1
|
Zhang P, He F, Chang X, Ren C. Fluorescent strategy for detection of uracil-DNA glycosylase activity based on isothermal amplification triggered by ligase. Acta Histochem 2025; 127:152252. [PMID: 40245473 DOI: 10.1016/j.acthis.2025.152252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Uracil-DNA glycosylase (UDG) plays a key role in the base repair system, and detecting its enzymatic activity is crucial for early disease diagnosis. A rapid method for detecting UDG was developed, utilizing amplification initiated by a ligation reaction. A DNA probe modified with uracil was utilized to ligate two free DNA strands to form a newly generated DNA strand. This triggers a nicking enzyme-assisted amplification reaction, resulting in the production of single-stranded DNA (ssDNA). Then, the amplified ssDNA triggered the molecular beacons to emit fluorescence. However, the addition of UDG results in the removal of uracil from the DNA probe strand, leaving abasic site (AP site). After heat denaturation, this site was destroyed, preventing subsequent ligation or amplification reactions, resulting in the absence of fluorescence. The findings of our study indicate that the addition of UDG at concentrations exceeding 0.5 U/mL resulted in complete suppression of fluorescence intensity, reaching a value of 0. Conversely, in the absence of the UDG enzyme or upon the addition of other enzymes and proteins such as HAAG, EndoIV and BSA, the fluorescence intensity of the system remains unaffected, achieving 100 % intensity within 5-20 min. This study presents a rapid method for assessing UDG activity that could be valuable for early disease diagnosis in the future.
Collapse
Affiliation(s)
- Pansong Zhang
- Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi 046000, PR China
| | - Fangfang He
- Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi 046000, PR China
| | - Xin Chang
- Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi 046000, PR China
| | - Chenxia Ren
- Central Laboratory, Changzhi Medical College, Changzhi, Shanxi 046000, PR China.
| |
Collapse
|
2
|
Kulkarni RS, Greenwood SN, Weiser BP. Assay design for analysis of human uracil DNA glycosylase. Methods Enzymol 2022; 679:343-362. [PMID: 36682870 DOI: 10.1016/bs.mie.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
Collapse
Affiliation(s)
- Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
3
|
Ma F, Liu YZ, Liu M, Qiu JG, Zhang CY. Transcriptionally amplified synthesis of fluorogenic RNA aptamers for label-free DNA glycosylase assay. Chem Commun (Camb) 2022; 58:10229-10232. [PMID: 36004508 DOI: 10.1039/d2cc03628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate for the first time the utilization of fluorogenic RNA aptamers for label-free uracil-DNA glycosylase (UDG) assay. Through rationally engineering the transcription machine with dU substitution, this assay requires only a single probe to simultaneously sense and amplify the UDG signal, achieving a low detection limit of 6.3 × 10-6 U mL-1. Moreover, it can be applied for screening UDG inhibitors and measuring endogenous UDG activity in different cells.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ya-Zhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
4
|
Signal-on/signal-off bead-based assays for the multiplexed monitoring of base excision repair activities by flow cytometry. Anal Bioanal Chem 2022; 414:2029-2040. [DOI: 10.1007/s00216-021-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022]
|
5
|
Li BR, Tang H, Yu RQ, Jiang JH. Single-Nanoparticle ICP-MS for Sensitive Detection of Uracil-DNA Glycosylase Activity. Anal Chem 2021; 93:8381-8385. [PMID: 34100608 DOI: 10.1021/acs.analchem.1c01447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Single-nanoparticle inductively coupled plasma mass spectrometry (SP-ICP-MS) has demonstrated unique advantages for the detection of biological samples. However, methods for enzyme activity detection based on SP-ICP-MS technology have been rarely explored. Here we report the development of a novel SP-ICP-MS assay for uracil-DNA glycosylase (UDG) activity detection based on its ability to specifically recognize and remove uracil to induce the cleavage of the DNA probe. Our design allows the generation of single gold nanoparticles correlated to the specific enzymatic reaction for a highly sensitive SP-ICP-MS measurement. The developed assay enables sensitive UDG activity detection with a detection limit of 0.0003 U/mL. The cell lysate analysis by the developed assay reveals its applicability for the detection of UDG activity in real samples. It is envisioned that our design may provide a new paradigm for developing the SP-ICP-MS assay for enzyme activity detection in biological samples.
Collapse
Affiliation(s)
- Bang-Rui Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Tu B, Feng Z, Wang H, Zhang W, Ye W, Wang H, Xiao X, Zhao W, Wu T. Development of a background signal suppression probe for 8-oxoguanine DNA glycosylase detection. Anal Chim Acta 2021; 1175:338741. [PMID: 34330449 DOI: 10.1016/j.aca.2021.338741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
8-oxoguanine DNA glycosylase (OGG), which plays a crucial role in base excision repair (BER), is an important biomarker. The existing highly sensitive fluorescent methods always need complicated amplification design. The method with high sensitivity and simple design at the same time is urgently needed. Here, we developed a highly sensitive detection method for OGG detection with lambda exonuclease and the background signal suppression probe. Through probe structure design, the steric hindrance and competitive binding effects successfully suppressed the background signal. We achieved sensitive detection of OGG with a simple design, and the limit of detection was 5.0 × 10-4 U mL-1. Moreover, the method was highly selective and successfully applied to OGG detection in biological samples, which shows the potential clinical application value.
Collapse
Affiliation(s)
- Bocheng Tu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zishan Feng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weicong Ye
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Integration of magnetic separation and real-time ligation chain reaction for detection of uracil-DNA glycosylase. Anal Bioanal Chem 2020; 413:255-261. [PMID: 33079213 DOI: 10.1007/s00216-020-02997-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a protein enzyme that initiates the base excision repair pathway for maintaining genome stability. Sensitive detection of UDG activity is important in the study of many biochemical processes and clinical applications. Here, a method for detecting UDG is proposed by integrating magnetic separation and real-time ligation chain reaction (LCR). First, a DNA substrate containing uracil base is designed to be conjugated to the magnetic beads. By introducing a DNA complementary to the DNA substrate, the uracil base is recognized and removed by UDG to form an apurinic/apyrimidinic (AP) site. The DNA substrate is then cut off from the AP site by endonuclease IV, releasing a single-strand DNA (ssDNA). After magnetic separation, the ssDNA is retained in the supernatant and then detected by real-time LCR. The linear range of the method is 5 × 10-4 to 5 U/mL with four orders of magnitude, and the detection limit is 2.7 × 10-4 U/mL. In the assay, ssDNA template obtained through magnetic separation can prevent other DNA from affecting the subsequent LCR amplification reaction, which provides a simple, sensitive, specific, and universal way to detect UDG and other repair enzymes. Furthermore, the real-time LCR enables the amplification reaction and fluorescence detection simultaneously, which simplifies the operation, avoids post-contamination, and widens the dynamic range. Therefore, the integration of magnetic separation and real-time LCR opens a new avenue for the detection of UDG and other DNA repair enzymes.
Collapse
|
8
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
9
|
An enzyme-free and substrate-free electrochemical biosensor with robust porphyrin-based covalent-linked nanomaterial as nanoelectrocatalyst and efficient support for sensitive detection of uracil-DNA glycosylase. Biosens Bioelectron 2020; 154:112014. [DOI: 10.1016/j.bios.2020.112014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
|
10
|
Yang F, Li X, Li J, Xiang Y, Yuan R. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition. Talanta 2019; 204:812-816. [DOI: 10.1016/j.talanta.2019.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023]
|
11
|
Lu Y, Zhao H, Fan GC, Luo X. Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Biosens Bioelectron 2019; 142:111569. [DOI: 10.1016/j.bios.2019.111569] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
|
12
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
13
|
Feng M, Gu C, Sun Y, Zhang S, Tong A, Xiang Y. Enhancing Catalytic Activity of Uranyl-Dependent DNAzyme by Flexible Linker Insertion for More Sensitive Detection of Uranyl Ion. Anal Chem 2019; 91:6608-6615. [PMID: 31016961 DOI: 10.1021/acs.analchem.9b00490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The uranyl-dependent DNAzyme 39E cleaves its nucleic acid substrate in the presence of uranyl ion (UO22+). It has been widely utilized in many sensor designs for selective and sensitive detection of UO22+ in the environment and inside live cells. In this work, by inserting a flexible linker (C3 Spacer) into one critical site (A20) of the 39E catalytic core, we successfully enhanced the original catalytic activity of 39E up to 8.1-fold at low UO22+ concentrations. Applying such a modified DNAzyme (39E-A20-C3) in a label-free fluorescent sensor for UO22+ detection achieved more than 1 order of magnitude sensitivity enhancement over using native 39E, with the UO22+ detection limit improved from 2.6 nM (0.63 ppb) to 0.19 nM (0.047 ppb), while the high selectivity to UO22+ over other metal ions was fully preserved. The method was also successfully applied for the detection of UO22+-spiked environmental water samples to demonstrate its practical usefulness.
Collapse
Affiliation(s)
- Mengli Feng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yanping Sun
- School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Shuyuan Zhang
- School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
14
|
Liu G, He W, Liu C. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta 2019; 195:320-326. [DOI: 10.1016/j.talanta.2018.11.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
15
|
Chen M, Li W, Ma C, Wu K, He H, Wang K. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Mikrochim Acta 2019; 186:110. [PMID: 30637581 DOI: 10.1007/s00604-019-3247-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
The base-excision repair enzyme uracil-DNA glycosylase (UDG) plays a crucial role in the maintenance of genome integrity. The authors describe a fluorometric method for the detection of the activity of UDG. It is making use of (a) a 3'-FAM-labeled hairpin DNA probe with two uracil deoxyribonucleotides in the self-complementary duplex region of its hairpin structure, (b) exonuclease I (Exo I) that catalyzes the release of FAM from the UDG-induced stretched ssDNA probe, and (c) graphene oxide that quenches the green FAM fluorescence of the intact hairpin DNA probe in the absence of UDG. If Exo I causes the release of FAM from the hairpin DNA probe, the fluorescence peaking at 517 nm is turned off in the absence of UDG but turned on in its presence. The resulting assay has a wide linear range (0.008 to 1 U·mL-1) and a detection limit as low as 0.005 U·mL-1. It has good specificity for UDG over potentially interfering enzymes and gave satisfactory results when applied to biological samples. Conceivably, the method may be used in a wide range of applications such as in diagnosis, drug screening, and in studying the repair of DNA lesions. Graphical abstract Schematic presentation of a fluorometric strategy for detection of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wenkai Li
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China.
| | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China
| |
Collapse
|
16
|
Du YC, Cui YX, Li XY, Sun GY, Zhang YP, Tang AN, Kim K, Kong DM. Terminal Deoxynucleotidyl Transferase and T7 Exonuclease-Aided Amplification Strategy for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2018; 90:8629-8634. [PMID: 29911858 DOI: 10.1021/acs.analchem.8b01928] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As one of the key initiators of the base excision repair process, uracil-DNA glycosylase (UDG) plays an important role in maintaining genomic integrity. It has been found that aberrant expression of UDG is associated with a variety of diseases. Thus, accurate and sensitive detection of UDG activity is of critical significance for biomedical research and early clinical diagnosis. Here, we developed a novel fluorescent sensing platform for UDG activity detection based on a terminal deoxynucleotidyl transferase (TdT) and T7 exonuclease (T7 Exo)-aided recycling amplification strategy. In this strategy, only two DNA oligonucleotides (DNA substrate containing one uracil base and Poly dT probe labeled with a fluorophore/quencher pair) are used. UDG catalyzes the removal of uracil base from the enclosed dumbbell-shape DNA substrate to give an apyrimidinic site, at which the substrate oligonucleotide is cleaved by endonuclease IV. The released 3'-end can be elongated by TdT to form a long deoxyadenine-rich (Poly dA) tail, which may be used as a recyclable template to initiate T7 Exo-mediated hybridization-digestion cycles of the Poly dT probe, giving a significantly enhanced fluorescence output. The proposed UDG-sensing strategy showed excellent selectivity and high sensitivity with a detection limit of 1.5 × 10-4 U/mL. The sensing platform was also demonstrated to work well for UDG inhibitor screening and inhibitory activity evaluation, thus holding great potential in UDG-related disease diagnosis and drug discovery. The proposed strategy can be easily used for the detection of other DNA repair-related enzymes by simply changing the recognition site in DNA substrate and might also be extended to the analysis of some DNA/RNA-processing enzymes, including restriction endonuclease, DNA methyltransferase, polynucleotide kinase, and so on.
Collapse
Affiliation(s)
- Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Guo-Ying Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Kwangil Kim
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China.,Institute of Analysis , Kim Chaek University of Technology , Pyongyang , 999093 , Democratic People's Republic of Korea
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China
| |
Collapse
|
17
|
Alekseeva AY, Bardasov IN. Cascade methods for the synthesis of annulated 1,8-naphthyridines (microreview). Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2332-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ahn JK, Lee CY, Park KS, Park HG. Abasic Site-Assisted Inhibition of Nicking Endonuclease Activity for the Sensitive Determination of Uracil DNA Glycosylase. Biotechnol J 2017; 13:e1700603. [DOI: 10.1002/biot.201700603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
19
|
Alekseeva AY, Bardasov IN, Mikhailov DL, Ershov OV. Synthesis of fused derivatives of 1,8-naphthyridine. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017080140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
An efficient one-pot synthesis of highly substituted [1,8]naphthyridin-1-phenyl-1-ethanone derivatives via a four-component reaction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1152-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2017; 89:4488-4494. [PMID: 28306242 DOI: 10.1021/acs.analchem.6b04673] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
22
|
Bardasov IN, Alekseeva AU, Yaschenko NN, Zhitar SV, Lyshchikov AN. One-pot synthesis of annulated 1,8-naphthyridines. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAnnulated 1,8-naphthyridines were synthesized by one-pot reaction of aromatic aldehyde, malononitrile dimer and enehydrazinoketone.
Collapse
|
23
|
Wu Y, Yan P, Xu X, Jiang W. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities. Analyst 2017; 141:1789-95. [PMID: 26899234 DOI: 10.1039/c5an02483h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.
Collapse
Affiliation(s)
- Yushu Wu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Ping Yan
- Jinan Maternity and Child Care Hospital, 250001 Jinan, P.R. China.
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| |
Collapse
|
24
|
Wang J, Pan M, Wei J, Liu X, Wang F. A C-HCR assembly of branched DNA nanostructures for amplified uracil-DNA glycosylase assays. Chem Commun (Camb) 2017; 53:12878-12881. [DOI: 10.1039/c7cc07057h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The amplified and selective detection of uracil-DNA glycosylase was enabled by a two-layered cascaded hybridization chain reaction machinery.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
25
|
Du YC, Zhu LN, Kong DM. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications. Biosens Bioelectron 2016; 86:811-817. [DOI: 10.1016/j.bios.2016.07.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 12/31/2022]
|
26
|
Alekseeva AY, Mikhailov DL, Bardasov IN, Timrukova DV, Ershov OV. Three-component synthesis of 5-aryl-1,8-naphthyridine-3-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016100158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ma C, Wu K, Liu H, Xia K, Wang K, Wang J. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation. Talanta 2016; 160:449-453. [DOI: 10.1016/j.talanta.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
|
28
|
Zhu J, Wang L, Xu X, Wei H, Jiang W. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application. Anal Chem 2016; 88:3817-25. [DOI: 10.1021/acs.analchem.5b04889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Zhu
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Lei Wang
- School
of Pharmaceutical Sciences, Shandong University, 250012 Jinan, People’s Republic of China
| | - Xiaowen Xu
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Haiping Wei
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Wei Jiang
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| |
Collapse
|
29
|
Xi Q, Li JJ, Du WF, Yu RQ, Jiang JH. A highly sensitive strategy for base excision repair enzyme activity detection based on graphene oxide mediated fluorescence quenching and hybridization chain reaction. Analyst 2016; 141:96-9. [DOI: 10.1039/c5an02255j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a highly sensitive strategy for UDG activity detection by combining HCR amplification and a GO-based fluorescence quenching platform.
Collapse
Affiliation(s)
- Qiang Xi
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jun-Jie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Wen-Fang Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|