1
|
Mandal A, Rai R, Mandal AA, Dhar P, Banerjee S. Vitamin B 6 Appended Polypyridyl Co(III) Complexes for Photo-Triggered Antibacterial Activity. Chem Asian J 2024; 19:e202400943. [PMID: 39258323 DOI: 10.1002/asia.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Three novel polypyridyl-Co(III)-vitamin B6 complexes viz., [Co(CF3-phtpy)(SBVB6)]Cl (Co1), [Co(anthracene-tpy)(SBVB6)]Cl (Co2), [Co(NMe2-phtpy)(SBVB6)]Cl (Co3), where 4'-(4-(trifluoromethyl)phenyl)-2,2':6',2''-terpyridine=CF3-phtpy, 4'-(anthracen-9-yl)-2,2':6',2''-terpyridine=anthracene-tpy;, 4-([2,2':6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline=NMe2-phtpy, (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol=H2SBVB6 were successfully developed for aPDT (antibacterial photodynamic therapy) applications. Co1-Co3 exhibited an intense absorption band at ca. 435-485 nm, which is attributed to ligand-to-metal charge transfer and was beneficial for antibacterial photodynamic therapy. The distorted octahedral geometry of the complexes with CoIIIN4O2 core was evident from the DFT study. The visible light absorption ability and good photo-stability of Co1-Co3 made them good photosensitizers for aPDT. Co1-Co3 displayed significant antibacterial responses against gram-positive (S. aureus) and gram-negative (E. coli) bacteria upon light exposure (10 J cm-2 , 400-700 nm) and showed MIC values between 0.01-0.005 μg mL-1. The aPDT activities of these complexes were due to their ability to damage bacterial cell membranes via ROS generation. Overall, this study shows the photo-triggered ROS-mediated bacteria-killing potential of Co(III) complexes.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
2
|
Mondal R, Keerthana M, Pandurangan N, Shanmugaraju S. Zn(II)-Curcumin Complexes-Based Anticancer Agents. ChemMedChem 2024; 19:e202400558. [PMID: 39225342 DOI: 10.1002/cmdc.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
There is a great deal of research interest in the design of alternative metallodrugs to Pt(II)-derivatives for cancer treatment. The low solubility of such drugs in biological mediums leading to poor bioavailability is the major hurdle of several metal-based anticancer agents. These issues have recently been addressed by designing bio-active ligands based on metal-containing anticancer agents. Conjugating with bioactive ligands has significantly improved the bioavailability of the metallodrugs and their cancer cell targeting ability. One such naturally available bioactive ligand is curcumin. Until recently, several curcumin-based anticancer metallodrugs have been developed and successfully demonstrated for their anticancer studies. In this article, we aim to highlight, the synthesis, structure, and anticancer properties of various Zn(II)-curcumin-based coordination complexes. The effect of introducing different functional groups, targeting ligands, and photo-active ligands on the anticancer potential of such complexes has been mentioned in detail. The current status and future perspective on curcumin-based metallodrugs for cancer treatment have also been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Muthukumar Keerthana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Nanjan Pandurangan
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India
| | | |
Collapse
|
3
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
5
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
6
|
Alroba AAN, Aazam ES, Zaki M. Metal complexes containing vitamin B6-based scaffold as potential DNA/BSA-binding agents inducing apoptosis in hepatocarcinoma (HepG2) cells. Mol Divers 2024:10.1007/s11030-024-10986-7. [PMID: 39289257 DOI: 10.1007/s11030-024-10986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
Collapse
Affiliation(s)
- Almuhrah A N Alroba
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
8
|
Mandal A, Rai R, Saha S, Kushwaha R, Wei L, Gogoi H, Mandal AA, Yadav AK, Huang H, Dutta A, Dhar P, Banerjee S. Polypyridyl-based Co(III) complexes of vitamin B 6 Schiff base for photoactivated antibacterial therapy. Dalton Trans 2023; 52:17562-17572. [PMID: 37965840 DOI: 10.1039/d3dt02967k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hemonta Gogoi
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Huayi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
9
|
Klemt I, Varzatskii O, Selin R, Vakarov S, Kovalska V, Bila G, Bilyy R, Voloshin Y, Cuartero IC, Hidalgo A, Frey B, Becker I, Friedrich B, Tietze R, Friedrich RP, Alexiou C, Ursu EL, Rotaru A, Solymosi I, Pérez-Ojeda ME, Mokhir A. 3D-Shaped Binders of Unfolded Proteins Inducing Cancer Cell-Specific Endoplasmic Reticulum Stress In Vitro and In Vivo. J Am Chem Soc 2023; 145:22252-22264. [PMID: 37773090 DOI: 10.1021/jacs.3c08827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).
Collapse
Affiliation(s)
- Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Oleg Varzatskii
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Roman Selin
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Serhii Vakarov
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Vladyslava Kovalska
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine
| | - Galyna Bila
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds, RAS, 28 Vavilova Street, 119334 Moscow, Russia
| | - Itziar Cossío Cuartero
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Benjamin Frey
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Elena-Laura Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Alexandru Rotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Iris Solymosi
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
10
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
11
|
Roy S, Böhme M, Lima S, Mohanty M, Banerjee A, Buchholz A, Plass W, Rathnam S, Banerjee I, Kaminsky W, Dinda R. Methoxido‐Bridged Lacunary Heterocubane Oxidovanadium(IV) Cluster with Azo Ligands: Synthesis, X‐ray Structure, Magnetic Properties, and Antiproliferative Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satabdi Roy
- National Institute of Technology Rourkela department of chemistry INDIA
| | - Michael Böhme
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Sudhir Lima
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Monalisa Mohanty
- National Institute of Technology Rourkela Department of Chemisry INDIA
| | - Atanu Banerjee
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Axel Buchholz
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Winfried Plass
- Friedrich-Schiller-Universitat Jena Anorganische und Analytische Chemie Humboldtstr. 8 7743 Jena GERMANY
| | - Sharan Rathnam
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Indranil Banerjee
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Werner Kaminsky
- University of Washington Department of Chemistry UNITED STATES
| | - Rupam Dinda
- National Institute of Technology Rourkela Department of Chemsitry INDIA
| |
Collapse
|
12
|
|
13
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Gupta I, Manav N, Lone M, Raza MK, Chavda J, Mori S. Luminescent Iridium(III) Dipyrrinato Complexes: Synthesis, X-ray Structures, DFT and Photocytotoxicity Studies of Glycosylated Derivatives. Dalton Trans 2022; 51:3849-3863. [DOI: 10.1039/d1dt04218a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of luminescent Ir(III) dipyrrinato complexes were synthesized having various aromatic chromophores on the C-5 position of dipyrrin ligand. The presence of different chromophores on the Ir(III) dipyrrinato complexes...
Collapse
|
15
|
Biotin-tagged cis-dichlorido-oxidovanadium(IV) complex for DNA crosslinking and photo-induced apoptotic cytotoxicity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
|
17
|
Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021; 9:7347-7370. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.
Collapse
Affiliation(s)
- Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| |
Collapse
|
18
|
Kongot M, Chaudhary R, M S P, Reddy D, Singh V, Avecilla F, Singhal NK, Kumar A. Oxidovanadium(IV/V) complexes bound with a ONS donor backbone: The search for therapeutic versatility in one class of compounds. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Pooja M S
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Dinesh Reddy
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Vishal Singh
- National Agri‐Food Biotechnology Institute Mohali India
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias Universidade da Coruña, Campus de A Coruña A Coruña Spain
| | | | - Amit Kumar
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| |
Collapse
|
19
|
Mondal SS, Jaiswal N, Bera PS, Tiwari RK, Behera JN, Chanda N, Ghosal S, Saha TK. Cu (II) and Co (II/III) complexes of N,O‐chelated Schiff base ligands: DNA interaction, protein binding, cytotoxicity, cell death mechanism and reactive oxygen species generation studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shyam Sundar Mondal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Namita Jaiswal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Partha Sarathi Bera
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Ranjay K. Tiwari
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 India
- Chemical Sciences Homi Bhabha National Institute Mumbai 400094 India
| | - Jogendra Nath Behera
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 India
- Chemical Sciences Homi Bhabha National Institute Mumbai 400094 India
| | - Nripen Chanda
- Department of Materials Processing and Microsystems Laboratory CSIR‐Central Mechanical Engineering Research Institute Durgapur 713209 India
| | - Subhas Ghosal
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| | - Tanmoy Kumar Saha
- Department of Chemistry National Institute of Technology Durgapur 713209 India
| |
Collapse
|
20
|
Zhou L, Wei F, Xiang J, Li H, Li C, Zhang P, Liu C, Gong P, Cai L, Wong KMC. Enhancing the ROS generation ability of a rhodamine-decorated iridium(iii) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chem Sci 2020; 11:12212-12220. [PMID: 34094433 PMCID: PMC8162876 DOI: 10.1039/d0sc04751a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endoplasmic reticulum (ER) is a very important organelle responsible for crucial biosynthetic, sensing, and signalling functions in eukaryotic cells. In this work, we established a strategy of ligand regulation to enhance the singlet oxygen generation capacity and subcellular organelle localization ability of a rhodamine-decorated iridium(iii) complex by variation of the cyclometallating ligand. The resulting metal complex showed outstanding reactive oxygen species generation efficiency (1.6-fold higher than that of rose bengal in CH3CN) and highly specific ER localization ability, which demonstrated the promise of the metal-based photo-theranostic agent by simultaneously tuning the photochemical/physical and biological properties. Additionally, low dark cytotoxicity, high photostability and selective tumour cell uptake were featured by this complex to demonstrate it as a promising candidate in photodynamic therapy (PDT) applications. In vivo near infrared fluorescence (NIRF) imaging and tumour PDT were investigated and showed preferential accumulation at the tumour site and remarkable tumour growth suppression, respectively.
Collapse
Affiliation(s)
- Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China .,School of Applied Biology, Shenzhen Institute of Technology No. 1 Jiangjunmao Shenzhen 518116 P. R. China
| | - Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Chunbin Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Chuangjun Liu
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China .,College of Chemistry and Pharmaceutical Engineering, Huanghuai University 463000 Zhumadian China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China
| |
Collapse
|
21
|
Endoplasmic reticulum-targeted glutathione and pH dual responsive vitamin lipid nanovesicles for tocopheryl DM1 delivery and cancer therapy. Int J Pharm 2020; 582:119331. [PMID: 32289484 DOI: 10.1016/j.ijpharm.2020.119331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
The major drawbacks of the cytotoxin like DM1 are the off-target effects. Here, the targeting nanovesicles were developed by synthesizing tocopherol-SS-DM1 and conjugating a pH low insertion peptide (pHLIP) to PEGylated phospholipids, in which tocopherol-SS-DM1 improves the drug loading and is glutathione responsive in the cytoplasm, meanwhile, the pH insertion peptide targets the acidic microenvironment of cancer cells. Besides, these nanovesicles can accumulate at the endoplasmic reticulum and show increased cancer therapeutic effects both in vitro and in vivo. These targeting nanovesicles provide a novel formulation for subcellular organelle targeting, a platform for precisely delivery of cytotoxic DM1 to cancer cells, and an alternative strategy for antibody-drug conjugates (ADCs).
Collapse
|
22
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
23
|
|
24
|
Bhattacharyya U, Verma BK, Saha R, Mukherjee N, Raza MK, Sahoo S, Kondaiah P, Chakravarty AR. Structurally Characterized BODIPY-Appended Oxidovanadium(IV) β-Diketonates for Mitochondria-Targeted Photocytotoxicity. ACS OMEGA 2020; 5:4282-4292. [PMID: 32149258 PMCID: PMC7057700 DOI: 10.1021/acsomega.9b04204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Mixed-ligand oxidovanadium(IV) β-diketonates having NNN-donor dipicolylamine-conjugated to boron-dipyrromethene (BODIPY in L1) and diiodo-BODIPY (in L2) moieties, namely, [VO(L1)(acac)]Cl (1), [VO(L2)(acac)]Cl (2), and [VO(L1)(dbm)]Cl (3), where acac and dbm are monoanionic O,O-donor acetylacetone and 1,3-diphenyl-1,3-propanedione, were prepared, characterized, and tested for their photoinduced anticancer activity in visible light. Complexes 1 and 2 were structurally characterized as their PF6 - salts (1a and 2a) by X-ray crystallography. They showed VIVN3O3 six-coordinate geometry with dipicolylamine base as the facial ligand. The non-iodinated BODIPY complexes displayed absorption maxima at ∼501 nm, while it is ∼535 nm for the di-iodinated 2 in 10% DMSO-PBS buffer medium (pH = 7.2). Complexes 1 and 3 being green emissive (λem, ∼512 nm; λex, 470 nm; ΦF, ∼0.10) in 10% aqueous DMSO were used for cellular imaging studies. Complex 3 localized primarily in the mitochondria of the cervical HeLa cells with a co-localization coefficient value of 0.7. The non-emissive diiodo-BODIPY complex 2 showed generation of singlet oxygen (ΦΔ ≈ 0.47) on light activation. Annexin-V assay showed singlet oxygen-mediated cellular apoptosis, making this complex a targeted PDT agent.
Collapse
Affiliation(s)
- Utso Bhattacharyya
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Brijesh K. Verma
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Rupak Saha
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Nandini Mukherjee
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Md Kausar Raza
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Somarupa Sahoo
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932688. Fax: +91-80-23600999 (P.K.)
| | - Akhil R. Chakravarty
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932533. Fax: +91-80-23600683 (A.R.C.)
| |
Collapse
|
25
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
26
|
Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci 2020; 11:3405-3417. [PMID: 34745515 PMCID: PMC8515424 DOI: 10.1039/d0sc00785d] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is considered a pioneering and effective modality for cancer treatment, but it is still facing challenges of hypoxic tumors. Recently, Type I PDT, as an effective strategy to address this issue, has drawn considerable attention. Few reports are available on the capability for Type I reactive oxygen species (ROS) generation of purely organic photosensitizers (PSs). Herein, we report two new Type I PSs, α-TPA-PIO and β-TPA-PIO, from phosphindole oxide-based isomers with efficient Type I ROS generation abilities. A detailed study on photophysical and photochemical mechanisms is conducted to shed light on the molecular design of PSs based on the Type I mechanism. The in vitro results demonstrate that these two PSs can selectively accumulate in a neutral lipid region, particularly in the endoplasmic reticulum (ER), of cells and efficiently induce ER-stress mediated apoptosis and autophagy in PDT. In vivo models indicate that β-TPA-PIO successfully achieves remarkable tumor ablation. The ROS-based ER stress triggered by β-TPA-PIO-mediated PDT has high potential as a precursor of the immunostimulatory effect for immunotherapy. This work presents a comprehensive protocol for Type I-based purely organic PSs and highlights the significance of considering the working mechanism in the design of PSs for the optimization of cancer treatment protocols. Phosphindole oxide-based photosensitizers with Type I reactive oxygen species generation ability are developed and used for endoplasmic reticulum stress-mediated photodynamic therapy of tumors.![]()
Collapse
Affiliation(s)
- Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
27
|
Banerjee S, Dixit A, Karande AA, Chakravarty AR. Correction: Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(iv) complexes having vitamin-B6 and acridinyl moieties. Dalton Trans 2019; 48:16124-16125. [PMID: 31603159 DOI: 10.1039/c9dt90224d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(iv) complexes having vitamin-B6 and acridinyl moieties' by Samya Banerjee et al., Dalton Trans., 2016, 45, 783-796.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
28
|
Kumar A, Dixit A, Sahoo S, Banerjee S, Bhattacharyya A, Garai A, Karande AA, Chakravarty AR. Crystal structure, DNA crosslinking and photo-induced cytotoxicity of oxovanadium(IV) conjugates of boron-dipyrromethene. J Inorg Biochem 2019; 202:110817. [PMID: 31706182 DOI: 10.1016/j.jinorgbio.2019.110817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023]
Abstract
Cis-dichloro-oxovanadium(IV) complexes [VO(L1/L2)Cl2], where L1 is N-(4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4ʎ4,5ʎ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)benzyl)-1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine in 1 and L2 is N-(4-(5,5-difluoro-2,8-diiodo-1,3,7,9-tetramethyl-5H-4ʎ4,5ʎ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)benzyl)-1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine in 2) having 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene as boron-dipyrromethene (BODIPY) appended dipicolylamine bases were prepared, characterized and their photocytotoxicity studied. X-ray crystal structure of 1 showed distorted octahedral geometry with a VIVON3Cl2 core having Cl-V-Cl angle of 91.93(4)°. The complexes showed variable solution conductivity properties. They were non-electrolytes in dry DMF at 25 °C but showed 1:1 electrolytic behavior in an aqueous medium due to dissociation of one chloride ligand as evidenced from the mass spectral study. Complexes 1 and 2 showed absorption bands at 500 and 535 nm, respectively. The calf thymus DNA melting study revealed their interaction through DNA crosslinking on exposure to light which was further confirmed from the alkaline agarose gel electrophoresis using plasmid supercoiled pUC19 DNA. Complex 2 showed disruption of the mitochondrial membrane potential in the JC-1 (1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloroimidacarbocyanine iodide) assay. The complexes were photocytotoxic in visible light (400-700 nm, power: 10 J cm-2) in cervical cancer HeLa and breast cancer MCF-7 cells. Complex 2 having a photoactive diiodo‑boron-dipyrromethene moiety gave a singlet oxygen quantum yield (ΦΔ) value of ~0.6. It showed singlet oxygen mediated apoptotic photodynamic therapy activity with remarkably low IC50 (half maximal inhibitory concentration) value of ~0.15 μM. The cis-disposition of chlorides gave a cis-divacant 4-coordinate intermediate structure from the density functional theory (DFT) study thus mimicking the DNA crosslinking property of cisplatin.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
29
|
Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26529-26558. [PMID: 31136142 DOI: 10.1021/acsami.9b01370] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
30
|
Tabrizi L, Abyar F. De Novo Design of Cu(II) Complex Containing CNC–Pincer–Vitamin B3 and B7 Conjugates for Breast Cancer Application. Mol Pharm 2019; 16:3802-3813. [DOI: 10.1021/acs.molpharmaceut.9b00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway H91 TK33, Ireland
| | - Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran
| |
Collapse
|
31
|
Chen WH, Luo GF, Zhang XZ. Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802725. [PMID: 30260521 DOI: 10.1002/adma.201802725] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Indexed: 05/24/2023]
Abstract
Recently, diverse functional materials that take subcellular structures as therapeutic targets are playing increasingly important roles in cancer therapy. Here, particular emphasis is placed on four kinds of therapies, including chemotherapy, gene therapy, photodynamic therapy (PDT), and hyperthermal therapy, which are the most widely used approaches for killing cancer cells by the specific destruction of subcellular organelles. Moreover, some non-drug-loaded nanoformulations (i.e., metal nanoparticles and molecular self-assemblies) with a fatal effect on cells by influencing the subcellular functions without the use of any drug molecules are also included. According to the basic principles and unique performances of each treatment, appropriate strategies are developed to meet task-specific applications by integrating specific materials, ligands, as well as methods. In addition, the combination of two or more therapies based on multifunctional nanostructures, which either directly target specific subcellular organelles or release organelle-targeted therapeutics, is also introduced with the intent of superadditive therapeutic effects. Finally, the related challenges of critical re-evaluation of this emerging field are presented.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
32
|
Kongot M, Dohare N, Reddy DS, Pereira N, Patel R, Subramanian M, Kumar A. In vitro apoptosis-induction, antiproliferative and BSA binding studies of a oxidovanadium(V) complex. J Trace Elem Med Biol 2019; 51:176-190. [PMID: 30466929 DOI: 10.1016/j.jtemb.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
In our ongoing efforts to develop novel trace metal complexes with therapeutically interesting properties, a neutral mono nuclear oxidomethoxidovanadium(V) complex, [VVO(OCH3)(hpdbal-sbdt)] (1) and a μ-O bridged dinuclear oxidovanadium(V) complex, [{VVO(hpdbal-sbdt)}2μ-O] (2) [H2hpdbal-sbdt (I) is a tridentate and dibasic ONS2- donor ligand obtained through the Schiff base reaction of 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal) and S-benzyldithiocarbazate (Hsbdt)] have been synthesized and characterized by various analytical techniques such as TGA, EDS, ATR-IR, UV-Vis, CV, 1H NMR, 13C NMR and 51V NMR. Single-crystal X-ray diffraction analysis of 1 confirms the coordination of phenolate oxygen, imine nitrogen and thioenolate sulfur of the ligand to the vanadium center with a distorted tetragonal-pyramidal geometry. The compound 2 triggered apoptotic and reproductive death of the cancer cells in vitro with 76% and 62% growth inhibition of human breast adenocarcinoma (MCF-7) and human lung carcinoma cells (A549) respectively. The compound 2 was found to be sufficiently stable over a wide window of physiological pH. The complex 2 was studied further for its interaction with a drug carrier protein BSA with the aid of spectroscopic techniques viz. fluorescence, temperature controlled UV-vis and deconvoluted IR techniques.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India; Department of Biochemistry, Daulat Ram College, University of Delhi, New Delhi, 110007, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India
| | - Neha Pereira
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
33
|
Banerjee S, Zhang W. Endoplasmic Reticulum: Target for Next-Generation Cancer Therapy. Chembiochem 2018; 19:2341-2343. [PMID: 30176182 DOI: 10.1002/cbic.201800461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/06/2022]
Abstract
Tumour-targeting and selective ER stress inducers: Small-molecule compounds that target the endoplasmic reticulum (ER) and induce ER stress are emerging as next-generation anticancer agents. This highlight discusses a few current works on this topic and its enormous potential in the fight against cancer.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Wenying Zhang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
34
|
Synthesis, characterization and X-ray crystal structure of an iron(III) complex of a tripodal pyridoxal Schiff base ligand: effects of positional disorder on its magnetic properties. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Zhou Y, Cheung YK, Ma C, Zhao S, Gao D, Lo PC, Fong WP, Wong KS, Ng DKP. Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy. J Med Chem 2018; 61:3952-3961. [DOI: 10.1021/acs.jmedchem.7b01907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yimin Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Chao Ma
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shirui Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Di Gao
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dennis K. P. Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
36
|
Sahoo S, Podder S, Garai A, Majumdar S, Mukherjee N, Basu U, Nandi D, Chakravarty AR. Iron(III) Complexes of Vitamin B6
Schiff Base with Boron-Dipyrromethene Pendants for Lysosome-Selective Photocytotoxicity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Somarupa Sahoo
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Santosh Podder
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Shamik Majumdar
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Nandini Mukherjee
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Uttara Basu
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Dipankar Nandi
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| |
Collapse
|
37
|
Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR. Targeted photodynamic therapy in visible light using BODIPY-appended copper(ii) complexes of a vitamin B6Schiff base. Dalton Trans 2018; 47:823-835. [DOI: 10.1039/c7dt03976j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BODIPY-appended copper(ii) complexes of vitamin B6derivatives localize in mitochondria and exhibit cancer cell selective photocytotoxicity by1O2mediated apoptosis.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santosh Podder
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Shamik Majumdar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Dipankar Nandi
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
38
|
Verma SK, Kumari P, Ansari SN, Ansari MO, Deori D, Mobin SM. A novel mesoionic carbene based highly fluorescent Pd(ii) complex as an endoplasmic reticulum tracker in live cells. Dalton Trans 2018; 47:15646-15650. [DOI: 10.1039/c8dt02778a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of new organometallic MIC based mononuclear Pd(ii) complex 1, specifically target ER of live cells and have fluorescence recovery after photobleaching (FRAP) property.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaikh M. Mobin
- Discipline of Chemistry
- India
- Discipline of Biosciences and Biomedical Engineering
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|
39
|
Galván-Hidalgo JM, Ramírez-Apan T, Nieto-Camacho A, Hernández-Ortega S, Gómez E. Schiff base Sn(IV) complexes as cytotoxic agents: Synthesis, structure, isosteric and bioisosteric replacement. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Maji A, Lohar S, Pal S, Chattopadhyay P. A new rhodamine based ‘turn-on’ $$\hbox {Cu}^{2+}$$ Cu 2 + ion selective chemosensor in aqueous system applicable in bioimaging. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1349-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Peroxisomes protect lymphoma cells from HDAC inhibitor-mediated apoptosis. Cell Death Differ 2017; 24:1912-1924. [PMID: 28731463 PMCID: PMC5635217 DOI: 10.1038/cdd.2017.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023] Open
Abstract
Peroxisomes are a critical rheostat of reactive oxygen species (ROS), yet their role in drug sensitivity and resistance remains unexplored. Gene expression analysis of clinical lymphoma samples suggests that peroxisomes are involved in mediating drug resistance to the histone deacetylase inhibitor (HDACi) Vorinostat (Vor), which promotes ROS-mediated apoptosis. Vor augments peroxisome numbers in cultured lymphoma cells, concomitant with increased levels of peroxisomal proteins PEX3, PEX11B, and PMP70. Genetic inhibition of peroxisomes, using PEX3 knockdown, reveals that peroxisomes protect lymphoma cells against Vor-mediated cell death. Conversely, Vor-resistant cells were tolerant to elevated ROS levels and possess upregulated levels of (1) catalase, a peroxisomal antioxidant, and (2) plasmalogens, ether glycerophospholipids that represent peroxisome function and serve as antioxidants. Catalase knockdown induces apoptosis in Vor-resistant cells and potentiates ROS-mediated apoptosis in Vor-sensitive cells. These findings highlight the role of peroxisomes in resistance to therapeutic intervention in cancer, and provide a novel modality to circumvent drug resistance.
Collapse
|
42
|
Terpyridyl oxovanadium(IV) complexes for DNA crosslinking and mito-targeted photocytotoxicity. J Inorg Biochem 2017; 174:45-54. [PMID: 28601723 DOI: 10.1016/j.jinorgbio.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
Oxovanadium(IV) complexes [VO(L1/L2)Cl2]n+ (1,2) of (anthracenyl)terpyridine (An-tpy as L1 in 1, n=0) and triphenylphosphonium-appended (anthracenyl)terpyridine (An-tpy-TPP+ as L2 in 2, n=1) were synthesized, characterized and their DNA crosslinking ability, photocytotoxicity in visible light and cellular localization in cancer cells studied. The bromide derivative of 2, viz. [VO(An-tpy-TPP)Br2]Br (3) is structurally characterized. The structure showed trans disposition of two halides in the coordination sphere and the TPP+ unit is a pendant to the terpyridyl ligand. The DNA melting and comet assay studies on the complexes suggest the formation of DNA crosslinks. Complexes 1 and 2 displayed ~10 fold increase in cytotoxicity on exposure to visible light (400-700nm) when compared to those in dark in HeLa and MCF-7 cells. FACScan (Fluorescence Associated Cell Sorter Scan) analysis showed cellular apoptosis when treated with the complex in visible light in comparison to their dark controls. Fluorescence microscopic studies using complex 2 revealed its mitochondrial localization within the cancer cells.
Collapse
|
43
|
|
44
|
Murašková V, Szabó N, Pižl M, Hoskovcová I, Dušek M, Huber Š, Sedmidubský D. Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C C bond formation – Structure, spectral and magnetic properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Shit M, Bera S, Maity S, Weyhermüller T, Ghosh P. Coordination of o-benzosemiquinonate, o-iminobenzosemiquinonate and aldimine anion radicals to oxidovanadium(iv). NEW J CHEM 2017. [DOI: 10.1039/c7nj00186j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
o-Benzosemiquinonate, o-iminobenzosemiquinonate and hitherto unknown aldimine anion radical complexes of oxidovanadium(iv) are reported.
Collapse
Affiliation(s)
- Madhusudan Shit
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-103
- India
- Department of Chemistry
| | - Sachinath Bera
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-103
- India
| | - Suvendu Maity
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-103
- India
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Eneriekonversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Prasanta Ghosh
- Department of Chemistry
- R. K. Mission Residential College
- Kolkata-103
- India
| |
Collapse
|
46
|
Chanu SB, Banerjee S, Roy M. Potent anticancer activity of photo-activated oxo-bridged diiron(III) complexes. Eur J Med Chem 2017; 125:816-824. [DOI: 10.1016/j.ejmech.2016.09.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
|
47
|
Deka B, Sarkar T, Banerjee S, Kumar A, Mukherjee S, Deka S, Saikia KK, Hussain A. Novel mitochondria targeted copper(ii) complexes of ferrocenyl terpyridine and anticancer active 8-hydroxyquinolines showing remarkable cytotoxicity, DNA and protein binding affinity. Dalton Trans 2017; 46:396-409. [DOI: 10.1039/c6dt03660k] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mixed-ligand ferrocenyl copper(ii) complexes target the mitochondria of cancer cells showing remarkable cytotoxicity against HeLa and MCF-7 cancer cells while being much less toxic to MCF-10A normal cells.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| | - Tukki Sarkar
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| | - Samya Banerjee
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Sanjoy Mukherjee
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Sasanka Deka
- Department of Chemistry
- University of Delhi
- New Delhi 110007
- India
| | - Kandarpa K. Saikia
- Department of Bioengineering and Technology
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Akhtar Hussain
- Department of Chemistry
- Handique Girls’ College
- Guwahati 781001
- India
| |
Collapse
|
48
|
Mukherjee N, Podder S, Banerjee S, Majumdar S, Nandi D, Chakravarty AR. Targeted photocytotoxicity by copper(II) complexes having vitamin B 6 and photoactive acridine moieties. Eur J Med Chem 2016; 122:497-509. [DOI: 10.1016/j.ejmech.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/03/2016] [Indexed: 11/25/2022]
|
49
|
Banerjee S, Dixit A, Karande AA, Chakravarty AR. Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(IV) complexes having vitamin-B6 and acridinyl moieties. Dalton Trans 2016; 45:783-96. [PMID: 26645854 DOI: 10.1039/c5dt03412d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oxovanadium(iv) complexes of vitamin-B6 Schiff base, viz., [VO(HL(1)/L(2)/L(3))(B)]Cl (), where B is 2,2'-bipyridine (bpy in and ), 11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine (acdppz in and ), H2L(1)·HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-1-ium chloride (in and ), HL(2) is 2-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)phenol (in ) and HL(3) is 4-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in ) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes , as the perchlorate salt of , and , as the hexafluorophosphate salt of , were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes and having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of <0.9 μM. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen ((1)O2) generation. Fluorescence microscopy reveals specific localization of complex to endoplasmic reticulum (ER) and generation of (1)O2 possibly leads to apoptotic cell death by triggering ER stress response (ERSR).
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
50
|
Garai A, Pant I, Banerjee S, Banik B, Kondaiah P, Chakravarty AR. Photorelease and Cellular Delivery of Mitocurcumin from Its Cytotoxic Cobalt(III) Complex in Visible Light. Inorg Chem 2016; 55:6027-35. [DOI: 10.1021/acs.inorgchem.6b00554] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aditya Garai
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ila Pant
- Department
of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Samya Banerjee
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bhabatosh Banik
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R. Chakravarty
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|