1
|
Xie L, Wang J, Wang N, Zhu J, Yin Q, Guo R, Duan J, Wang S, Hao C, Shen X. Identification of acute myeloid leukemia by infrared difference spectrum of peripheral blood. J Pharm Biomed Anal 2023; 233:115454. [PMID: 37178631 DOI: 10.1016/j.jpba.2023.115454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Acute myeloid leukemia (AML) is a high mortality and recurrence rates hematologic malignancy. Thus, whatever early detection or subsequent visit are both of high significance. Traditional AML diagnosis is conducted via peripheral blood (PB) smear and bone marrow (BM) aspiration. But BM aspiration is a painful burden for patients especially in early detection or subsequent visit. Herein, the use of PB to evaluate and identify the leukemia characteristics will be an attractive alternative source for early detection or subsequent visit. Fourier transform infrared spectroscopy (FTIR) is a time- and cost-effective approach to reveal the disease-related molecular features and variations. However, to the best of our knowledge, there is no attempts using infrared spectroscopic signatures of PB to replace BM for identifying AML. In this work, we are the first to develop a rapid and minimally invasive method to identify AML by infrared difference spectrum (IDS) of PB with only 6 characteristic wavenumbers. We dissect the leukemia-related spectroscopic signatures of three subtypes of leukemia cells (U937, HL-60, THP-1) by IDS, revealing biochemical molecular information about leukemia for the first time. Furthermore, the novel study links cellular features to complex features of blood system which demonstrates the sensitivity and specificity with IDS method. On this basis, BM and PB of AML patients and healthy controls were provided to parallel comparison. The IDS of BM and PB combined with principal component analysis method revealing that the leukemic components in BM and PB can be described by IDS peaks of PCA loadings, respectively. It is demonstrated that the leukemic IDS signatures of BM can be replaced by the leukemic IDS signatures of PB. In addition, the IDS signatures of leukemia cells are reflected in PB of AML patients with peaks of 1629, 1610, 1604, 1536, 1528 and 1404 cm-1 for the first time as well. To this end, we access the leukemic signatures of IDS peaks to compare the PB of AMLs and healthy controls. It is confirmed that the leukemic components can be detected from PB of AML and distinguished into positive (100%) and negative (100%) groups successfully by IDS classifier which is a novel and unique spectral classifier. This work demonstrates the potential use of IDS as a powerful tool to detect leukemia via PB which can release subjects' pain remarkably.
Collapse
Affiliation(s)
- Leiying Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- The Hematological Dept. Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, §School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruobing Guo
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China
| | - Junli Duan
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China
| | - Shaowei Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changning Hao
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665, Shanghai 200092, China.
| | - Xuechu Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ali MHM, Toor SM, Rakib F, Mall R, Ullah E, Mroue K, Kolatkar PR, Al-Saad K, Elkord E. Investigation of the Effect of PD-L1 Blockade on Triple Negative Breast Cancer Cells Using Fourier Transform Infrared Spectroscopy. Vaccines (Basel) 2019; 7:vaccines7030109. [PMID: 31505846 PMCID: PMC6789440 DOI: 10.3390/vaccines7030109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Interactions between programmed death-1 (PD-1) with its ligand PD-L1 on tumor cells can antagonize T cell responses. Inhibiting these interactions using immune checkpoint inhibitors has shown promise in cancer immunotherapy. MDA-MB-231 is a triple negative breast cancer cell line that expresses PD-L1. In this study, we investigated the biochemical changes in MDA-MB-231 cells following treatment with atezolizumab, a specific PD-L1 blocker. Our readouts were Fourier Transform Infrared (FTIR) spectroscopy and flow cytometric analyses. Chemometrical analysis, such as principal component analysis (PCA), was applied to delineate the spectral differences. We were able to identify the chemical alterations in both protein and lipid structure of the treated cells. We found that there was a shift from random coil and α-helical structure to β-sheet conformation of PD-L1 on tumor cells due to atezolizumab treatment, which could hinder binding with its receptors on immune cells, ensuring sustained T cell activation for potent immune responses. This work provides novel information about the effects of atezolizumab at molecular and cellular levels. FTIR bio-spectroscopy, in combination with chemometric analyses, may expedite research and offer new approaches for cancer immunology.
Collapse
Affiliation(s)
- Mohamed H M Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar.
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University (QU), P.O. Box 2713 Doha, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Kamal Mroue
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Prasanna R Kolatkar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University (QU), P.O. Box 2713 Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar.
| |
Collapse
|
3
|
An Innovative Platform Merging Elemental Analysis and Ftir Imaging for Breast Tissue Analysis. Sci Rep 2019; 9:9854. [PMID: 31285452 PMCID: PMC6614471 DOI: 10.1038/s41598-019-46056-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Histopathology and immunohistology remain the gold standard for breast cancer diagnostic. Yet, these approaches do not usually provide a sufficiently detailed characterization of the pathology. The purpose of this work is to demonstrate for the first time that elemental analysis and Fourier transform infrared spectroscopy microscopic examination of breast tissue sections can be merged into one dataset to provide a single set of markers based on both organic molecules and inorganic trace elements. For illustrating the method, 6 mammary tissue sections were used. Fourier transform infrared (FTIR) spectroscopy images reported a fingerprint of the organic molecules present in the tissue section and laser ablation elemental analysis (LA-ICP-MS) images brought inorganic element profiles. The 6 tissue sections provided 31 106 and 150,000 spectra for FTIR and LA-ICP-MS spectra respectively. The results bring the proof of concept that breast tissue can be analyzed simultaneously by FTIR spectroscopy and laser ablation elemental analysis (LA-ICP-MS) to provide in both case reasonably high resolution images. We show how to bring the images obtained by the two methods to a same spatial resolution and how to use image registration to analyze the data originating from both techniques as one block of data. We finally demonstrates the elemental analysis is orthogonal to all FTIR markers as no significant correlation is found between FTIR and LA-ICP-MS data. Combining FTIR and LA-ICP-MS imaging becomes possible, providing two orthogonal methods which can bring an unprecedented diversity of information on the tissue. This opens a new avenue of tissue section analyses providing unprecedented diagnostic potential.
Collapse
|
4
|
Rodrigues LM, Carvalho LFDCES, Bonnier F, Anbinder AL, Martinho HDS, Almeida JD. Evaluation of inflammatory processes by FTIR spectroscopy. J Med Eng Technol 2018; 42:228-235. [DOI: 10.1080/03091902.2018.1470691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Laís Morandini Rodrigues
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| | | | - Franck Bonnier
- Faculty of Pharmacy, Université François-Rabelais de Tours, Tours, France
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| | | | - Janete Dias Almeida
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| |
Collapse
|
5
|
Wrobel TP, Bhargava R. Infrared Spectroscopic Imaging Advances as an Analytical Technology for Biomedical Sciences. Anal Chem 2018; 90:1444-1463. [PMID: 29281255 PMCID: PMC6421863 DOI: 10.1021/acs.analchem.7b05330] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tomasz P. Wrobel
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Szafraniec E, Wiercigroch E, Czamara K, Majzner K, Staniszewska-Slezak E, Marzec KM, Malek K, Kaczor A, Baranska M. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst 2018; 143:4323-4334. [DOI: 10.1039/c8an00239h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A methodology of examination and characterization of popular human endothelial cells lines.
Collapse
Affiliation(s)
| | | | - Krzysztof Czamara
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna Majzner
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Emilia Staniszewska-Slezak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - Kamilla Malek
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Agnieszka Kaczor
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Malgorzata Baranska
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| |
Collapse
|
7
|
De Meutter J, Vandenameele J, Matagne A, Goormaghtigh E. Infrared imaging of high density protein arrays. Analyst 2017; 142:1371-1380. [DOI: 10.1039/c6an02048h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose in this paper that protein microarrays could be analysed by infrared imaging in place of enzymatic or fluorescence labelling.
Collapse
Affiliation(s)
- Joëlle De Meutter
- Center for Structural Biology and Bioinformatics
- Laboratory for the Structure and Function of Biological Membranes
- Campus Plaine CP206/02
- Université Libre de Bruxelles CP206/2
- B1050 Brussels
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding
- Centre for Protein Engineering
- University of Liège
- 4000 Liège
- Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding
- Centre for Protein Engineering
- University of Liège
- 4000 Liège
- Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics
- Laboratory for the Structure and Function of Biological Membranes
- Campus Plaine CP206/02
- Université Libre de Bruxelles CP206/2
- B1050 Brussels
| |
Collapse
|
8
|
Tiwari S, Reddy VB, Bhargava R, Raman J. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection. PLoS One 2015; 10:e0125183. [PMID: 25932912 PMCID: PMC4416885 DOI: 10.1371/journal.pone.0125183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, United States of America
| | - Vijaya B. Reddy
- Department of Pathology, Rush University Medical Center, 1725 West Harrison St, Chicago, Illinois, 60612, United States of America
| | - Rohit Bhargava
- Department of Bioengineering, Chemistry, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology and University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Jaishankar Raman
- Cardiac Surgery, Advanced Heart Failure Transplantation & Mechanical Circulatory Support, Rush University Medical Center, 1725 West Harrison St, Chicago, Illinois, 60612, United States of America
- * E-mail:
| |
Collapse
|