1
|
Cao Y, Mo F, Liu Y, Liu Y, Li G, Yu W, Liu X. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter. Biosens Bioelectron 2022; 198:113819. [PMID: 34836711 DOI: 10.1016/j.bios.2021.113819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022]
Abstract
Personal glucose meter (PGM) is one of the most commercially available POC (point-of-care) devices for monitoring the level of glucose reliably, yet its non-glucose quantification ability is limited since such strategy needs ingenious interface design and tedious enzyme conjugation. Herein, we constructed a portable and sensitive platform that can detect non-glucose target by combining enzyme-encapsulated zeolitic imidazole framework-90 (ZIF-90) with personal glucose meter. ZIF-90 is an ideal carrier and susceptor due to the extraordinary capability of packaging enzyme and stimuli-responsiveness. We selected adenosine-5'-triphosphate (ATP) as the target model of non-glucose analytes. Upon ATP-induced decomposition of MOF, the released enzyme (glucose oxidase or invertase) catalyzed substrate and gave rise to the change of the glucose concentration for PGM assay. This method determined ATP with a remarkably sensitivity of 233 nM and effective recovery in real serum samples. Our strategy provides a facile and practical approach for measuring the non-glucose target using PGM, and could potentially be applied in bimolecular detection in point-of-care diagnosis.
Collapse
Affiliation(s)
- Yunzhe Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yahua Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Animal, Plant and Foodstuffs Inspection Center of Tianjin Customs, Tianjin, 300461, PR China
| | - Yu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenqian Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Fu P, Xu M, Xing S, Zhao Y, Zhao C. Dual cascade isothermal amplification reaction based glucometer sensors for point-of-care diagnostics of cancer-related microRNAs. Analyst 2021; 146:3242-3250. [PMID: 33999051 DOI: 10.1039/d1an00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The practical use of a point-of-care (POC) device is of particular interest in performing liquid biopsies related to cancer. Herein, taking advantage of the practical convenience of a commercially available personal glucose meter (PGM), we report a convenient, low-cost and sensitive detection strategy for circulating microRNA-155 (miRNA155) in human serum. First, miRNA155 in serum triggers the catalyzed hairpin assembly (CHA) reaction, and then the CHA product is specifically captured by the peptide nucleic acid (PNA) probes attached to the surface of a 96-well plate, which in turn triggers the hybridization chain reaction (HCR), resulting in the local enrichment of invertase. Next, introduction of a substrate (sucrose) for the invertase results in the generation of glucose, which can be detected by a PGM. In this sensor, neutrally charged PNA (12 nt) is more likely to hybridize with the CHA products than with the negatively charged DNA in kinetics, which improves the detection sensitivity and specificity. Due to the synergistic isothermal amplification reaction between CHA and HCR, the sensor is able to achieve a broad dynamic range (from 1 fM to 10 nM) with a detection limit down to 0.36 fM (3 orders of magnitude lower than that without HCR) and is capable of distinguishing single-base mismatched sequences. Thus the convenient, sensitive, robust and low-cost PGM sensor makes on-site nucleic acids detection possible, suggesting its great application prospect as a promising POC device in cancer diagnostics.
Collapse
Affiliation(s)
- Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | | | | | | | | |
Collapse
|
3
|
Wang D, Xue W, Ren X, Xu Z. A review on sensing mechanisms and strategies for telomerase activity detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Cheng M, Xiong E, Tian T, Zhu D, Ju HQ, Zhou X. A CRISPR-driven colorimetric code platform for highly accurate telomerase activity assay. Biosens Bioelectron 2020; 172:112749. [PMID: 33160233 DOI: 10.1016/j.bios.2020.112749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/20/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Telomeric repeat amplification protocol (TRAP) has been the most widely used method for assessing the telomerase activity from cells and tissues. However, cell lysates, body fluid samples, or tumor tissue samples often contain high concentrations of protein or other complex matrices, which are usually inhibiting the TRAP response, thus leading to false-negative results. Internal control (IC) involved TRAP enables reliable telomerase activity assay but requires time consuming and laborious electrophoretic separation to visualize telomeric repeat DNA and internal control products from TRAP reaction, severely limiting its application in clinical diagnosis. Herein, a colorimetric code system based on programmable CRISPR-Cas12a technology and gold nano-particles (AuNPs) probe has been developed to analyse telomeric repeat DNA and internal control in TRAP products, enabling the rapid detection of telomerase activity and identification of false-negatives with naked-eye. We transform the detection results into three typical colorimetric codes-positive (P), negative (N) and false-negative (FN), making the judgement of detection results more convenient and user-friendly. The platform has also been applied in accurate detection of clinical liver cancer specimens for telomerase activity with a detection sensitivity of 93.75% and a specificity of 93.75% based on Youden index analysis. As a proof of concept, we further demonstrated the feasibility of Cas9-mediated triple-line lateral flow assay (TL-LFA), which enabled the detection of telomeric repeat DNA and internal control on a single triple-line test strip, achieving convenient and accurate telomerase activity assay.
Collapse
Affiliation(s)
- Meng Cheng
- School of Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Erhu Xiong
- School of Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Tian Tian
- School of Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Debin Zhu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Xiaoming Zhou
- School of Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
5
|
Kim HY, Lee CY, Kim H, Park KS, Park HG. Portable glucose meter-utilized label-free and washing-free telomerase assay. Analyst 2020; 145:5578-5583. [PMID: 32627768 DOI: 10.1039/d0an00655f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We herein describe a portable glucose meter (PGM)-utilized label-free and washing-free method for the facile determination of telomerase activity that relies on the kinase-catalyzed cascade enzymatic reaction (KCER) that transduces the telomerase activity to the glucose level. In the sensor, the telomerase that elongates telomere sequences ((TTAGGG)n) from the 3'-terminus of telomerase substrate primer (TSP) consumes deoxynucleoside triphosphate (dNTP), which serves as a phosphate source for KCER promoted by hexokinase and pyruvate kinase. Thus, the presence of telomerase protects KCER from working effectively, resulting in the maintenance of an initial, high glucose level that is readily determined using hand-held PGM. With this strategy, the telomerase activities in various types of cell lines were successfully determined with high sensitivity. Furthermore, the ability of this method to screen candidate inhibitors for telomerase activity was also verified.
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
6
|
Li F, Li X, Zhu N, Li R, Kang H, Zhang Q. An aptasensor for the detection of ampicillin in milk using a personal glucose meter. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3376-3381. [PMID: 32930225 DOI: 10.1039/d0ay00256a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic residues in foods have aroused wide public concern because of their potential side-effects. It is imperative to develop a simple, accurate and reliable method for the detection of antibiotic residues in foods. In this paper, we report a novel, facile and sensitive method for the detection of ampicillin in milk using a commercial personal glucose meter (PGM). Magnetic beads (MBs) were employed as the platform, an ampicillin aptamer was used as the recognition element and streptavidin was utilized as the bridge to link invertase and the aptamer. After the hydrolysis of sucrose to glucose, the concentration of glucose was quantitatively measured using the PGM. The difference of PGM signals with and without addition of ampicillin exhibits a good linear correlation with the logarithm of ampicillin concentrations in the range of 2.5 × 10-10 mol L-1 to 1.0 × 10-7 mol L-1 with a detection limit of 2.5 × 10-10 mol L-1 (S/N = 3). Finally, the proposed method was successfully applied for the detection of ampicillin residue in milk.
Collapse
Affiliation(s)
- Fang Li
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
- National Experimental Teaching Demonstration Center of Food Processing and Security, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xixi Li
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
| | - Nanwei Zhu
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
| | - Ruohan Li
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
| | - Huaibin Kang
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
- National Experimental Teaching Demonstration Center of Food Processing and Security, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Qinpu Zhang
- College of Food and Biological Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang 471023, P. R. China.
| |
Collapse
|
7
|
Sun L, Zhao Q, Liu X, Pan Y, Gao Y, Yang J, Wang Y, Song Y. Enzyme-mimicking accelerated signal enhancement for visually multiplexed quantitation of telomerase activity. Chem Commun (Camb) 2020; 56:6969-6972. [PMID: 32436515 DOI: 10.1039/d0cc01951h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we propose an amplification strategy involving enzyme-mimicking accelerated signal enhancement integrated with a triple-channel volumetric bar-chart chip for visually multiplexed quantitation of telomerase activity. This platform was used for evaluating the telomerase activities from different kinds of cells and a detection limit at the single-cell level was realized without any instrumental assistance.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma Y, Mao G, Wu G, He Z, Huang W. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Anal Bioanal Chem 2020; 412:5283-5289. [PMID: 32494916 DOI: 10.1007/s00216-020-02741-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
Abstract
In this work, we developed a triple-parameter strategy for the detection of telomerase activity from cancer cells and urine samples. This strategy was developed based on magnetic bead-enzyme hybrids combined with fluorescence analysis, colorimetric assay, or adenosine triphosphate (ATP) meter as readout. The application of magnetic bead-enzyme hybrids has the advantages of magnetic separation and signal amplification. These detection methods can be used individually or in combination to achieve the optimal sensing performance and make the results more convincing. Among them, the ATP meter with portable size had easy operation and low cost, and this response strategy provided a higher sensitivity at the single-cell level. The designed strategy was suitable as naked-eye sensor and point-of-care testing (POCT) for rapid assaying of telomerase activity. Graphical abstract Magnetic bead-enzyme assemble for triple-parameter telomerase detection.
Collapse
Affiliation(s)
- Yingxin Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqiang Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China.
| |
Collapse
|
9
|
Tang Y, Li H, Li B. Homogeneous and universal transduction of various nucleic acids to an off-shelf device based on programmable toehold switch sensing. Chem Commun (Camb) 2020; 56:2483-2486. [PMID: 32002523 DOI: 10.1039/c9cc09154h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Through a rational construction of an RNA toehold switch sensor, the glucometer-based detection of nucleic acids was innovatively simplified into a completely homogeneous and label-free process. Compared with traditional strategies that rely on multiple operations such as chemical conjugation and bead separation, this new strategy is more robust, user-friendly, reagent-saving, and reproducible, and can be universally adapted for use on extensive target species, e.g. herein, the real-world pathogen genes.
Collapse
Affiliation(s)
- Yidan Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | |
Collapse
|
10
|
Visual and sensitive detection of telomerase activity via hydrogen peroxide test strip. Biosens Bioelectron 2020; 156:112132. [PMID: 32174558 DOI: 10.1016/j.bios.2020.112132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/25/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
The point of care testing (POCT) of telomerase activity is critical for early diagnosis of cancer. Herein, a colorimetric method was developed for visual detection of telomerase activity via hydrogen peroxide test strip. It is based on the telomerase-controlled in-situ formation of hydrogen peroxide. Firstly, biotinylated telomerase substrate (TS) primer was attached on the surface of magnetic beads (MBs) via the streptavidin-biotin reaction to form MB-TS complex. Then, TS primers were elongated by telomerase to form long telomere elongated products (TEP) which contains TTAGGG repeat units. The in-situ formed MB-TEP complex specifically hybridized with glucose oxidase modified cDNA (GOD-cDNA). After magnetic separation and washing, the MB-TEP/GOD-cDNA complex incubated with glucose solution to in-situ produce hydrogen peroxide which was detected by hydrogen peroxide test strip. One long TEP hybridized with multiple GOD-cDNAs, which enriched GOD to highly efficiently catalyze glucose for generating hydrogen peroxide. Thus, the visual assay achieved sensitive detection of telomerase activity, and the limit of detection (LOD) reached as low as 10 HeLa cells/μL by naked eyes and 4.5 HeLa cells/μL by absorbance measurements. Therefore, it offers a sensitive and low-cost method for visual detection of telomerase activity, which also, widens the application of commercial hydrogen peroxide test strip in the development of non-H2O2 biosensors.
Collapse
|
11
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
13
|
Zeng L, Gong J, Rong P, Liu C, Chen J. A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta 2019; 198:412-416. [DOI: 10.1016/j.talanta.2019.02.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 01/19/2023]
|
14
|
Xiao W, Gao Y, Zhang Y, Li J, Liu Z, Nie J, Li J. Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion. Biosens Bioelectron 2019; 137:154-160. [PMID: 31096081 DOI: 10.1016/j.bios.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 01/27/2023]
Abstract
A variety of routine methods are available for the detection of silver (I) (Ag+) ions, but most of them rely on expensive, sophisticated and desktop instruments. Herein, a low-cost, instrument-free and portable Ag+ biosensor was described by initially designing a new class of 3D origami microfluidic paper-based analytical devices (μPADs) into each of which one piece of reagent-loaded nanoporous membrane was integrated. It combines analyte-triggered self-growing of silver nanoparticles to block the membrane's pores in situ for rapid yet efficient signal amplification with a handheld personal glucose meter for a portable and sensitive quantitative readout based on the biocatalytic reactions between the glucose oxidase and glucose. Its utility is well demonstrated with the specific detection of the analyte with a limit of detection as low as ∼58.1 pM (3σ), which makes this new biosensing method one of the most sensitive Ag+ assays in comparison with many other typical methods recently reported. Moreover, the satisfactory recovery of analyzing several types of real water examples, i.e., tap water, drinking water, pond water and soil water, additionally validates its feasibility for practical applications.
Collapse
Affiliation(s)
- Wencheng Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Yiming Gao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| | - Jiao Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Zhaoying Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| |
Collapse
|
15
|
Liu C, Zhang S, Li X, Xue Q, Jiang W. Multi-code magnetic beads based on DNAzyme-mediated double-cycling amplification for a point-of-care assay of telomerase activity. Analyst 2019; 144:4241-4249. [DOI: 10.1039/c9an00589g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of a reliable and facile telomerase activity assay with high specificity and sensitivity is a central challenge to make telomerase testing a routine part of medical care with respect to cancer.
Collapse
Affiliation(s)
- Chunxue Liu
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Susu Zhang
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Xia Li
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
- School of Chemistry and Chemical Engineering
| | - Qingwang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
- School of Chemistry and Chemical Engineering
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| |
Collapse
|
16
|
Zhang L, Gu C, Ma H, Zhu L, Wen J, Xu H, Liu H, Li L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal Bioanal Chem 2018; 411:21-36. [DOI: 10.1007/s00216-018-1361-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|
17
|
Wang J, Song M, Hu C, Wu K. Portable, Self-Powered, and Light-Addressable Photoelectrochemical Sensing Platforms Using pH Meter Readouts for High-Throughput Screening of Thrombin Inhibitor Drugs. Anal Chem 2018; 90:9366-9373. [DOI: 10.1021/acs.analchem.8b01979] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengmeng Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kangbing Wu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Taebi S, Keyhanfar M, Noorbakhsh A. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. J Immunol Methods 2018; 458:26-32. [PMID: 29654816 DOI: 10.1016/j.jim.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
Hepatitis B virus (HBV) infection is the major public health problem leading cause of death worldwide. The most important diagnostic marker for this infection is hepatitis B surface antigen (HBsAg). In this study, a novel, inexpensive, portable and sensitive ELISA method was designed and investigated for diagnosis of HBsAg based on the functionalized Fe3O4 and Al2O3 nanoparticles, with the strategy for detecting the concentration of glucose using a cheap and accessible personal glucose meter (PGM). The ELISA system was constructed using hepatitis B antibody against HBsAg immobilized on streptavidin coated magnetic iron oxide particles (S-Fe3O4) as the capture antibody (Ab1). In addition, another hepatitis B antibody against different epitope of HBsAg (Ab2) and glucoamylase both were immobilized on Al2O3 nanoparticles. After formation of the sandwich immune complex between Ab1 and Ab2 immobilized on S-Fe3O4 and Al2O3 NPs, respectively, through HBsAg, starch was converted into glucose using glucoamylase. Then, the glucose concentration was measured using PGM. The concentration of HBsAg was calculated based on the linear relation between the concentrations of HBsAg and glucose. Under optimal conditions, this assay showed detection limit values of 0.3 to 0.4 ng ml-1 for "ay" and "ad" subtypes of HBsAg, respectively. The results indicate that the designed assay is comparable to the commercial kits in terms of sensitivity, on-site, specificity, cost, simplicity, portability and reproducibility. The presented method can be used in disadvantaged areas of the world and blood transfusion centers. To the best of our knowledge, this is the first report of using PGMs for HBSAg detection.
Collapse
Affiliation(s)
- Saeed Taebi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mehrnaz Keyhanfar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Abdollah Noorbakhsh
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
19
|
Gao F, Yao Y, Wu J, Cui L, Zhang Y, Geng D, Tang D, Yu Y. A robust fluorescent probe for detection of telomerase activityin vitroand imaging in living cellsviatelomerase-triggering primer extension to desorb DNA from graphene oxide. Analyst 2018; 143:3651-3660. [DOI: 10.1039/c8an00815a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel strategy for telomerase imaging was developed based on telomerase-triggering primer extension to desorb fluorophore labeled DNA from graphene oxide.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Jing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Lin Cui
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Yu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| |
Collapse
|
20
|
Qiu S, Zhao F, Zenasni O, Li J, Shih WC. Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing. NANOSCALE HORIZONS 2017; 2:217-224. [PMID: 32260643 DOI: 10.1039/c7nh00042a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Telomerase, an enzyme known to catalyze telomere elongation by adding TTAGGG [thymine (T), adenine (A), and guanine (G)] repeats to the end of telomeres, is vital for cell proliferation. Overexpression of telomerase has been found in most tumor cells, resulting in telomere dysfunction and uncontrolled cellular proliferation. Thus, telomerase has been considered as a potential cancer biomarker, as well as a potential target in cancer therapy. In this study, telomerase-catalyzed growth of tandem G-quadruplex (G4) assembled on a nanoporous gold array (NPGA) resulted in the formation of three-dimensional hybrid nanoarchitectures. The generated nanostructure then captured malachite green (MG) (reporter molecule) without the need of a complicated labeling process. Upon laser irradiation, the captured MG molecules produced a surface-enhanced Raman scattering (SERS) signal that was generated by an abundant amount of plasmonic hot spots in the NPGA substrates. A limit of detection (LOD) of 10-10 IU along with a linear range, which was 3 orders of magnitude, was achieved, which was equivalent to the telomerase amount extracted from 20 HeLa cells. The LOD is 2 orders of magnitude better than that of the commercial enzyme-linked immunosorbent assay (ELISA), and it approaches that of the most sensitive technique, telomeric repeat amplification protocols (TRAP), which require a laborious and equipment-intensive polymerase chain reaction (PCR). In addition, X-ray photoelectron spectroscopy (XPS) was used to chemically identify and quantify the telomerase activity on the sensitized NPGA surface. Furthermore, the sensor was applied to screen the effectiveness of anti-telomerase drugs such as zidovudine, thus demonstrating the potential use of the sensor in telomerase-based diagnosis and drug development. Moreover, the framework represents a novel paradigm of collaborative plasmonic intensification and catalytic multiplication (c-PI/CM) for label-free biosensing.
Collapse
Affiliation(s)
- Suyan Qiu
- Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well.
Collapse
|
22
|
Xue Q, Kong Y, Wang H, Jiang W. Liposome-encoded magnetic beads initiated by padlock exponential rolling circle amplification for portable and accurate quantification of microRNAs. Chem Commun (Camb) 2017; 53:10772-10775. [DOI: 10.1039/c7cc05686a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we propose a strategy for glucoamylase-encapsulated liposome-encoded magnetic beads initiated by padlock exponential rolling circle amplification (P-ERCA) for portable and accurate quantification of miRNA by using a glucometer (GM) for readout.
Collapse
Affiliation(s)
- Qingwang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Yancong Kong
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Huaisheng Wang
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
23
|
Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu MJ, Du D, Li H, Lin Y. One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. NANOSCALE 2016; 8:18980-18986. [PMID: 27808326 DOI: 10.1039/c6nr06870g] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein-protein conjugates play a vital role in bioassays with their inherent functions of biological recognition and signal amplification. Herein, a one-pot green method for synthesis of all-inclusive protein-protein nanoflowers has been developed. The protein-protein nanoflowers integrate both essential functions of biological recognition and signal amplification, and they were used as ideal signal labels for the sensitive point-of-care detection of Escherichia coli O157:H7. Especially noteworthy, the prepared Con A-invertase-CaHPO4 hybrid nanoflowers simultaneously loaded sufficient invertase and enhanced the activity of the immobilized invertase, which fits well with the requirements of signal labels for bioassays. Due to the conversion of sucrose to glucose by invertase, Con A-invertase-CaHPO4 hybrid nanoflowers were successfully used for the reliable point-of-care detection of food pathogens by a personal glucose meter. The presented approach successfully resolved the bottleneck in preparing protein-protein conjugate-based signal labels for bioassays using enzyme-based signal amplification strategies, which holds great promise to develop on-demand protein-protein conjugates for a variety of applications extending from biosensors and biomedicine to energy, environmental monitoring and remediation.
Collapse
Affiliation(s)
- Ranfeng Ye
- College of Chemistry and College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S. Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels. Anal Chem 2016; 88:8107-14. [DOI: 10.1021/acs.analchem.6b01817] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xu Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Min Wei
- College
of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuanjian Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingjing Lv
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Wei
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
25
|
Lan T, Zhang J, Lu Y. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol Adv 2016; 34:331-41. [PMID: 26946282 PMCID: PMC4833671 DOI: 10.1016/j.biotechadv.2016.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023]
Abstract
Recent advances in mobile network and smartphones have provided an enormous opportunity for transforming in vitro diagnostics (IVD) from central labs to home or other points of care (POC). A major challenge to achieving the goal is a long time and high costs associated with developing POC IVD devices in mobile Health (mHealth). Instead of developing a new POC device for every new IVD target, we and others are taking advantage of decades of research, development, engineering and continuous improvement of the blood glucose meter (BGM), including those already integrated with smartphones, and transforming the BGM into a general healthcare meter for POC IVDs of a wide range of biomarkers, therapeutic drugs and other analytical targets. In this review, we summarize methods to transduce and amplify selective binding of targets by antibodies, DNA/RNA aptamers, DNAzyme/ribozymes and protein enzymes into signals such as glucose or NADH that can be measured by commercially available BGM, making it possible to adapt many clinical assays performed in central labs, such as immunoassays, aptamer/DNAzyme assays, molecular diagnostic assays, and enzymatic activity assays onto BGM platform for quantification of non-glucose targets for a wide variety of IVDs in mHealth.
Collapse
Affiliation(s)
- Tian Lan
- GlucoSentient, Inc., 60 Hazelwood Drive, Champaign, IL 61820, USA.
| | - Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Wang W, Huang S, Li J, Rui K, Zhang JR, Zhu JJ. Coupling a DNA-Based Machine with Glucometer Readouts for Amplified Detection of Telomerase Activity in Cancer Cells. Sci Rep 2016; 6:23504. [PMID: 27009555 PMCID: PMC4806334 DOI: 10.1038/srep23504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/03/2016] [Indexed: 01/09/2023] Open
Abstract
The strong correlation between cancer and telomerase activity has inspired the development of new strategies to evaluate telomerase activity. Here, a personal glucose meter (PGM) system that uses DNA-based machine amplification to detect telomerase in cancer cells is reported. In this assay, telomerase elongation products are amplified in the form of another type of product by a DNA-based machine. This process can only be activated by the hybridization of the extended telomerase substrate (TS) probe and the complementary primer in the presence of telomerase. The obtained products are then transformed to glucose-related signals via a three-component assay, which enables the simple use of a PGM to indirectly quantify the telomerase activity. The proposed method realizes sensitive telomerase activity detection down to 20 HeLa cells with a significantly enhanced dynamic range. Additionally, short telomerase elongation products, such as telomerase substrate probes with two repetitive sequences, that cannot be detected using the most widely used telomeric repeat amplification protocol assay were detected.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Kai Rui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Qiu Z, Shu J, Jin G, Xu M, Wei Q, Chen G, Tang D. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine–Hg 2+ –thymine coordination chemistry. Biosens Bioelectron 2016; 77:681-6. [DOI: 10.1016/j.bios.2015.10.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
|
28
|
Zhang Y, Yang J, Nie J, Yang J, Gao D, Zhang L, Li J. Enhanced ELISA using a handheld pH meter and enzyme-coated microparticles for the portable, sensitive detection of proteins. Chem Commun (Camb) 2016; 52:3474-7. [DOI: 10.1039/c5cc09852a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work describes a general methodology for enhanced enzyme-linked immunosorbent assay (ELISA) that integrates enzyme-coated microparticle probes for robust yet highly efficient signal amplification and a handheld pH meter for a simple, portable, and quantitative readout.
Collapse
Affiliation(s)
- Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Jiani Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Juanhua Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Dong Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Lang Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| |
Collapse
|
29
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015; 55:732-6. [PMID: 26593219 DOI: 10.1002/anie.201507563] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/26/2023]
Abstract
We report a discovery that personal glucose meters (PGMs) can give a dose-dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one-step homogeneous assays of many non-glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target-induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L-lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA)
| | - Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Miao Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Ananda Basu
- Division of Endocrinology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).
| |
Collapse
|
31
|
Brooks AD, Mohapatra H, Phillips ST. Design, Synthesis, and Characterization of Small-Molecule Reagents That Cooperatively Provide Dual Readouts for Triaging and, When Necessary, Quantifying Point-of-Need Enzyme Assays. J Org Chem 2015; 80:10437-45. [PMID: 26458224 DOI: 10.1021/acs.joc.5b02013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A newly designed small molecule reagent provides both qualitative and quantitative readouts in assays that detect enzyme biomarkers. The qualitative readout enables rapid triaging of samples so that only samples that contain relevant concentrations of the target analyte must be quantified. The reagent is accessible in essentially three steps and 34% overall yield, is stable as a solid when heated to 44 °C for >1 month, and does not produce background signal when used in an assay. This paper describes the design and synthesis of the reagent, characterizes its response properties, and establishes the scope of its reactivity.
Collapse
Affiliation(s)
- Adam D Brooks
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Hemakesh Mohapatra
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Scott T Phillips
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Zhang J, Xiang Y, Novak DE, Hoganson GE, Zhu J, Lu Y. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis. Chem Asian J 2015; 10:2221-7. [DOI: 10.1002/asia.201500642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yu Xiang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Donna E. Novak
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - George E. Hoganson
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - Junjie Zhu
- School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
33
|
Xie S, Yuan Y, Song Y, Zhuo Y, Li T, Chai Y, Yuan R. Using the ubiquitous pH meter combined with a loop mediated isothermal amplification method for facile and sensitive detection of Nosema bombycis genomic DNA PTP1. Chem Commun (Camb) 2015; 50:15932-5. [PMID: 25381873 DOI: 10.1039/c4cc06449f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we show an amplification-coupled detection method for directly measuring released hydrogen ions during the loop mediated isothermal amplification (LAMP) procedure by using a pH meter. The genomic DNA of Nosema bombycis (N. bombycis) was amplified and detected by employing this LAMP-pH meter platform for the first time.
Collapse
Affiliation(s)
- Shunbi Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu X, Li W, Hou T, Dong S, Yu G, Li F. Homogeneous Electrochemical Strategy for Human Telomerase Activity Assay at Single-Cell Level Based on T7 Exonuclease-Aided Target Recycling Amplification. Anal Chem 2015; 87:4030-6. [DOI: 10.1021/acs.analchem.5b00355] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaojuan Liu
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| | - Wei Li
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| | - Ting Hou
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| | - Shanshan Dong
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| | - Guanghui Yu
- College
of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| | - Feng Li
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People’s Republic of China
| |
Collapse
|
35
|
Abstract
We provide an overview covering the existing challenges and latest developments in achieving high selectivity and sensitivity cancer-biomarker detection.
Collapse
Affiliation(s)
- Li Wu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry
- State Key laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
| | - Xiaogang Qu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry
- State Key laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
| |
Collapse
|
36
|
Petryayeva E, Algar WR. Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra15036h] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A review of the role that nanoparticles can play in point-of-care diagnostics that utilize consumer electronic devices such as cell phones and smartphones for readout, including an overview of important concepts and examples from the literature.
Collapse
Affiliation(s)
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|