1
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Çimen D, Ünal S, Denizli A. Nanoparticle-assisted plasmonic sensors: Recent developments in clinical applications. Anal Biochem 2025; 698:115753. [PMID: 39719190 DOI: 10.1016/j.ab.2024.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Nanotechnology is an important science that finds a wide range of applications from energy production to industrial production processes and biomedical applications. Nanoparti-cles, which are the most frequently preferred nanomaterials that form the basis of nanotechnolo-gy, are prepared with different composition, size, shape and surface chemistry to provide new techniques in applications in many different fields. The use of nanoparticles in the preparation of plasmonic sensors has increased the interest in plasmonic sensors such as surface plasmon resonance, electrochemical sensors, surface enhanced raman scattering and colorimetric sensors due to their increased sensing capacity on sensor surfaces. Plasmonic sensors are an important option in many different fields, such as medicine, environmental agriculture and food safety, thanks to their ability to solve a multitude of challenges. Because, plasmonic sensors are defined as sensing devices with important features such as sensitive and fast detection, no need for labels, real-time analysis, portability. In this review, the information about nanoparticles and their types and working principles of plasmonic sensors is given. Then, examples in clinical applications using different plasmonic sensors prepared with plasmonic nanoparticles are discussed in detail.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Archana PK, Vasudevan S, Panicker UG. Synergistic Interactions of Metals and Quantum Dots: Expanding Frontiers in Fluorescent Sensing. J Fluoresc 2025:10.1007/s10895-025-04144-x. [PMID: 39985617 DOI: 10.1007/s10895-025-04144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
Fluorescent sensing technologies have emerged as powerful tools in analytical science, offering exceptional sensitivity and selectivity for detecting a wide range of analytes. Among the advanced materials driving these technologies, quantum dots (QDs) and metal nanoparticles (MNPs) stand out due to their unique optical and electronic properties. When combined, these materials exhibit synergistic interactions those significantly enhance the fluorescence signals, enable efficient quenching, and offer tunable optical properties. This review explores the various protocols involved in the development, characterization, and performance evaluation of metal-QD composites; typically, metal-enhanced fluorescence (MEF) and Förster resonance energy transfer (FRET). The applications of the materials in the domain of biomedical diagnostics, environmental monitoring, and biosensing have been highlighted. The review also discusses the current challenges and future scope in the field of metal-QD-based fluorescent sensors and their possible transformative impact on next-generation sensing technologies.
Collapse
Affiliation(s)
- P K Archana
- Department of Chemistry, National Institute of Technology Calicut, 673601, Calicut, Kerala, India
| | - Suni Vasudevan
- Department of Chemistry, National Institute of Technology Calicut, 673601, Calicut, Kerala, India.
| | | |
Collapse
|
4
|
Hou J, Cao Y, Deng Q, Zhang Q, Deng X, Chen Z, Zhong Z. A fluorescence-based immunochromatographic assay using quantum dot-encapsulated nanoparticles for the rapid and sensitive detection of fetuin-B. Anal Chim Acta 2024; 1288:342143. [PMID: 38220278 DOI: 10.1016/j.aca.2023.342143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Earlier detection of CAD improves treatment outcomes and secondary prevention. The circulating fetuin-B protein is considered to be a promising biomarker for the early detection of CAD. However, a facile and reliable clinical test for fetuin-B is still lacking. Herein, we describe a reliable fluorescent biosensor for detecting fetuin-B in plasma that combines quantum dots-doped polystyrene nanoparticles with an immunochromatographic assay strip (QNPs-ICAS). The QNPs served as detection signals in the QNPs-ICAS sensor system, which was based on a double-antibody sandwich structure. Under optimum experimental conditions, the biosensor exhibited a broad linear range of 1-200 ng mL-1 and a low detection limit of 0.299 ng mL-1. Furthermore, the proposed immunosensor demonstrated high sensitivity, satisfactory selectivity, good reproducibility, and excellent recovery. Finally, the performance and applicability of our QNPs-based ICAS system were validated in clinical samples using a commercial ELISA kit with excellent correlations (r = 0.98451, n = 116). To conclude, the proposed sensor served as a rapid, sensitive, and accurate method for detecting fetuin-B in actual clinical samples, thereby demonstrating its potential for preliminary CAD screening and diagnosis.
Collapse
Affiliation(s)
- Jingyuan Hou
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510180, China
| | - Qiaoting Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
5
|
Brito ML, Huband S, Walker M, Walton RI, de Sousa Filho PC. Nanoporous YVO 4 as a luminescent host for probing molecular encapsulation. Chem Commun (Camb) 2023; 59:11393-11396. [PMID: 37668052 DOI: 10.1039/d3cc03501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Control of phase separation of VO43- and rare earth precursors in reverse microemulsions afforded ∼35 nm YVO4 nanoparticles with functionalisable ∼7 ± 3 nm nanopores. Doping by Eu3+ allowed luminescent probing of interfacial crystallisation while xylenol orange absorption showed molecular encapsulation in particle cavities. This provides potential multifunctional systems combining UV-Vis-NIR luminescence and (photo)active molecules for optical sensing.
Collapse
Affiliation(s)
- Milena Lima Brito
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| | - Steven Huband
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Paulo C de Sousa Filho
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Stark K, Cheng C, Hitchcock JP, White AL, Hondow N, Biggs S, Cayre OJ. Controlling adsorption density of polymer-stabilised metal nanoparticles at the oil-water interface. J Colloid Interface Sci 2022; 628:840-850. [DOI: 10.1016/j.jcis.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 12/18/2022]
|
7
|
Abstract
Upconversion nanoparticles are a class of luminescent materials that convert longer-wavelength near-infrared photons into visible and ultraviolet emissions. They can respond to various external stimuli, which underpins many opportunities for developing the next generation of sensing technologies. In this perspective, the unique stimuli-responsive properties of upconverting nanoparticles are introduced, and their recent implementations in sensing are summarized. Promising material development strategies for enhancing the key sensing merits, including intrinsic sensitivity, biocompatibility and modality, are identified and discussed. The outlooks on future technological developments, novel sensing concepts, and applications of nanoscale upconversion sensors are provided.
Collapse
Affiliation(s)
- Gungun Lin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Torresan MF, Wolosiuk A. Critical Aspects on the Chemical Stability of NaYF4-Based Upconverting Nanoparticles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:1191-1210. [DOI: 10.1021/acsabm.0c01562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria F. Torresan
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| |
Collapse
|
9
|
Haque S, Norbert CC, Patra CR. Nanomedicine: future therapy for brain cancers. NANO DRUG DELIVERY STRATEGIES FOR THE TREATMENT OF CANCERS 2021:37-74. [DOI: 10.1016/b978-0-12-819793-6.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Fuentes-Domínguez R, Naznin S, Marques L, Pérez-Cota F, Smith RJ, Clark M. Characterising the size and shape of metallic nano-structures by their acoustic vibrations. NANOSCALE 2020; 12:14230-14236. [PMID: 32608440 DOI: 10.1039/d0nr03410j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The characterisation of metallic nano-structures is of great importance as their optical properties are strongly dependent on their size and shape. Inaccurate size or shape characterisation can result in misleading measurements in applications such as bio-imaging and sensing. Characterisation techniques such as dynamic light scattering, electron microscopy or atomic force microscopy are commonly used; however, performing sub-surface measurements (inside semi-transparent objects) or in liquid media are very challenging. Here, we use time-resolved pump-probe spectroscopy to characterise the size and shape of metallic nano-structures in a water surrounding medium by using their vibrational modes. We show that this technique can achieve size measurements with a precision of 3 nm for the largest nano-structures which are in agreement with electron microscopy images. Furthermore, we demonstrate the ability to probe individual nano-structures despite being located in the same optical point spread function (PSF). Combining the high precision and sub-optical measurements provided by this technique with the ability to insert metallic nano-structures inside biological samples might open a way to perform 3D characterisation measurements.
Collapse
Affiliation(s)
- Rafael Fuentes-Domínguez
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Uehara N, Sonoda N, Iwamatsu T, Haneishi C, Inagawa A. Spontaneous growth of gold nanoclusters to form gold nanoparticles in the presence of high molecular weight poly(ethylene glycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Liu G, Bursill C, Cartland SP, Anwer AG, Parker LM, Zhang K, Feng S, He M, Inglis DW, Kavurma MM, Hutchinson MR, Goldys EM. A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting Cells. iScience 2019; 20:137-147. [PMID: 31569048 PMCID: PMC6833483 DOI: 10.1016/j.isci.2019.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/01/2022] Open
Abstract
We developed a universal method termed OnCELISA to detect cytokine secretion from individual cells by applying a capture technology on the cell membrane. OnCELISA uses fluorescent magnetic nanoparticles as assay reporters that enable detection on a single-cell level in microscopy and flow cytometry and fluorimetry in cell ensembles. This system is flexible and can be modified to detect different cytokines from a broad range of cytokine-secreting cells. Using OnCELISA we have been able to select and sort highly cytokine-secreting cells and identify cytokine-secreting expression profiles of different cell populations in vitro and ex vivo. We show that this system can be used for ultrasensitive monitoring of cytokines in the complex biological environment of atherosclerosis that contains multiple cell types. The ability to identify and select cell populations based on their cytokine expression characteristics is valuable in a host of applications that require the monitoring of disease progression.
Collapse
Affiliation(s)
- Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Christina Bursill
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia; Heart Research Institute, Sydney 2042, Australia
| | - Siân P Cartland
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Lindsay M Parker
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Kaixin Zhang
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Shilun Feng
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Meng He
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - David W Inglis
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), School of Medicine, Adelaide University, Adelaide, SA 5005, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
14
|
Siefe C, Mehlenbacher RD, Peng CS, Zhang Y, Fischer S, Lay A, McLellan CA, Alivisatos AP, Chu S, Dionne JA. Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer. J Am Chem Soc 2019; 141:16997-17005. [PMID: 31592655 PMCID: PMC8259630 DOI: 10.1021/jacs.9b09571] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume.
Collapse
Affiliation(s)
- Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Randy D. Mehlenbacher
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Claire A. McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Li X, Shi L, Li L, Dong C, Li CZ, Shuang S. Recent Advances in Carbon Nanodots: Properties and Applications in Cancer Diagnosis and Treatment. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00089-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
García-Figueroa A, Pena-Pereira F, Lavilla I, Bendicho C. Speciation of gold nanoparticles and total gold in natural waters: A novel approach based on naked magnetite nanoparticles in combination with ascorbic acid. Talanta 2019; 193:176-183. [DOI: 10.1016/j.talanta.2018.09.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
|
17
|
Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Sinduja B, John SA. Highly selective naked eye detection of vitamin B1 in the presence of other vitamins using graphene quantum dots capped gold nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c8nj05734f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The application of Au-GQDs towards the sensitive determination of thiamine was demonstrated.
Collapse
Affiliation(s)
- B. Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute
- Gandhigram – 624 302
- India
| | - S. Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute
- Gandhigram – 624 302
- India
| |
Collapse
|
19
|
Semenova D, Gernaey KV, Silina YE. Exploring the potential of electroless and electroplated noble metal-semiconductor hybrids within bio- and environmental sensing. Analyst 2018; 143:5646-5669. [PMID: 30328420 DOI: 10.1039/c8an01632a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the last two decades, the rapid development and widespread application of nanomaterials has significantly influenced research in various fields, including analytical chemistry and biosensing technologies. In particular, the simple functionalization and tuning of noble metal nanoparticle (NP) surface chemistry resulted in the development of a series of novel biosensing platforms with quick read-out and enhanced capabilities towards specific analyte detection. Moreover, noble metal NPs possess a number of unique properties, viz. high surface-to-volume ratio and excellent spectral, optical, thermal, electrical and catalytic characteristics. This manuscript provides an elaborate review on galvanic noble metal NPs deposited onto semiconductor surfaces, from the preparation stage towards their application in biosensors and gas sensing. Two types of deposition approaches, viz. galvanic displacement/electroless and conventional electroplating, are introduced and compared. Furthermore, the analytical merit of hybrid nanomaterials towards the improvement of sensing abilities is highlighted. Finally, some limitations and challenges related to progress in the development and application of analytical devices based on electroless and electroplated noble metal NPs-semiconductor hybrids (NMNPsHs) in biochemical and environmental sensing are discussed.
Collapse
Affiliation(s)
- D Semenova
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
20
|
Sameer Kumar R, Shakambari G, Ashokkumar B, Nelson DJ, John SA, Varalakshmi P. Nitrogen-Doped Graphene Quantum Dot-Combined Sodium 10-Amino-2-methoxyundecanoate: Studies of Proinflammatory Gene Expression and Live Cell Imaging. ACS OMEGA 2018; 3:11982-11992. [PMID: 30320283 PMCID: PMC6173567 DOI: 10.1021/acsomega.8b02085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Marine cyanobacteria are renowned for producing bioactive secondary metabolites with great structural diversity via mixed biosynthetic pathways. Lyngbya sp., a marine cyanobacterium, produces many metabolites with anti-inflammatory potentials; nevertheless, its bioactive metabolites exercising providing protection against inflammation has been deciphered inadequate. In this study, the ethanolic fraction of the Lyngbya sp. extract was purified and identified as sodium 10-amino-2-methoxyundecanoate (SAM) using Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and electron spray ionization-mass spectroscopy. SAM showed prominent inhibition of inflammation, which was analyzed by reactive oxygen species generation and nitric oxide (NO) inhibition assay. Furthermore, the anti-inflammatory potentials of SAM were evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cell lines by fluorescence-activated cell sorting analysis, which evidenced prominent decrease in COX-2 expression (∼90%) with SAM-treated cells than the control. Subsequently, a semiquantitative real-time polymerase chain reaction analysis also revealed the downregulation of COX-2, iNOS, TNF-α, NF-κß, IL-1α, IL-1ß, IL-4, and IL-6 gene expression in SAM-treated LPS-induced RAW 264.7 cells. To further enhance the delivery of SAM into the cells, it was combined with N-doped graphene quantum dots (N-GQDs) for the anti-inflammatory potentials. It resulted in improved downregulation of COX-2, iNOS, TNF-α, NF-κß, IL-1α, IL-1ß, IL-4, and IL-6 than cells treated with SAM alone. Conclusively, N-GQDs combined with SAM have the effective therapeutic potential as an inhibitor of inflammation by modulating the expression of different cytokine genes.
Collapse
Affiliation(s)
- Rai Sameer Kumar
- Department
of Molecular Microbiology, School of Biotechnology, and Department of
Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India 625 021
| | - Ganeshan Shakambari
- Department
of Molecular Microbiology, School of Biotechnology, and Department of
Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India 625 021
| | - Balasubramaniem Ashokkumar
- Department
of Molecular Microbiology, School of Biotechnology, and Department of
Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India 625 021
| | - D. James Nelson
- Department
of Chemistry, The Gandhigram Rural Institute, Gandhigram, Dindigul, Tamil
Nadu, India 624 302
| | - S. Abraham John
- Department
of Chemistry, The Gandhigram Rural Institute, Gandhigram, Dindigul, Tamil
Nadu, India 624 302
| | - Perumal Varalakshmi
- Department
of Molecular Microbiology, School of Biotechnology, and Department of
Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India 625 021
| |
Collapse
|
21
|
Gómez-Arribas LN, Benito-Peña E, Hurtado-Sánchez MDC, Moreno-Bondi MC. Biosensing Based on Nanoparticles for Food Allergens Detection. SENSORS 2018; 18:s18041087. [PMID: 29617319 PMCID: PMC5948517 DOI: 10.3390/s18041087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Food allergy is one of the major health threats for sensitized individuals all over the world and, over the years, the food industry has made significant efforts and investments to offer safe foods for allergic consumers. The analysis of the concentration of food allergen residues in processing equipment, in raw materials or in the final product, provides analytical information that can be used for risk assessment as well as to ensure that food-allergic consumers get accurate and useful information to make their food choices and purchasing decisions. The development of biosensors based on nanomaterials for applications in food analysis is a challenging area of growing interest in the last years. Research in this field requires the combined efforts of experts in very different areas including food chemistry, biotechnology or materials science. However, the outcome of such collaboration can be of significant impact on the food industry as well as for consumer’s safety. These nanobiosensing devices allow the rapid, selective, sensitive, cost-effective and, in some cases, in-field, online and real-time detection of a wide range of compounds, even in complex matrices. Moreover, they can also enable the design of novel allergen detection strategies. Herein we review the main advances in the use of nanoparticles for the development of biosensors and bioassays for allergen detection, in food samples, over the past few years. Research in this area is still in its infancy in comparison, for instance, to the application of nanobiosensors for clinical analysis. However, it will be of interest for the development of new technologies that reduce the gap between laboratory research and industrial applications.
Collapse
Affiliation(s)
- Lidia Nazaret Gómez-Arribas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
22
|
Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS NANO 2018; 12:2106-2121. [PMID: 29462554 PMCID: PMC5878691 DOI: 10.1021/acsnano.7b07252] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The importance of medical imaging in the diagnosis and monitoring of cancer cannot be overstated. As personalized cancer treatments are gaining popularity, a need for more advanced imaging techniques has grown significantly. Nanoparticles are uniquely suited to fill this void, not only as imaging contrast agents but also as companion diagnostics. This review provides an overview of many ways nanoparticle imaging agents have contributed to cancer imaging, both preclinically and in the clinic, as well as charting future directions in companion diagnostics. We conclude that, while nanoparticle-based imaging agents are not without considerable scientific and developmental challenges, they enable enhanced imaging in nearly every modality, hold potential as in vivo companion diagnostics, and offer precise cancer treatment and maximize intervention efficacy.
Collapse
Affiliation(s)
- Emily B. Ehlerding
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Piotr Grodzinski
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christina H. Liu
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
23
|
Gao Y, Wu Y, Di J. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:207-212. [PMID: 27664545 DOI: 10.1016/j.saa.2016.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
We have coupled gold nanoparticles (AuNPs) with silver nanoparticles (AgNPs) to assemble a plasmonic sensing platform for colorimetric detection of glucose. In this system, small AuNPs (~4nm) can act as glucose oxidase (GOD) mimic enzyme to catalytically oxidize glucose in the presence of oxygen, producing hydrogen peroxide, which dissolves AgNPs to lead the color changes. Glucose can be detected not only by naked eyes (from yellow to red) but also by spectrophotometer in the concentration range of 5-70μM, with detection limit of 3μM. More importantly, we found that l-cysteine added in the system can markedly improve the selectivity for the detection of glucose. The proposed method was used to application for the detection of glucose in human serum with satisfactory results. This system is simple and low cost without using any enzymes and organic chromogenic agents.
Collapse
Affiliation(s)
- Yan Gao
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Yiting Wu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
24
|
Plohl O, Kraft M, Kovač J, Belec B, Ponikvar-Svet M, Würth C, Lisjak D, Resch-Genger U. Optically Detected Degradation of NaYF 4:Yb,Tm-Based Upconversion Nanoparticles in Phosphate Buffered Saline Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:553-560. [PMID: 27992232 DOI: 10.1021/acs.langmuir.6b03907] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In a proof-of-concept study, we assessed different analytical and spectroscopic parameters for stability screening of differently sized β-NaYF4:20 mol % Yb3+, 2 mol % Tm3+ upconversion nanoparticles (UCNPs) exemplarily in the bioanalytically relevant buffer phosphate buffered saline (PBS; pH 7.4) at 37 and 50 °C. This included the potentiometric determination of the amount of released fluoride ions, surface analysis with X-ray photoelectron spectroscopy (XPS), and steady-state and time-resolved fluorescence measurements. Based on these results, the luminescence lifetime of the 800 nm upconversion emission was identified as an optimum parameter for stability screening of UCNPs and changes in particle surface chemistry.
Collapse
Affiliation(s)
- Olivija Plohl
- Jožef Stefan Institute , Jamova 39, SI-1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Marco Kraft
- Division 1.10 Biophotonics, Federal Institute of Materials Research and Testing (BAM) , 12489 Berlin, Germany
| | - Janez Kovač
- Jožef Stefan Institute , Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Blaž Belec
- Jožef Stefan Institute , Jamova 39, SI-1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | - Christian Würth
- Division 1.10 Biophotonics, Federal Institute of Materials Research and Testing (BAM) , 12489 Berlin, Germany
| | - Darja Lisjak
- Jožef Stefan Institute , Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ute Resch-Genger
- Division 1.10 Biophotonics, Federal Institute of Materials Research and Testing (BAM) , 12489 Berlin, Germany
| |
Collapse
|
25
|
Kricka LJ, Fortina P, Park JY. Nanostructured luminescently labeled nucleic acids. LUMINESCENCE 2016; 32:132-141. [DOI: 10.1002/bio.3170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Larry J. Kricka
- Department of Pathology and Laboratory Medicine; University of Pennsylvania Medical Center; 3400 Spruce Street Philadelphia Pennsylvania 19104 USA
| | - Paolo Fortina
- Department of Cancer Biology, Cancer Genomics Laboratory, Sidney Kimmel Cancer Center; Thomas Jefferson University Jefferson Medical College; Philadelphia PA USA
- Department of Molecular Medicine; Universita’ La Sapienza; Rome Italy
| | - Jason Y. Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development; University of Texas Southwestern Medical Center; Dallas Texas 75229 USA
| |
Collapse
|
26
|
De Rosa C, Auriemma F, Malafronte A, Di Girolamo R, Lazzari M, Nieto-Suárez M, Hermida-Merino D, Hamley IW, Portale G. Tuning Ordered Pattern of Pd Species through Controlled Block Copolymer Self-Assembly. J Phys Chem B 2016; 120:6829-41. [DOI: 10.1021/acs.jpcb.6b04380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudio De Rosa
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso
Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Finizia Auriemma
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso
Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Anna Malafronte
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso
Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Rocco Di Girolamo
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso
Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Massimo Lazzari
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida, C/ Jenaro de la Fuente, 15782 Santiago de Compostela, Spain
| | - Marina Nieto-Suárez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida, C/ Jenaro de la Fuente, 15782 Santiago de Compostela, Spain
| | - Daniel Hermida-Merino
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
| | - Ian William Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Sarkar D, Mahitha MK, Som A, Li A, Wleklinski M, Cooks RG, Pradeep T. Metallic Nanobrushes Made using Ambient Droplet Sprays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2223-8. [PMID: 26790107 DOI: 10.1002/adma.201505127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/23/2015] [Indexed: 05/04/2023]
Abstract
An ambient solution-state method for making uniform nanobrushes composed of oriented 1D silver nanowires (NWs) with aspect ratios of 10(2) -10(4) is reported. These structures are grown over cm(2) areas on conducting surfaces. Assemblies of NWs form uniform nanobrush structures, which can capture micrometer-sized objects, such as bacteria and particulate matter. Variation in composition produces unique structures with catalytic properties.
Collapse
Affiliation(s)
- Depanjan Sarkar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Maheswari Kavirajan Mahitha
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Anyin Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Wleklinski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Graham Cooks
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
28
|
Tang J, Su Y, Deng D, Zhang L, Yang N, Lv Y. A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst 2016; 141:5366-73. [DOI: 10.1039/c6an00882h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SrMgSi2O6:Eu0.01,Dy0.02 persistent luminescence microspheres have been synthesized via a simple template method and a new probe was established based on turn-off of the persistent luminescence emission for detection and optical imaging of dopamine.
Collapse
Affiliation(s)
- Jie Tang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yingying Su
- Analytical & Testing Center
- Sichuan University
- Chengdu
- China
| | - Dongyan Deng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Na Yang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
29
|
Pitkänen L, Striegel AM. Size-exclusion chromatography of metal nanoparticles and quantum dots. Trends Analyt Chem 2015; 80:311-320. [PMID: 27335508 DOI: 10.1016/j.trac.2015.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review presents an overview of size-exclusion chromatographic separation and characterization of noble metal nanoparticles (NPs) and quantum dots (QDs) over the past 25 years. The properties of NPs and QDs that originate from quantum and surface effects are size dependent; to investigate these properties, a separation technique such as size-exclusion chromatography (SEC) is often needed to obtain narrow distribution NP populations that are also separated from the unreacted starting materials. Information on the size distributions and optical properties of NPs have been obtained by coupling SEC to detection methods such as ultraviolet-visible and/or fluorescence spectroscopy. Problems associated with the sorption of NPs and QDs onto various SEC stationary phases, employing both aqueous and organic eluents, are also discussed here.
Collapse
Affiliation(s)
- Leena Pitkänen
- National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, MS 8392, Gaithersburg, MD 20899, USA
| | - André M Striegel
- National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, MS 8392, Gaithersburg, MD 20899, USA
| |
Collapse
|
30
|
Rodríguez-Sevilla P, Rodríguez-Rodríguez H, Pedroni M, Speghini A, Bettinelli M, Solé JG, Jaque D, Haro-González P. Assessing Single Upconverting Nanoparticle Luminescence by Optical Tweezers. NANO LETTERS 2015; 15:5068-74. [PMID: 26120948 DOI: 10.1021/acs.nanolett.5b01184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on stable, long-term immobilization and localization of a single colloidal Er(3+)/Yb(3+) codoped upconverting fluorescent nanoparticle (UCNP) by optical trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiation-trapping, a phenomenon not considered before but that this work reveals to be of great relevance.
Collapse
Affiliation(s)
- P Rodríguez-Sevilla
- †Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - H Rodríguez-Rodríguez
- †Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - M Pedroni
- ‡Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy
| | - A Speghini
- ‡Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy
| | - M Bettinelli
- ‡Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy
| | - J García Solé
- †Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - D Jaque
- †Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - P Haro-González
- †Fluorescence Imaging Group, Departamento de Física de Materiales, Modulo 4, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| |
Collapse
|
31
|
Passos ML, Pinto PC, Santos JL, Saraiva MLM, Araujo AR. Nanoparticle-based assays in automated flow systems: A review. Anal Chim Acta 2015; 889:22-34. [DOI: 10.1016/j.aca.2015.05.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/25/2023]
|
32
|
Chen H, Shi D, Wang Y, Zhang L, Zhang Q, Wang B, Xia C. The advances in applying inorganic fluorescent nanomaterials for the detection of hepatocellular carcinoma and other cancers. RSC Adv 2015. [DOI: 10.1039/c5ra14853g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The advances, drawbacks and application suggestions of QDs, UCNPs and CDs in HCC and other cancer detection fields are discussed.
Collapse
Affiliation(s)
- Hetao Chen
- School of Public Health and Research Center of Basic Medical Sciences
- Tianjin Medical University
- Tianjin
- China
| | - Dongxing Shi
- School of Public Health and Research Center of Basic Medical Sciences
- Tianjin Medical University
- Tianjin
- China
| | - Yu Wang
- Department of Chemistry
- Qiqihaer Medical College
- Qiqihaer
- China
| | - Liwen Zhang
- School of Public Health and Research Center of Basic Medical Sciences
- Tianjin Medical University
- Tianjin
- China
| | - Qiang Zhang
- School of Public Health and Research Center of Basic Medical Sciences
- Tianjin Medical University
- Tianjin
- China
| | - Baiqi Wang
- School of Public Health and Research Center of Basic Medical Sciences
- Tianjin Medical University
- Tianjin
- China
| | - Chunhui Xia
- Department of Chemistry
- Qiqihaer Medical College
- Qiqihaer
- China
| |
Collapse
|