1
|
Carlquist WC, Cytrynbaum EN. The mechanism of MinD stability modulation by MinE in Min protein dynamics. PLoS Comput Biol 2023; 19:e1011615. [PMID: 37976301 PMCID: PMC10691731 DOI: 10.1371/journal.pcbi.1011615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.
Collapse
Affiliation(s)
- William C. Carlquist
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric N. Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Abstract
The molecular mechanisms that help to place the division septum in bacteria is of fundamental importance to ensure cell proliferation and maintenance of cell shape and size. The Min protein system, found in many rod-shaped bacteria, is thought to play a major role in division site selection. Division site selection is a vital process to ensure generation of viable offspring. In many rod-shaped bacteria, a dynamic protein system, termed the Min system, acts as a central regulator of division site placement. The Min system is best studied in Escherichia coli, where it shows a remarkable oscillation from pole to pole with a time-averaged density minimum at midcell. Several components of the Min system are conserved in the Gram-positive model organism Bacillus subtilis. However, in B. subtilis, it is commonly believed that the system forms a stationary bipolar gradient from the cell poles to midcell. Here, we show that the Min system of B. subtilis localizes dynamically to active sites of division, often organized in clusters. We provide physical modeling using measured diffusion constants that describe the observed enrichment of the Min system at the septum. Mathematical modeling suggests that the observed localization pattern of Min proteins corresponds to a dynamic equilibrium state. Our data provide evidence for the importance of ongoing septation for the Min dynamics, consistent with a major role of the Min system in controlling active division sites but not cell pole areas.
Collapse
|
3
|
Kohyama S, Yoshinaga N, Yanagisawa M, Fujiwara K, Doi N. Cell-sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells. eLife 2019; 8:e44591. [PMID: 31358115 PMCID: PMC6667215 DOI: 10.7554/elife.44591] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
The Min system, a system that determines the bacterial cell division plane, uses changes in the localization of proteins (a Min wave) that emerges by reaction-diffusion coupling. Although previous studies have shown that space sizes and boundaries modulate the shape and speed of Min waves, their effects on wave emergence were still elusive. Here, by using a microsized fully confined space to mimic live cells, we revealed that confinement changes the conditions for the emergence of Min waves. In the microsized space, an increased surface-to-volume ratio changed the localization efficiency of proteins on membranes, and therefore, suppression of the localization change was necessary for the stable generation of Min waves. Furthermore, we showed that the cell-sized space strictly limits parameters for wave emergence because confinement inhibits both the instability and excitability of the system. These results show that confinement of reaction-diffusion systems has the potential to control spatiotemporal patterns in live cells.
Collapse
Affiliation(s)
- Shunshi Kohyama
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR)Tohoku University KatahiraSendaiJapan
- MathAM-OILAISTSendaiJapan
| | - Miho Yanagisawa
- Department of Basic Science, Komaba Institute for Science, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Kei Fujiwara
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Nobuhide Doi
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| |
Collapse
|
4
|
Halatek J, Brauns F, Frey E. Self-organization principles of intracellular pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0107. [PMID: 29632261 PMCID: PMC5904295 DOI: 10.1098/rstb.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli, Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans. By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as ‘activators’, ‘inhibitors’ or ‘substrate depletion’. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction–diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- J Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - F Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - E Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
5
|
Wettmann L, Kruse K. The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0111. [PMID: 29632263 DOI: 10.1098/rstb.2017.0111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
In the rod-shaped bacterium Escherichia coli, selection of the cell centre as the division site involves pole-to-pole oscillations of the proteins MinC, MinD and MinE. This spatio-temporal pattern emerges from interactions among the Min proteins and with the cytoplasmic membrane. Combining experimental studies in vivo and in vitro together with theoretical analysis has led to a fairly good understanding of Min-protein self-organization. In different geometries, the system can, in addition to standing waves, also produce travelling planar and spiral waves as well as coexisting stable stationary distributions. Today it stands as one of the best-studied examples of cellular self-organization of proteins.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Lukas Wettmann
- Theoretische Physik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Hoffmann M, Fröhner C, Noé F. ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics. PLoS Comput Biol 2019; 15:e1006830. [PMID: 30818351 PMCID: PMC6413953 DOI: 10.1371/journal.pcbi.1006830] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/12/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Interacting-particle reaction dynamics (iPRD) combines the simulation of dynamical trajectories of interacting particles as in molecular dynamics (MD) simulations with reaction kinetics, in which particles appear, disappear, or change their type and interactions based on a set of reaction rules. This combination facilitates the simulation of reaction kinetics in crowded environments, involving complex molecular geometries such as polymers, and employing complex reaction mechanisms such as breaking and fusion of polymers. iPRD simulations are ideal to simulate the detailed spatiotemporal reaction mechanism in complex and dense environments, such as in signalling processes at cellular membranes, or in nano- to microscale chemical reactors. Here we introduce the iPRD software ReaDDy 2, which provides a Python interface in which the simulation environment, particle interactions and reaction rules can be conveniently defined and the simulation can be run, stored and analyzed. A C++ interface is available to enable deeper and more flexible interactions with the framework. The main computational work of ReaDDy 2 is done in hardware-specific simulation kernels. While the version introduced here provides single- and multi-threading CPU kernels, the architecture is ready to implement GPU and multi-node kernels. We demonstrate the efficiency and validity of ReaDDy 2 using several benchmark examples. ReaDDy 2 is available at the https://readdy.github.io/ website.
Collapse
Affiliation(s)
- Moritz Hoffmann
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Christoph Fröhner
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
8
|
Abstract
Interacting-particle reaction dynamics (iPRD) simulates the spatiotemporal evolution of particles that experience interaction forces and can react with one another. The combination of interaction forces and reactions enables a wide range of complex reactive systems in biology and chemistry to be simulated, but gives rise to new questions such as how to evolve the dynamical equations in a computationally efficient and statistically correct manner. Here we consider reversible reactions such as A + B ⇄ C with interacting particles and derive expressions for the microscopic iPRD simulation parameters such that desired values for the equilibrium constant and the dissociation rate are obtained in the dilute limit. We then introduce a Monte Carlo algorithm that ensures detailed balance in the iPRD time-evolution (iPRD-DB). iPRD-DB guarantees the correct thermodynamics at all concentrations and maintains the desired kinetics in the dilute limit, where chemical rates are well-defined and kinetic measurement experiments usually operate. We show that in dense particle systems, the incorporation of detailed balance is essential to obtain physically realistic solutions. iPRD-DB is implemented in ReaDDy 2.
Collapse
Affiliation(s)
- Christoph Fröhner
- Fachbereich Mathematik und Informatik , Freie Universität Berlin , Arnimallee 6 , 14195 Berlin , Germany
| | - Frank Noé
- Fachbereich Mathematik und Informatik , Freie Universität Berlin , Arnimallee 6 , 14195 Berlin , Germany
| |
Collapse
|
9
|
Smith CA, Yates CA. The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180920. [PMID: 30225082 PMCID: PMC6124063 DOI: 10.1098/rsos.180920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Reaction-diffusion systems are used to represent many biological and physical phenomena. They model the random motion of particles (diffusion) and interactions between them (reactions). Such systems can be modelled at multiple scales with varying degrees of accuracy and computational efficiency. When representing genuinely multiscale phenomena, fine-scale models can be prohibitively expensive, whereas coarser models, although cheaper, often lack sufficient detail to accurately represent the phenomenon at hand. Spatial hybrid methods couple two or more of these representations in order to improve efficiency without compromising accuracy. In this paper, we present a novel spatial hybrid method, which we call the auxiliary region method (ARM), which couples PDE- and Brownian-based representations of reaction-diffusion systems. Numerical PDE solutions on one side of an interface are coupled to Brownian-based dynamics on the other side using compartment-based 'auxiliary regions'. We demonstrate that the hybrid method is able to simulate reaction-diffusion dynamics for a number of different test problems with high accuracy. Furthermore, we undertake error analysis on the ARM which demonstrates that it is robust to changes in the free parameters in the model, where previous coupling algorithms are not. In particular, we envisage that the method will be applicable for a wide range of spatial multi-scales problems including filopodial dynamics, intracellular signalling, embryogenesis and travelling wave phenomena.
Collapse
Affiliation(s)
- Cameron A. Smith
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
10
|
Sadeghi M, Weikl TR, Noé F. Particle-based membrane model for mesoscopic simulation of cellular dynamics. J Chem Phys 2018; 148:044901. [PMID: 29390800 DOI: 10.1063/1.5009107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
11
|
Mizuuchi K, Vecchiarelli AG. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys Biol 2018; 15:031001. [PMID: 29188788 DOI: 10.1088/1478-3975/aa9e5e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.
Collapse
Affiliation(s)
- Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States of America
| | | |
Collapse
|
12
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Caspi Y, Dekker C. Mapping out Min protein patterns in fully confined fluidic chambers. eLife 2016; 5. [PMID: 27885986 PMCID: PMC5217063 DOI: 10.7554/elife.19271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems. DOI:http://dx.doi.org/10.7554/eLife.19271.001 Some proteins can spontaneously organize themselves into ordered patterns within living cells. One widely studied pattern is made in a rod-shaped bacterium called Escherichia coli by a group of proteins called the Min proteins. The pattern formed by the Min proteins allows an E. coli cell to produce two equally sized daughter cells when it divides by ensuring that the division machinery correctly assembles at the center of the parent cell. These proteins move back and forth between the two ends of the parent cell so that the levels of Min proteins are highest at the ends and lowest in the middle. Since the Min proteins act to inhibit the assembly of the cell division machinery, this machinery only assembles in locations where the level of Min proteins is at its lowest, that is, at the middle of the cell. When Min proteins are purified and placed within an artificial compartment that contains a source of chemical energy and is covered by a membrane similar to the membranes that surround cells, they spontaneously form traveling waves on top of the membrane in many directions along to surface. It is not clear how these waves relate to the oscillations seen in E. coli. Caspi and Dekker now analyze the behavior of purified Min proteins inside chambers of various sizes that are fully enclosed by a membrane. The results show that in narrow chambers, Min proteins move back and forth (i.e. oscillate) from one side to the other. However, in wider containers the wave motion is more common. In containers of medium width the Min proteins rotate in a spiral fashion. Caspi and Dekker propose that the spiral rotations are the underlying pattern formed by Min proteins and that the back and forth motion is caused by spirals being cut short. In other words, if a spiral cannot form because the compartment is too small then the back and forth motion emerges. Similarly, Caspi and Dekker propose that the waves emerge in larger containers when multiple spirals come together. These findings suggest that the different patterns that Min proteins form in bacterial cells and artificial compartments arise from different underlying mechanisms. The next step will be to investigate other differences in how the patterns of Min proteins form in E. coli and in artificial compartments. DOI:http://dx.doi.org/10.7554/eLife.19271.002
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C. Multistability and dynamic transitions of intracellular Min protein patterns. Mol Syst Biol 2016; 12:873. [PMID: 27279643 PMCID: PMC4923923 DOI: 10.15252/msb.20156724] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022] Open
Abstract
Cells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations. A new theoretical approach is developed for probing pattern stability under perturbations. Quantitative experiments and simulations show that, once established, Min oscillations tolerate a large degree of intracellular heterogeneity, allowing distinctly different patterns to persist in different cells with the same geometry. Min patterns maintain their axes for hours in experiments, despite imperfections, expansion, and changes in cell shape during continuous cell growth. Transitions between multistable Min patterns are found to be rare events induced by strong intracellular perturbations. The instances of multistability studied here are the combined outcome of boundary growth and strongly nonlinear kinetics, which are characteristic of the reaction-diffusion patterns that pervade biology at many scales.
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jacob Halatek
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Matthias Reiter
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Enzo Kingma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
Abstract
The linear and three-dimensional arrangement and composition of chromatin in eukaryotic genomes underlies the mechanisms directing gene regulation. Understanding this organization requires the integration of many data types and experimental results. Here we describe the approach of integrating genome-wide protein-DNA binding data to determine chromatin states. To investigate spatial aspects of genome organization, we present a detailed description of how to run stochastic simulations of protein movements within a simulated nucleus in 3D. This systems level approach enables the development of novel questions aimed at understanding the basic mechanisms that regulate genome dynamics.
Collapse
Affiliation(s)
- Sven Sewitz
- Babraham Institute, Nuclear Dynamics Programme, Cambridge, CB22 3AT, UK
| | - Karen Lipkow
- Babraham Institute, Nuclear Dynamics Programme, Cambridge, CB22 3AT, UK.
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
16
|
Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 2015; 6:8042. [PMID: 26271728 PMCID: PMC4557355 DOI: 10.1038/ncomms9042] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2015] [Indexed: 12/12/2022] Open
Abstract
Bax is a key regulator of apoptosis that mediates the release of cytochrome c to the cytosol via oligomerization in the outer mitochondrial membrane before pore formation. However, the molecular mechanism of Bax assembly and regulation by other Bcl-2 members remains obscure. Here, by analysing the stoichiometry of Bax oligomers at the single-molecule level, we find that Bax binds to the membrane in a monomeric state and then self-assembles in <1 min. Strikingly, active Bax does not exist in a unique oligomeric state, but as several different species based on dimer units. Moreover, we show that cBid activates Bax without affecting its assembly, while Bcl-xL induces the dissociation of Bax oligomers. On the basis of our experimental data and theoretical modelling, we propose a new mechanism for the molecular pathway of Bax assembly to form the apoptotic pore.
Collapse
|
17
|
Wu F, van Schie BG, Keymer JE, Dekker C. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. NATURE NANOTECHNOLOGY 2015; 10:719-26. [PMID: 26098227 PMCID: PMC4966624 DOI: 10.1038/nnano.2015.126] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be 'sculpted' into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm(3), Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.
Collapse
Affiliation(s)
| | | | | | - Cees Dekker
- Correspondence should be addressed to Cees Dekker ()
| |
Collapse
|
18
|
Bistability: requirements on cell-volume, protein diffusion, and thermodynamics. PLoS One 2015; 10:e0121681. [PMID: 25874711 PMCID: PMC4398428 DOI: 10.1371/journal.pone.0121681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.
Collapse
|