbocation is replaced by an appropriate carbocation mimic (t-butyl or dimethylallyl). This substitute carbocation is then aligned with an ethylbenzene serving as a surrogate for each proximate phenylalanine in a geometry that replicates as closely as possible the orientation of that phenylalanine using measurements made on an X-ray structure of an enzyme active site in which a carbocation surrogate is bound. Density functional theory computations on such models were then used to yield estimates of stabilization energies. Application of this method to the tertiary carbocation formed in the reaction catalyzed by geranyl diphosphate C-methyl transferase gave a stabilization energy (-12.3 kcal mol-1) that was essentially identical to that obtained previously by analysis of a much more computationally demanding model of the active site. As a check on the accuracy of the simpler method, it was applied with similar success to the farnesyl cation formed in the reaction catalyzed by aristolochene synthase that is stabilized by cation-π interaction with two phenylalanines. Application of this method is also described to estimate carbocation-π stabilization, by the same two phenylalanines, of the final carbocation intermediate leading to aristolochene through analysis of the X-ray structure of an inhibitor of that carbocation bound in the active site of aristolochene synthase. Finally, the stabilization, by either of two phenylalanines, of six carbocation intermediates in the oxidosqualene cyclase-catalyzed formation of lanosterol is estimated by comparable analysis of an X-ray structure of that reaction product bound in the enzyme active site.
Collapse
Affiliation(s)
- Thomas A Spencer
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | | |
Collapse
|
15
|
Properzi R, Kaib PSJ, Leutzsch M, Pupo G, Mitra R, De CK, Song L, Schreiner PR, List B. Catalytic enantiocontrol over a non-classical carbocation. Nat Chem 2020; 12:1174-1179. [PMID: 32989271 DOI: 10.1038/s41557-020-00558-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Carbocations can be categorized into classical carbenium ions and non-classical carbonium ions. These intermediates are ubiquitous in reactions of both fundamental and practical relevance, finding application in the petroleum industry as well as the discovery of new drugs and materials. Conveying stereochemical information to carbocations is therefore of interest to a range of chemical fields. While previous studies targeted systems proceeding through classical ions, enantiocontrol over their non-classical counterparts has remained unprecedented. Here we show that strong and confined chiral acids catalyse enantioselective reactions via the non-classical 2-norbornyl cation. This reactive intermediate is generated from structurally different precursors by leveraging the reactivity of various functional groups to ultimately deliver the same enantioenriched product. Our work demonstrates that tailored catalysts can act as suitable hosts for simple, non-functionalized carbocations via a network of non-covalent interactions. We anticipate that the methods described herein will provide catalytic accessibility to valuable carbocation systems.
Collapse
Affiliation(s)
- Roberta Properzi
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Philip S J Kaib
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Gabriele Pupo
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Raja Mitra
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.,School of Chemical and Biological Sciences, IIT Goa, Ponda, India
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Giessen, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
16
|
Matos JO, Kumar RP, Ma AC, Patterson M, Krauss IJ, Oprian DD. Mechanism Underlying Anti-Markovnikov Addition in the Reaction of Pentalenene Synthase. Biochemistry 2020; 59:3271-3283. [PMID: 32786410 DOI: 10.1021/acs.biochem.0c00518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most terpene synthase reactions follow Markovnikov rules for formation of high-energy carbenium ion intermediates. However, there are notable exceptions. For example, pentalenene synthase (PS) undergoes an initial anti-Markovnikov cyclization reaction followed by a 1,2-hydride shift to form an intermediate humulyl cation with positive charge on the secondary carbon C9 atom of the farnesyl diphosphate substrate. The mechanism by which these enzymes stabilize and guide the regioselectivity of secondary carbocations has not heretofore been elucidated. In an effort to better understand these reactions, we grew crystals of apo-PS, soaked them with the nonreactive substrate analogue 12,13-difluorofarnesyl diphosphate, and determined the X-ray structure of the resulting complex at 2.2 Å resolution. The most striking feature of the active site structure is that C9 is perfectly positioned to make a C-H···π interaction with the side chain benzene ring of residue F76; this would enhance hyperconjugation to stabilize a developing cation at C10 and thus support the anti-Markovnikov regioselectivity of the cyclization. The benzene ring is also positioned to catalyze the migration of H to C10 and stabilize a C9 carbocation. On the opposite face of C9, further cation stabilization is possible via interactions with the main chain carbonyl of I177 and the neighboring intramolecular C6═C7 bond. Mutagenesis experiments also support a role for residue 76 in these interactions, but most interesting is the F76W mutant, whose crystal structure clearly shows C9 and C10 centered above the fused benzene and pyrrole rings of the indole side chain, respectively, such that a carbocation at either position could be stabilized in this complex, and two anti-Markovnikov products, pentalenene and humulene, are formed. Finally, we show that there is a rough correlation (although not absolute) of an aromatic side chain (F or Y) at position 76 in related terpene synthases from Streptomyces that catalyze similar anti-Markovnikov addition reactions.
Collapse
Affiliation(s)
- Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Alison C Ma
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
17
|
Kutateladze DA, Strassfeld DA, Jacobsen EN. Enantioselective Tail-to-Head Cyclizations Catalyzed by Dual-Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:6951-6956. [PMID: 32223127 PMCID: PMC7293861 DOI: 10.1021/jacs.0c02665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of neryl chloride analogues. Experimental data are consistent with a mechanism in which π-participation by the nucleophilic olefin facilitates chloride ionization and thereby circumvents simple elimination pathways. Kinetic and computational studies support a cooperative mode of catalysis wherein two molecules of the urea catalyst engage the substrate and induce enantioselectivity through selective transition state stabilization.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
McCulley CH, Tantillo DJ. Predicting Rearrangement-Competent Terpenoid Oxidation Levels. J Am Chem Soc 2020; 142:6060-6065. [PMID: 32157874 DOI: 10.1021/jacs.9b12398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Results of density functional theory calculations on rearrangements of potential biosynthetic precursors to the sesquiterpenoid illisimonin A reveal that only some possible precursors, those with certain specific oxidation patterns, are rearrangement-competent.
Collapse
Affiliation(s)
- Christina H McCulley
- Department of Chemistry, University of California - Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California - Davis, Davis, California 95616, United States
| |
Collapse
|
19
|
Rodger RT, Graham MS, McErlean CSP. Hyperconjomer stereocontrol of cationic polyene cyclisations. Org Biomol Chem 2019; 17:8551-8560. [PMID: 31528940 DOI: 10.1039/c9ob01364d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyene cyclisations are a powerful method for the direct generation of molecular complexity. This paper describes the use of computational methods to investigate the stereoselectivity of cationic polyene cyclisations of geranylbenzene derivatives. The outcomes highlight the different reactivity of hyperconjomers during the key Friedel-Crafts alkylation step, and informed a successful strategy for the synthesis of (±)-taiwaniaquinone G with improved levels of stereoselectivity.
Collapse
Affiliation(s)
- Robert T Rodger
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
20
|
Rinkel J, Lauterbach L, Dickschat JS. Eine verzweigte Diterpenkaskade: der Mechanismus der Spinodien-Synthase aus Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
21
|
Rinkel J, Lauterbach L, Dickschat JS. A Branched Diterpene Cascade: The Mechanism of Spinodiene Synthase from Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018; 58:452-455. [DOI: 10.1002/anie.201812216] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
22
|
Blank PN, Pemberton TA, Chow JY, Poulter CD, Christianson DW. Crystal Structure of Cucumene Synthase, a Terpenoid Cyclase That Generates a Linear Triquinane Sesquiterpene. Biochemistry 2018; 57:6326-6335. [PMID: 30346736 DOI: 10.1021/acs.biochem.8b00899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Linear triquinanes are sesquiterpene natural products with hydrocarbon skeletons consisting of three fused five-membered rings. Importantly, several of these compounds exhibit useful anticancer, anti-inflammatory, and antibiotic properties. However, linear triquinanes pose significant challenges to organic synthesis because of the structural and stereochemical complexity of their hydrocarbon skeletons. To illuminate nature's solution to the generation of linear triquinanes, we now describe the crystal structure of Streptomyces clavuligerus cucumene synthase. This sesquiterpene cyclase catalyzes the stereospecific cyclization of farnesyl diphosphate to form a linear triquinane product, (5 S,7 S,10 R,11 S)-cucumene. Specifically, we report the structure of the wild-type enzyme at 3.05 Å resolution and the structure of the T181N variant at 1.96 Å resolution, both in the open active site conformations without any bound ligands. The high-resolution structure of T181N cucumene synthase enables inspection of the active site contour, which adopts a three-dimensional shape complementary to a linear triquinane. Several aromatic residues outline the active site contour and are believed to facilitate cation-π interactions that would stabilize carbocation intermediates in catalysis. Thus, aromatic residues in the active site not only define the template for catalysis but also play a role in reducing activation barriers in the multistep cyclization cascade.
Collapse
Affiliation(s)
- Patrick N Blank
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Travis A Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Jeng-Yeong Chow
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - C Dale Poulter
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
23
|
O’Brien TE, Bertolani SJ, Zhang Y, Siegel JB, Tantillo DJ. Predicting Productive Binding Modes for Substrates and Carbocation Intermediates in Terpene Synthases-Bornyl Diphosphate Synthase as a Representative Case. ACS Catal 2018; 8:3322-3330. [PMID: 30034923 PMCID: PMC6049084 DOI: 10.1021/acscatal.8b00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Terpene synthases comprise a family of enzymes that convert acyclic oligo-isoprenyl diphosphates to terpene natural products with complex, polycyclic carbon backbones via the generation and protection of carbocation intermediates. To accommodate this chemistry, terpene synthase active sites generally are lined with alkyl and aromatic, i.e., nonpolar, sidechains. Predicting the correct, mechanistically relevant binding modes for entire terpene synthase reaction pathways remains an unsolved challenge. Here we describe a method for identifying such modes: TerDockin, a series of protocols to predict the orientation of carbon skeletons of substrates and derived carbocations relative to the bound diphosphate group in terpene synthase active sites. Using this recipe for bornyl diphosphate synthase, we have predicted binding modes that are consistent with all current experimental observations, including the results of isotope labeling experiments and known stereoselectivity. In addition, the predicted binding modes recapitulate key findings of a seminal study involving more computationally demanding QM/MM molecular dynamics methods on part of this pathway. This work illustrates the value of the TerDockin approach as a starting point for more involved calculations and sets the stage for the rational engineering of this family of enzymes.
Collapse
Affiliation(s)
- Terrence E. O’Brien
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - Steven J. Bertolani
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - Yue Zhang
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - Justin B. Siegel
- Department of Chemistry, University of California Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| | - Dean J. Tantillo
- Department of Chemistry, University of California Davis, Davis, California, USA
| |
Collapse
|
24
|
Minami A, Ozaki T, Liu C, Oikawa H. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants. Nat Prod Rep 2018; 35:1330-1346. [DOI: 10.1039/c8np00026c] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyclization mechanisms and structural diversification strategies of novel cyclopentane-forming terpene synthases from various organisms are reviewed.
Collapse
Affiliation(s)
- Atsushi Minami
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Taro Ozaki
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Chengwei Liu
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hideaki Oikawa
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
25
|
Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A 2017; 114:E6005-E6014. [PMID: 28673978 PMCID: PMC5530694 DOI: 10.1073/pnas.1705567114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sesterterpenoids are a rare terpene class harboring untapped chemodiversity and bioactivities. Their structural diversity originates primarily from the scaffold-generating sesterterpene synthases (STSs). In fungi, all six known STSs are bifunctional, containing C-terminal trans-prenyltransferase (PT) and N-terminal terpene synthase (TPS) domains. In plants, two colocalized PT and TPS gene pairs from Arabidopsis thaliana were recently reported to synthesize sesterterpenes. However, the landscape of PT and TPS genes in plant genomes is unclear. Here, using a customized algorithm for systematically searching plant genomes, we reveal a suite of physically colocalized pairs of PT and TPS genes for the biosynthesis of a large sesterterpene repertoire in the wider Brassicaceae. Transient expression of seven TPSs from A. thaliana, Capsella rubella, and Brassica oleracea in Nicotiana benthamiana yielded fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds, and notably (-)-ent-quiannulatene, an enantiomer of the fungal metabolite (+)-quiannulatene. Protein and structural modeling analysis identified an amino acid site implicated in structural diversification. Mutation of this site in one STS (AtTPS19) resulted in premature termination of carbocation intermediates and accumulation of bi-, tri-, and tetracyclic sesterterpenes, revealing the cyclization path for the pentacyclic sesterterpene (-)-retigeranin B. These structural and mechanistic insights, together with phylogenetic analysis, suggest convergent evolution of plant and fungal STSs, and also indicate that the colocalized PT-TPS gene pairs in the Brassicaceae may have originated from a common ancestral gene pair present before speciation. Our findings further provide opportunities for rapid discovery and production of sesterterpenes through metabolic and protein engineering.
Collapse
Affiliation(s)
- Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Young J Hong
- Department of Chemistry, University of California, Davis, CA 95616
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Andrew D Bond
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
26
|
Hare SR, Pemberton RP, Tantillo DJ. Navigating Past a Fork in the Road: Carbocation-π Interactions Can Manipulate Dynamic Behavior of Reactions Facing Post-Transition-State Bifurcations. J Am Chem Soc 2017; 139:7485-7493. [PMID: 28504880 DOI: 10.1021/jacs.7b01042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dynamics calculations are described for carbocation rearrangements involving product-forming pathways with post-transition-state bifurcations. We show that noncovalent interactions with associated benzene rings (a simple model of aromatic amino acid side chains) can switch inherent dynamical tendencies for competing modes of disrotation, establishing that meaningful changes in dynamically controlled product selectivity can be achieved with few weak noncovalent interactions.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Ryan P Pemberton
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
27
|
Parsons ZD, Bland JM, Mullins EA, Eichman BF. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD. J Am Chem Soc 2016; 138:11485-8. [PMID: 27571247 PMCID: PMC5034759 DOI: 10.1021/jacs.6b07399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair.
Collapse
Affiliation(s)
- Zachary D. Parsons
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Joshua M. Bland
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Elwood A. Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
28
|
Purino M, Ardiles AE, Callies O, Jiménez IA, Bazzocchi IL. Montecrinanes A–C: Triterpenes with an Unprecedented Rearranged Tetracyclic Skeleton from
Celastrus vulcanicola
. Insights into Triterpenoid Biosynthesis Based on DFT Calculations. Chemistry 2016; 22:7582-91. [DOI: 10.1002/chem.201600294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Martín Purino
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Alejandro E. Ardiles
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
- Departamento de Química Facultad de Ciencias Universidad de Chile Las Palmeras 3425 Ñuñoa, Santiago Chile
| | - Oliver Callies
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| |
Collapse
|
29
|
Hare SR, Tantillo DJ. Dynamic behavior of rearranging carbocations - implications for terpene biosynthesis. Beilstein J Org Chem 2016; 12:377-90. [PMID: 27340434 PMCID: PMC4902080 DOI: 10.3762/bjoc.12.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
This review describes unexpected dynamical behaviors of rearranging carbocations and the modern computational methods used to elucidate these aspects of reaction mechanisms. Unique potential energy surface topologies associated with these rearrangements have been discovered in recent years that are not only of fundamental interest, but also provide insight into the way Nature manipulates chemical space to accomplish specific chemical transformations. Cautions for analyzing both experimental and theoretical data on carbocation rearrangements are included throughout.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemistry, University of California–Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California–Davis, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
30
|
Potter KC, Zi J, Hong YJ, Schulte S, Malchow B, Tantillo DJ, Peters RJ. Blocking Deprotonation with Retention of Aromaticity in a Plant ent
-Copalyl Diphosphate Synthase Leads to Product Rearrangement. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Potter KC, Zi J, Hong YJ, Schulte S, Malchow B, Tantillo DJ, Peters RJ. Blocking Deprotonation with Retention of Aromaticity in a Plant ent-Copalyl Diphosphate Synthase Leads to Product Rearrangement. Angew Chem Int Ed Engl 2015; 55:634-8. [PMID: 26603275 DOI: 10.1002/anie.201509060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022]
Abstract
Substitution of a histidine, comprising part of the catalytic base group in the ent-copalyl diphosphate synthases found in all seed plants for gibberellin phytohormone metabolism, by a larger aromatic residue leads to rearrangements. Through a series of 1,2-hydride and methyl shifts of the initially formed bicycle predominant formation of (-)-kolavenyl diphosphate is observed. Further mutational analysis and quantum chemical calculations provide mechanistic insight into the basis for this profound effect on product outcome.
Collapse
Affiliation(s)
- Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Jiachen Zi
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Young J Hong
- Department of Chemistry, University of California, Davis, Davis, CA 95616 (USA)
| | - Samuel Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Brandi Malchow
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, CA 95616 (USA)
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA).
| |
Collapse
|
32
|
Hong YJ, Tantillo DJ. Tension between Internal and External Modes of Stabilization in Carbocations Relevant to Terpene Biosynthesis: Modulating Minima Depth via C–H···π Interactions. Org Lett 2015; 17:5388-91. [DOI: 10.1021/acs.orglett.5b02740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, Univeristy of California—Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department
of Chemistry, Univeristy of California—Davis, Davis, California 95616, United States
| |
Collapse
|
33
|
Song L, Zhu G, Liu Y, Liu B, Qin S. Total Synthesis of Atisane-Type Diterpenoids: Application of Diels–Alder Cycloadditions of Podocarpane-Type Unmasked ortho-Benzoquinones. J Am Chem Soc 2015; 137:13706-14. [DOI: 10.1021/jacs.5b08958] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Liqiang Song
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guili Zhu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongjiang Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
34
|
Wheeler SE, Bloom JWG. Anion-π interactions and positive electrostatic potentials of N-heterocycles arise from the positions of the nuclei, not changes in the π-electron distribution. Chem Commun (Camb) 2015; 50:11118-21. [PMID: 25116837 DOI: 10.1039/c4cc05304d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We show that the positive electrostatic potentials and molecular quadrupole moments characteristic of π-acidic azines, which underlie the ability of these rings to bind anions above their centres, arise from the position of nuclear charges, not changes in the π-electron density distribution.
Collapse
Affiliation(s)
- Steven E Wheeler
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
35
|
Hamlin TA, Hamann CS, Tantillo DJ. Delocalization of Charge and Electron Density in the Humulyl Cation—Implications for Terpene Biosynthesis. J Org Chem 2015; 80:4046-53. [DOI: 10.1021/acs.joc.5b00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department
of Chemistry and Biochemistry, Albright College, 13th and Bern
Streets, Reading, Pennsylvania 19604, United States
| | - Christian S. Hamann
- Department
of Chemistry and Biochemistry, Albright College, 13th and Bern
Streets, Reading, Pennsylvania 19604, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California—Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
36
|
Pemberton RP, Ho KC, Tantillo DJ. Modulation of inherent dynamical tendencies of the bisabolyl cation via preorganization in epi-isozizaene synthase. Chem Sci 2015; 6:2347-2353. [PMID: 29308148 PMCID: PMC5645776 DOI: 10.1039/c4sc03782k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/30/2015] [Indexed: 01/09/2023] Open
Abstract
The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase (epi-isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi-isozizaene appear to play important roles.
Collapse
Affiliation(s)
- Ryan P Pemberton
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , CA 95616 , USA .
| | - Krystina C Ho
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , CA 95616 , USA .
| | - Dean J Tantillo
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , CA 95616 , USA .
| |
Collapse
|
37
|
Hong YJ, Tantillo DJ. Viability of Nonclassical Carbocations Proposed as Intermediates in the Biosynthesis of Atiserene, Beyerene, Kaurene, and Trachylobane Diterpenes. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Pan LL, Yang Y, Merz KM. Origin of product selectivity in a prenyl transfer reaction from the same intermediate: exploration of multiple FtmPT1-catalyzed prenyl transfer pathways. Biochemistry 2014; 53:6126-38. [PMID: 25188320 PMCID: PMC4179596 DOI: 10.1021/bi500747z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
FtmPT1 is a fungal indole prenyltransferase
that catalyzes the
reaction of tryptophan derivatives with dimethylallyl pyrophosphate
to form various biologically active compounds. Herein, we describe
detailed studies of FtmPT1 catalysis involving dimethylallyl pyrophosphate
and Brevianamide F following the native pathway (yielding Tryprostatin
B) and an alternate pathway observed in the Gly115Thr mutant of FtmPT1
yielding a novel cyclized product. Importantly, these two products
arise from the same intermediate state, meaning that a step other
than the cleavage of the dimethylallyl pyrophosphate (DMAPP; C–O)
bond is differentiating between the two product reaction channels.
From detailed potential of mean force (PMF) and two-dimensional PMF
analyses, we conclude that the rate-limiting step is the cleavage
of the C–O bond in DMAPP, while the deprotonation/cyclization
step determines the final product distribution. Hence, in the case
of FtmPT1, the optimization of the necessary catalytic machinery guides
the generation of the final product after formation of the intermediate
carbocation.
Collapse
Affiliation(s)
- Li-Li Pan
- Quantum Theory Project and Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | | | | |
Collapse
|
39
|
Wheeler SE, Bloom JWG. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A 2014; 118:6133-47. [PMID: 24937084 DOI: 10.1021/jp504415p] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noncovalent interactions involving aromatic rings, which include π-stacking interactions, anion-π interactions, and XH-π interactions, among others, are ubiquitous in chemical and biochemical systems. Despite dramatic advances in our understanding of these interactions over the past decade, many aspects of these noncovalent interactions have only recently been uncovered, with many questions remaining. We summarize our computational studies aimed at understanding the impact of substituents and heteroatoms on these noncovalent interactions. In particular, we discuss our local, direct interaction model of substituent effects in π-stacking interactions. In this model, substituent effects are dominated by electrostatic interactions of the local dipoles associated with the substituents and the electric field of the other ring. The implications of the local nature of substituent effects on π-stacking interactions in larger systems are discussed, with examples given for complexes with carbon nanotubes and a small graphene model, as well as model stacked discotic systems. We also discuss related issues involving the interpretation of electrostatic potential (ESP) maps. Although ESP maps are widely used in discussions of noncovalent interactions, they are often misinterpreted. Next, we provide an alternative explanation for the origin of anion-π interactions involving substituted benzenes and N-heterocycles, and show that these interactions are well-described by simple models based solely on charge-dipole interactions. Finally, we summarize our recent work on the physical nature of substituent effects in XH-π interactions. Together, these results paint a more complete picture of noncovalent interactions involving aromatic rings and provide a firm conceptual foundation for the rational exploitation of these interactions in a myriad of chemical contexts.
Collapse
Affiliation(s)
- Steven E Wheeler
- Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | | |
Collapse
|
40
|
Lu T, Wheeler SE. Quantifying the Role of Anion−π Interactions in Anion−π Catalysis. Org Lett 2014; 16:3268-71. [DOI: 10.1021/ol501283u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tongxiang Lu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
41
|
Reed CA, Stoyanov ES, Tham FS. Hydrogen bonding versus hyperconjugation in condensed-phase carbocations. Org Biomol Chem 2014; 11:3797-802. [PMID: 23632995 DOI: 10.1039/c3ob40737c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperconjugative stabilization of positive charge in tertiary carbocations is the textbook explanation for their stability and low frequency νCH bands in their IR spectra have long been taken as confirming evidence. While this is substantiated in the gas phase by the very close match of the IR spectrum of argon-tagged t-butyl cation with that calculated under C(s) symmetry, the situation in condensed phases is much less clear. The congruence of νCH(max) of t-Bu(+) in superacid media (2830 cm(-1)) with that in the gas phase (2834 cm(-1)) has recently been shown to be accidental. Rather, νCH(max) varies considerably as a function of counterion in a manner that reveals the presence of significant C-H···anion hydrogen bonding. This paper addresses the question of the relative importance of hyperconjugation versus H-bonding. We show by assigning IR spectra in the νCH region to specific C-H bonds in t-butyl cation that the low frequency νCH(max) band in the IR spectrum of t-butyl cation, long taken as direct evidence for hyperconjugation, appears to be due mostly to H-bonding. The appearance of similar low frequency νCH bands in the IR spectra of secondary alkyl carboranes such as i-Pr(CHB11Cl11), which have predominant sp(3) centres rather than sp(2) centres (and are therefore less supportive of hyperconjugation), also suggests the dominance of H-bonding over hyperconjugation.
Collapse
Affiliation(s)
- Christopher A Reed
- Department of Chemistry, University of California, Riverside, California 92651, USA.
| | | | | |
Collapse
|
42
|
Chen N, Zhou J, Li J, Xu J, Wu R. Concerted Cyclization of Lanosterol C-Ring and D-Ring Under Human Oxidosqualene Cyclase Catalysis: An ab Initio QM/MM MD Study. J Chem Theory Comput 2014; 10:1109-20. [PMID: 26580186 DOI: 10.1021/ct400949b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jiabo Li
- Schrödinger, LLC., 120 West 45th Street,
17th Floor, New York, New York, 10036 United States
| | - Jun Xu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
43
|
Hong YJ, Tantillo DJ. Branching Out from the Bisabolyl Cation. Unifying Mechanistic Pathways to Barbatene, Bazzanene, Chamigrene, Chamipinene, Cumacrene, Cuprenene, Dunniene, Isobazzanene, Iso-γ-bisabolene, Isochamigrene, Laurene, Microbiotene, Sesquithujene, Sesquisabinene, Thujopsene, Trichodiene, and Widdradiene Sesquiterpenes. J Am Chem Soc 2014; 136:2450-63. [DOI: 10.1021/ja4106489] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
44
|
Zhou Q, Li Y. 1,3-Cationic Alkylidene Migration of Nonclassical Carbocation: A Density Functional Theory Study on Gold(I)-Catalyzed Cycloisomerization of 1,5-Enynes Containing Cyclopropene Moiety. J Am Chem Soc 2014; 136:1505-13. [DOI: 10.1021/ja410734e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qinghai Zhou
- State Key Laboratory
of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yuxue Li
- State Key Laboratory
of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
45
|
Isegawa M, Maeda S, Tantillo DJ, Morokuma K. Predicting pathways for terpene formation from first principles – routes to known and new sesquiterpenes. Chem Sci 2014. [DOI: 10.1039/c3sc53293c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
46
|
Lodewyk MW, Willenbring D, Tantillo DJ. Pentalenene formation mechanisms redux. Org Biomol Chem 2014; 12:887-94. [DOI: 10.1039/c3ob42005a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Pemberton RP, Hong YJ, Tantillo DJ. Inherent dynamical preferences in carbocation rearrangements leading to terpene natural products. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-11-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An introduction to the application of quantum chemical dynamics calculations to mechanistic problems in the field of terpene biosynthesis is provided. A bare bones introduction to the fundamentals of chemical dynamics is followed by a brief account of previous applications to terpene-forming carbocation reactions, a discussion of questions in this field that dynamics calculations may help answer, and a description of current problems to which dynamics calculations are being applied.
Collapse
|