1
|
Zhou X, Du L, Li M. Recent Progress in Azobenzene-Based In Vivo Photopharmacology. Med Res Rev 2025. [PMID: 40420431 DOI: 10.1002/med.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
As the most extensively studied photoswitch in photopharmacology, the azobenzene photoswitch has precision instrumental in the photoregulation of physiological processes across various animal models. Currently, it exhibits the greatest clinical potential for photosensitive retinal restoration, capable of inducing long-term therapeutic effects following intravitreal injection, without the need for foreign gene expression or optical fiber implantation. A significant advancement in the application of azobenzene photoswitches is their integration with optical flow control technology, which facilitates the targeting of deep tissues within the mouse cerebral cortex, addressing long-standing challenges related to tissue penetration depth in photopharmacology. With exceptional spatial and temporal resolution, photopharmacology is particularly well-suited for precision medicine, holding substantial potential for further development. Consequently, a comprehensive summary and review of the design strategies of azobenzene photoswitches for In Vivo applications, along with their experimental outcomes, are essential for guiding future advancements in photopharmacology. This review provides an overview of the fundamental properties and design strategies of azobenzene photoswitch molecules. Additionally, we extensively summarize all azobenzene photoswitch molecules successfully applied In Vivo for photopharmacological purposes since 2006, covering species such as Caenorhabditis elegans, Xenopus tadpoles, zebrafish, mice, rats, rabbits, and canines. Finally, we discuss the challenges associated with the In Vivo implementation of azobenzene photoswitch molecules and propose potential solutions.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Tropical Biological Resources (MOE), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Achouba Y, Peres B, Ascoët S, Meudal H, Caumes C, Zoukimian C, Millet H, Choteau‐Bodor M, Carvalhosa C, Croyal M, Bouchama F, Wulff H, Téletchéa S, Béroud R, Ishow E, Landon C, Boumendjel A, Montnach J, De Waard M. Photoisomerization of Azobenzene-Extended Charybdotoxin for the Optical Control of K v1.2 Potassium Channel Activity. Angew Chem Int Ed Engl 2025; 64:e202423278. [PMID: 40013552 PMCID: PMC12051786 DOI: 10.1002/anie.202423278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Natural peptides from animal venoms effectively modulate ion channel activity. While photoswitches regulate small compound pharmacology, their application to natural peptides rich in disulfide bridges and active on ion channels is novel due to larger pharmacophores. A pilot study integrating azobenzene photoswitches into charybdotoxin (ChTx), known for blocking potassium channels is initiated. Two click-chemistry-compatible azobenzene are synthesized differing in length and amide orientation (Az1 & Az2). Az1 is grafted onto ChTx at various amino acid positions using L-azidohomoalanine mutation. ChTx monomers outperformed dimers, particularly with azobenzene at position 14, by exhibiting optimal photoswitching activity. In the cis configuration, Az1 altered ChTx's pharmacophore, reducing potassium channel blockage, while conversely, Az2 increased ChTx potency. This study pioneers photoswitch application to complex peptides, leveraging structure-activity relationships. Successful integration depends on precise azobenzene positioning and chemical grafting guided by SAR insights. This advancement underscores the adaptability of photoswitch technology to intricate peptide structures, offering new avenues for pharmacological modulation.
Collapse
Affiliation(s)
- Yanis Achouba
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Basile Peres
- Département de Pharmacochimie MoléculaireUniversité Grenoble AlpesCNRSGrenobleF‐38000France
| | - Steven Ascoët
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Hervé Meudal
- Center for Molecular BiophysicsCNRSOrléans45071France
| | | | | | - Hugo Millet
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | | | | | - Mikael Croyal
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Fella Bouchama
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Heike Wulff
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | | | - Rémy Béroud
- Smartox BiotechnologySaint‐Egrève38120France
- SB‐PeptidesSaint‐Egrève38120France
| | - Eléna Ishow
- CEISAMNantes UniversitéCNRSNantes44322France
| | - Céline Landon
- Center for Molecular BiophysicsCNRSOrléans45071France
| | | | - Jérôme Montnach
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Michel De Waard
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
- Smartox BiotechnologySaint‐Egrève38120France
- Laboratory of Excellence «Ion Channels, Science and Therapeutics»ValbonneF‐06560France
| |
Collapse
|
3
|
Zhang J, Herzog LK, Li S, Chen X, Wu YW. Visible-Light-Switchable Molecular Glues for Reversible Control of Protein Function. Chemistry 2025; 31:e202403808. [PMID: 39805011 DOI: 10.1002/chem.202403808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems. Through optimizing photoswitch properties and linker strategies, we achieved efficient and reversible control using blue, green, and red light. We demonstrate that these systems enable rapid and reversible control of protein function in vitro and in cells. The findings represent a significant advancement in chemo-optogenetics, offering opportunities to expand applications requiring precise spatiotemporal regulation of dynamic biological processes.
Collapse
Affiliation(s)
- Jun Zhang
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Laura K Herzog
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Shuang Li
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Xi Chen
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yao-Wen Wu
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
4
|
Čonková M, Markiewicz G, Majchrzycki Ł, Szmulewicz A, Stefankiewicz AR. Chiral versus Achiral Assemblies in Multi-Stimuli Responsive Supramolecular Polymerization of Tetra-Substituted Azobenzene Dye. SMALL METHODS 2024; 8:e2301681. [PMID: 38344884 DOI: 10.1002/smtd.202301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Indexed: 10/18/2024]
Abstract
Incorporating photoswitchable moieties into the molecular design of supramolecular architectures provides unique opportunities for controlling their morphology and functionality via optical stimuli. Harnessing geometrical and electrical changes in response to multiple external stimuli on the molecular level to modulate properties remains a fundamental challenge. Herein, the reversible formation of the aggregates of l-tyrosine E-azobenzene-tetracarboxamide (E-ABT) is shown to be finely controlled by light, solvent, or chemical additives. The resulting products differ not only in their overall morphology and supramolecular interactions, but also in their intrinsic chirality, that is, depending on the conditions applied, self-assembly yields chiral columns or π-stacked "achiral" oligomers. This report shows the potential of rational monomer design to achieve controlled self-assembly by stimuli of choice and paves the way toward the use of multi-responsive, sterically hindered azo-benzene aggregates in materials chemistry and nanotechnology.
Collapse
Affiliation(s)
- Miroslava Čonková
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Grzegorz Markiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Adrianna Szmulewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| |
Collapse
|
5
|
Matsuo K, Kikukawa T, Waku T, Kobori A, Tamaoki N. A photoswitchable CENP-E inhibitor with single blue-green light to control chromosome positioning in mitotic cells. RSC Med Chem 2024:d4md00458b. [PMID: 39290378 PMCID: PMC11403824 DOI: 10.1039/d4md00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Reversibly photoswitchable chemical tools have aided in the development of novel approaches in the biomedical field. The visible region of light should be ideal for the biological application of this approach because of its low phototoxicity and deep penetration depth compared to ultraviolet light. Herein, we report a photoswitchable centromere-associated protein E (CENP-E) inhibitor, which is controllable with low-energy blue-green light (around 500 nm) illumination. This photoswitchable tool enabled us to control CENP-E-driven chromosome movements and positioning at subcellular resolutions with low phototoxic effects. This study can contribute to the development of a unique technique for chromosome engineering.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku Sapporo 001-0020 Japan
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo 060-0810 Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku Sapporo 001-0020 Japan
| |
Collapse
|
6
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Leistner AL, Most MM, Pianowski ZL. Molecular Syringe for Cargo Photorelease: Red-Light-Triggered Supramolecular Hydrogel. Chemistry 2023; 29:e202302295. [PMID: 37606157 DOI: 10.1002/chem.202302295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Photochromic supramolecular hydrogels are versatile materials that show macroscopic effects upon irradiation, like liquefaction or shape changes. Here, we demonstrate a simple photochromic cyclic dipeptide (2,5-diketopiperazine-based) supergelator, composed of (S)-lysine and an azobenzene analogue of phenylalanine, that forms supramolecular hydrogels even at 0.1 wt% loading. The gels can physically encapsulate cargo molecules and release them to the environment in a controllable manner upon irradiation with red light, thus working as a "molecular syringe". As the material is biocompatible and operational in the "therapeutic window" of light (>650 nm) that deeply penetrates soft human tissues, it is applicable to smart drug-delivery systems.
Collapse
Affiliation(s)
- Anna-Lena Leistner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Mario M Most
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology KIT, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Gödtel P, Starrett J, Pianowski ZL. Heterocyclic Hemipiperazines: Water-Compatible Peptide-Derived Photoswitches. Chemistry 2023; 29:e202204009. [PMID: 36790823 DOI: 10.1002/chem.202204009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Hemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers. Efficient photoisomerization occurs under aqueous conditions, although with a need for organic co-solvent. Bidirectional switching with visible light is observed for an extended aromatic system.
Collapse
Affiliation(s)
- Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Jessica Starrett
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology KIT, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Predicting the Electronic Absorption Band Shape of Azobenzene Photoswitches. Int J Mol Sci 2022; 24:ijms24010025. [PMID: 36613468 PMCID: PMC9819940 DOI: 10.3390/ijms24010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Simulations based on molecular dynamics coupled to excitation energy calculations were used to generate simulated absorption spectra for a family of halide derivatives of azobenzene, a family of photoswitch molecules with a weak absorption band around 400-600 nm and potential uses in living tissue. This is a case where using the conventional approach in theoretical spectroscopy (estimation of absorption maxima based on the vertical transition from the potential energy minimum on the ground electronic state) does not provide valid results that explain how the observed band shape extends towards the low energy region of the spectrum. The method affords a reasonable description of the main features of the low-energy UV-Vis spectra of these compounds. A bathochromic trend was detected linked to the size of the halide atom. Analysis of the excitation reveals a correlation between the energy of the molecular orbital where excitation starts and the energy of the highest occupied atomic orbital of the free halide atom. This was put to the test with a new brominated compound with good results. The energy level of the highest occupied orbital on the free halide was identified as a key factor that strongly affects the energy gap in the photoswitch. This opens the way for the design of bathochromically shifted variants of the photoswitch with possible applications.
Collapse
|
10
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Berry J, Lindhorst TK, Despras G. Sulfur and Azobenzenes, a Profitable Liaison: Straightforward Synthesis of Photoswitchable Thioglycosides with Tunable Properties. Chemistry 2022; 28:e202200354. [PMID: 35537915 PMCID: PMC9401004 DOI: 10.1002/chem.202200354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 01/07/2023]
Abstract
Azobenzene photoswitches are valuable tools for controlling properties of molecular systems with light. We have been investigating azobenzene glycoconjugates to probe carbohydrate-protein interactions and to design glycoazobenzene macrocycles with chiroptical and physicochemical properties modulated by light irradiation. To date, direct conjugation of glycosides to azobenzenes was performed by reactions providing target compounds in limited yields. We therefore sought a more effective and reliable coupling method. In this paper, we report on a straightforward thioarylation of azobenzene derivatives with glycosyl thiols as well as other thiols, thereby increasing the scope of azobenzene conjugation. Even challenging unsymmetrical conjugates can be achieved in good yields via sequential or one-pot procedures. Importantly, red-shifted azoswitches, which are addressed with visible light, were easily functionalized. Additionally, by oxidation of the sulfide bridge to the respective sulfones, both the photochromic and the thermal relaxation properties of the core azobenzene can be tuned. Utilizing this option, we realized orthogonal three-state photoswitching in mixtures containing two distinct azobenzene thioglycosides.
Collapse
Affiliation(s)
- Jonathan Berry
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
| | - Guillaume Despras
- Otto Diels Institute of Organic ChemistryChristiana Albertina University of KielOtto-Hahn-Platz 3/424118KielGermany
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Paul Sabatier118 route de Narbonne31062Toulouse Cedex 9France
| |
Collapse
|
12
|
Garrido-Charles A, Huet A, Matera C, Thirumalai A, Hernando J, Llebaria A, Moser T, Gorostiza P. Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea. J Am Chem Soc 2022; 144:9229-9239. [PMID: 35584208 PMCID: PMC9164239 DOI: 10.1021/jacs.1c12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system. The new photoswitchable ligands induced photocurrents in untransfected neurons upon covalently tethering to endogenous GluRs and activating them reversibly with visible light pulses of a few milliseconds. As a proof of concept of these molecular prostheses, we applied them to the ultrafast synapses of auditory neurons of the cochlea that encode sound and provide auditory input to the brain. This drug-based method afforded the optical stimulation of auditory neurons of adult gerbils at hundreds of hertz without genetic manipulation that would be required for their optogenetic control. This indicates that the new photoswitchable ligands are also applicable to the spatiotemporal control of fast spiking interneurons in the brain.
Collapse
Affiliation(s)
- Aida Garrido-Charles
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science
and Technology, Carrer
de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network
Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 28029 Madrid, Spain
- Institute
for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory
Neuroscience and Optogenetics Group, German
Primate Center, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Antoine Huet
- Institute
for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory
Neuroscience and Optogenetics Group, German
Primate Center, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
- Auditory
Circuit Lab, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carlo Matera
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science
and Technology, Carrer
de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network
Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 28029 Madrid, Spain
- Department
of Pharmaceutical Sciences, University of
Milan, Via Luigi Mangiagalli
25, 20133 Milan, Italy
| | - Anupriya Thirumalai
- Institute
for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory
Neuroscience and Optogenetics Group, German
Primate Center, 37077 Göttingen, Germany
- Auditory
Circuit Lab, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jordi Hernando
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Cerdanyola
del Vallès 08193, Spain
| | - Amadeu Llebaria
- Consejo
Superior de Investigaciones Científicas (IQAC-CSIC), Institute of Advanced Chemistry of Catalonia, 08034 Barcelona, Spain
| | - Tobias Moser
- Institute
for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Auditory
Neuroscience and Optogenetics Group, German
Primate Center, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science
and Technology, Carrer
de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network
Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced
Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
13
|
Xu X, Wang G. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107473. [PMID: 35132792 DOI: 10.1002/smll.202107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Molecular solar thermal (MOST) systems have attracted tremendous attention for solar energy conversion and storage, which can generate high-energy metastable isomers upon capturing photon energy, and release the stored energy as heat on demand during back conversion. However, the pristine molecular photoswitches are limited by low storage energy density and UV light photon energy storage. Recently, numerous pioneering works have been focused on the development of MOST systems towards phase change (PC) and visible light photon energy storage to increase their properties. On the one hand, the strategy of simultaneously capturing isomerization enthalpy and PC energy between solid and liquid can not only offer high latent heat, but also promote the development of sustainable energy systems. On the other hand, the efficient photon energy storage in the visible light range opens a tremendously fascinating avenue to fabricate MOST systems powered under natural sunlight. Here, the recent advances of MOST systems towards PC and visible light photon energy storage are systematically summarized, the most promising advantages and current challenges are analyzed, and emerging strategies and future research directions are proposed.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Zhu J, Guo T, Wang Z, Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J Control Release 2022; 345:475-493. [PMID: 35339578 DOI: 10.1016/j.jconrel.2022.03.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/18/2022]
Abstract
Azobenzene-based molecules show unique trans-cis isomerization upon ultraviolet light irradiation, which induce the change of polarity, crystallinity, stability, and binding affinity with pharmacological target. Moreover, azobenzene is the substrate of azoreductase that is often overexpressed in many pathological sites, e.g. hypoxic solid tumor. Therefore, azobenzene can be a multifunctional molecule in material science, pharmaceutical science and biomedicine because of its sensitivity to light, hypoxia and certain enzymes, hence showing potential application in site-specific smart therapy. Herein we focus on the employment of azobenzene and its derivatives for engineering triggered prodrug and drug delivery systems, and provide an overview of photoswitchable azo-based prodrugs, the associated problems regarding ultraviolet light and reversible isomerization, as well as the potential solutions. We also present the advance of azo-bearing delivery vehicles wherein azobenzene act as the linker, capping agent, and building block, and discuss the corresponding mechanisms for controlled cargo release, endocytosis enhancement and sensitization of free radical cancer therapy.
Collapse
Affiliation(s)
- Jundong Zhu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
16
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
17
|
Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022; 15:7. [PMID: 34983613 PMCID: PMC8728933 DOI: 10.1186/s13041-021-00885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.
Collapse
Affiliation(s)
- Yang Shen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
19
|
Kerckhoffs A, Bo Z, Penty SE, Duarte F, Langton MJ. Red-shifted tetra- ortho-halo-azobenzenes for photo-regulated transmembrane anion transport. Org Biomol Chem 2021; 19:9058-9067. [PMID: 34617944 DOI: 10.1039/d1ob01457a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-responsive synthetic ion transporters are of interest as tools for studying transmembrane transport processes and have potential applications as targeted therapeutics, due to the possibility of spatiotemporal control and wavelength-dependent function. Here we report the synthesis of novel symmetric and non-symmetric red-shifted tetra-ortho-chloro- and tetra-ortho-fluoro azobenzenes, bearing pendant amine functionality. Functionalisation of the photo-switchable scaffolds with squaramide hydrogen bond donors enabled the preparation of a family of anion receptors, which act as photo-regulated transmembrane chloride transporters in response to green or red light. The subtle effects of chlorine/fluorine substitution, meta/para positioning of the anion receptors, and the use of more flexible linkers are explored. NMR titration experiments on the structurally diverse photo-switchable receptors reveal cooperative binding of chloride in the Z, but not E isomer, by the two squaramide binding sites. These results are supported by molecular dynamics simulations in explicit solvent and model membranes. We show that this intramolecular anion recognition leads to effective switching of transport activity in lipid bilayer membranes, in which optimal Z isomer activity is achieved using a combination of fluorine substitution and para-methylene spacer units.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Zonghua Bo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Samuel E Penty
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
20
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near-Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single-Cell Precision*. Angew Chem Int Ed Engl 2021; 60:23695-23704. [PMID: 34460143 PMCID: PMC8596636 DOI: 10.1002/anie.202104794] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/23/2021] [Indexed: 11/07/2022]
Abstract
We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Alexander Sailer
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Joyce C. M. Meiring
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Constanze Heise
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Linda N. Pettersson
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Anna Akhmanova
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Julia Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Oliver Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| |
Collapse
|
21
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near‐Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single‐Cell Precision**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alexander Sailer
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Joyce C. M. Meiring
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Constanze Heise
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Linda N. Pettersson
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Anna Akhmanova
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Julia Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Oliver Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| |
Collapse
|
22
|
Zheng LL, Li JZ, Li YX, Gao JB, Dong JX, Gao ZF. pH-Responsive DNA Motif: From Rational Design to Analytical Applications. Front Chem 2021; 9:732770. [PMID: 34458239 PMCID: PMC8385663 DOI: 10.3389/fchem.2021.732770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
pH-responsive DNA motifs have attracted substantial attention attributed to their high designability and versatility of DNA chemistry. Such DNA motifs typically exploit DNA secondary structures that exhibit pH response properties because of the presence of specific protonation sites. In this review, we briefly summarized second structure-based pH-responsive DNA motifs, including triplex DNA, i-motif, and A+-C mismatch base pair-based DNA devices. Finally, the challenges and prospects of pH-responsive DNA motifs are also discussed.
Collapse
Affiliation(s)
- Lin Lin Zheng
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jin Ze Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Ying Xu Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jian Bang Gao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jiang Xue Dong
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology, Hebei University, Baoding, China
| | - Zhong Feng Gao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| |
Collapse
|
23
|
Abstract
Abstract
This article describes the defining characteristics of photochromic dyes and highlights the subset of properties that are of greatest commercial importance. It outlines the history of the industrial exploitation of photochromic colorants before moving on to discuss current and potential applications. In doing so, a brief tour of key types of photochromic dye is provided.
Collapse
|
24
|
Schultzke S, Walther M, Staubitz A. Active Ester Functionalized Azobenzenes as Versatile Building Blocks. Molecules 2021; 26:molecules26133916. [PMID: 34206950 PMCID: PMC8272017 DOI: 10.3390/molecules26133916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Azobenzenes are important molecular switches that can still be difficult to functionalize selectively. A high yielding Pd-catalyzed cross-coupling method under mild conditions for the introduction of NHS esters to azobenzenes and diazocines has been established. Yields were consistently high with very few exceptions. The NHS functionalized azobenzenes react with primary amines quantitatively. These amines are ubiquitous in biological systems and in material science.
Collapse
Affiliation(s)
- Sven Schultzke
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Melanie Walther
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Anne Staubitz
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
- Correspondence: ; Tel.: +49-421-218-63210
| |
Collapse
|
25
|
Leistner AL, Kirchner S, Karcher J, Bantle T, Schulte ML, Gödtel P, Fengler C, Pianowski ZL. Fluorinated Azobenzenes Switchable with Red Light. Chemistry 2021; 27:8094-8099. [PMID: 33769596 PMCID: PMC8252058 DOI: 10.1002/chem.202005486] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular photoswitches triggered with red or NIR light are optimal for photomodulation of complex biological systems, including efficient penetration of the human body for therapeutic purposes ("therapeutic window"). Yet, they are rarely reported, and even more rarely functional under aqueous conditions. In this work, fluorinated azobenzenes are shown to exhibit efficient E→Z photoisomerization with red light (PSS660nm >75 % Z) upon conjugation with unsaturated substituents. Initially demonstrated for aldehyde groups, this effect was also observed in a more complex structure by incorporating the chromophore into a cyclic dipeptide with propensity for self-assembly. Under physiological conditions, the latter molecule formed a supramolecular material that reversibly changed its viscosity upon irradiation with red light. Our observation can lead to design of new photopharmacology agents or phototriggered materials for in vivo use.
Collapse
Affiliation(s)
- Anna-Lena Leistner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Susanne Kirchner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Johannes Karcher
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tobias Bantle
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Mariam L Schulte
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Peter Gödtel
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Fengler
- Institut für Technische Chemie und Polymerchemie, Karlsruher Institut für Technologie (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Gutzeit VA, Acosta-Ruiz A, Munguba H, Häfner S, Landra-Willm A, Mathes B, Mony J, Yarotski D, Börjesson K, Liston C, Sandoz G, Levitz J, Broichhagen J. A fine-tuned azobenzene for enhanced photopharmacology in vivo. Cell Chem Biol 2021; 28:1648-1663.e16. [PMID: 33735619 DOI: 10.1016/j.chembiol.2021.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.
Collapse
Affiliation(s)
- Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Häfner
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Arnaud Landra-Willm
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Bettina Mathes
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jürgen Mony
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Dzianis Yarotski
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Guillaume Sandoz
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Joshua Levitz
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany; Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| |
Collapse
|
27
|
Saha M, Hossain MS, Bandyopadhyay S. A Photoregulated Racemase Mimic. Angew Chem Int Ed Engl 2021; 60:5220-5224. [PMID: 33180335 DOI: 10.1002/anie.202012124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The racemase enzymes convert L-amino acids to their D-isomer. The reaction proceeds through a stepwise deprotonation-reprotonation mechanism that is assisted by a pyridoxal phosphate (PLP) coenzyme. This work reports a PLP-photoswitch-imidazole triad where the racemization reaction can be controlled by light by tweaking the distance between the basic residue and the reaction centre.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
28
|
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
29
|
Lameijer LN, Budzak S, Simeth NA, Hansen MJ, Feringa BL, Jacquemin D, Szymanski W. General Principles for the Design of Visible-Light-Responsive Photoswitches: Tetra-ortho-Chloro-Azobenzenes. Angew Chem Int Ed Engl 2020; 59:21663-21670. [PMID: 33462976 PMCID: PMC7756550 DOI: 10.1002/anie.202008700] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 12/29/2022]
Abstract
Molecular photoswitches enable reversible external control of biological systems, nanomachines, and smart materials. Their development is driven by the need for low energy (green-red-NIR) light switching, to allow non-invasive operation with deep tissue penetration. The lack of clear design principles for the adaptation and optimization of such systems limits further applications. Here we provide a design rulebook for tetra-ortho-chloroazobenzenes, an emerging class of visible-light-responsive photochromes, by elucidating the role that substituents play in defining their key characteristics: absorption spectra, band overlap, photoswitching efficiencies, and half-lives of the unstable cis isomers. This is achieved through joint photochemical and theoretical analyses of a representative library of molecules featuring substituents of varying electronic nature. A set of guidelines is presented that enables tuning of properties to the desired application through informed photochrome engineering.
Collapse
Affiliation(s)
- Lucien N. Lameijer
- Medical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Simon Budzak
- Department of ChemistryFaculty of Natural SciencesMatej Bel UniversityTajovkého 4097401Banska BystricaSlovakia
| | - Nadja A. Simeth
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | | | - Wiktor Szymanski
- Medical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| |
Collapse
|
30
|
Dudek M, Tarnowicz-Staniak N, Deiana M, Pokładek Z, Samoć M, Matczyszyn K. Two-photon absorption and two-photon-induced isomerization of azobenzene compounds. RSC Adv 2020; 10:40489-40507. [PMID: 35520821 PMCID: PMC9057575 DOI: 10.1039/d0ra07693g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 01/05/2023] Open
Abstract
The process of two-photon-induced isomerization occurring in various organic molecules, among which azobenzene derivatives hold a prominent position, offers a wide range of functionalities, which can be used in both material and life sciences. This review provides a comprehensive description of nonlinear optical (NLO) properties of azobenzene (AB) derivatives whose geometries can be switched through two-photon absorption (TPA). Employing the nonlinear excitation process allows for deeper penetration of light into the tissues and provides opportunities to regulate biological systems in a non-invasive manner. At the same time, the tight focus of the beam needed to induce nonlinear absorption helps to improve the spatial resolution of the photoinduced structures. Since near-infrared (NIR) wavelengths are employed, the lower photon energies compared to usual one-photon excitation (typically, the azobenzene geometry change from trans to cis form requires the use of UV photons) cause less damage to the biological samples. Herein, we present an overview of the strategies for optimizing azobenzene-based photoswitches for efficient two-photon excitation (TPE) and the potential applications of two-photon-induced isomerization of azobenzenes in biological systems: control of ion flow in ion channels or control of drug release, as well as in materials science, to fabricate data storage media, optical filters, diffraction elements etc., based on phenomena like photoinduced anisotropy, mass transport and phase transition. The extant challenges in the field of two-photon switchable azomolecules are discussed.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Nina Tarnowicz-Staniak
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Ziemowit Pokładek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
31
|
Lameijer LN, Budzak S, Simeth NA, Hansen MJ, Feringa BL, Jacquemin D, Szymanski W. General Principles for the Design of Visible‐Light‐Responsive Photoswitches: Tetra‐
ortho
‐Chloro‐Azobenzenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucien N. Lameijer
- Medical Imaging Center University Medical Center Groningen University of Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Simon Budzak
- Department of Chemistry Faculty of Natural Sciences Matej Bel University Tajovkého 40 97401 Banska Bystrica Slovakia
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Denis Jacquemin
- CEISAM Lab UMR 6230 Université de Nantes CNRS 44000 Nantes France
| | - Wiktor Szymanski
- Medical Imaging Center University Medical Center Groningen University of Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| |
Collapse
|
32
|
Konrad DB, Savasci G, Allmendinger L, Trauner D, Ochsenfeld C, Ali AM. Computational Design and Synthesis of a Deeply Red-Shifted and Bistable Azobenzene. J Am Chem Soc 2020; 142:6538-6547. [PMID: 32207943 PMCID: PMC7307923 DOI: 10.1021/jacs.9b10430] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We computationally
dissected the electronic and geometrical influences
of ortho-chlorinated azobenzenes on their photophysical
properties. X-ray analysis provided the insight that trans-tetra-ortho-chloro azobenzene is conformationally
flexible and thus subject to molecular motions. This allows the photoswitch
to adopt a range of red-shifted geometries, which account for the
extended n → π* band tails. On the basis of our results,
we designed the di-ortho-fluoro di-ortho-chloro (dfdc) azobenzene and provided computational
evidence for the superiority of this substitution pattern to tetra-ortho-chloro azobenzene. Thereafter, we synthesized dfdc azobenzene by ortho-chlorination via
2-fold C–H activation and experimentally confirmed its structural
and photophysical properties through UV–vis, NMR, and X-ray
analyses. The advantages include near-bistable isomers and an increased
separation of the n → π* bands between the trans- and cis-conformations, which allows for the generation
of unusually high levels of the cis-isomer by irradiation
with green/yellow light as well as red light within the biooptical
window.
Collapse
Affiliation(s)
- David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gökcen Savasci
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, New York 10003, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Ahmed M Ali
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
33
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
34
|
Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, Trauner D. PHOTACs enable optical control of protein degradation. SCIENCE ADVANCES 2020; 6:eaay5064. [PMID: 32128406 PMCID: PMC7034999 DOI: 10.1126/sciadv.aay5064] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/22/2019] [Indexed: 05/13/2023]
Abstract
PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Bryan S. Matsuura
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Marleen Bérouti
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
35
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
36
|
Tuten BT, Wiedbrauk S, Barner-Kowollik C. Contemporary catalyst-free photochemistry in synthetic macromolecular science. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Saha M, Chatterjee S, Hossain MS, Ghude A, Bandyopadhyay S. Modulation of Electronic Mobility of a One-Dimensional Coordination Polymeric Molecular Wire with Light. Chem Asian J 2019; 14:4659-4664. [PMID: 31392843 DOI: 10.1002/asia.201900956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/04/2019] [Indexed: 11/09/2022]
Abstract
Metal ions often influence the photoswitching efficiency of a photochromic system. This article reports a one-dimensional polymer having cyclic azobenzenes coordinated to silver ions that are bridged by nitrates. The coordination polymer (CP-2) displays a photoresponsive behavior. The switching ability in the polymer form was faster compared to the parent azobenzene ligand without the metal ions. Azobenzenes are reported to be poorly conducting. Here, although the azobenzene ligand does not show significant electronic mobility, the coordination polymer (CP-2) displays a modest conductivity. The conductance in the cis form of the polymer is significantly higher compared to the trans form. Upon exposure to visible light, the cis form undergoes photoisomerization to the trans form with a drastic drop in the electronic mobility. The trans form can be reverted to the cis form thermally or by using UV light. Thus, this system offers a reversible control of the conductivity using light.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Arijeet Ghude
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
38
|
Mutter NL, Volarić J, Szymanski W, Feringa BL, Maglia G. Reversible Photocontrolled Nanopore Assembly. J Am Chem Soc 2019; 141:14356-14363. [PMID: 31469268 PMCID: PMC6743218 DOI: 10.1021/jacs.9b06998] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Self-assembly
is a fundamental feature of biological systems, and
control of such processes offers fascinating opportunities to regulate
function. Fragaceatoxin C (FraC) is a toxin that upon binding to the
surface of sphingomyelin-rich cells undergoes a structural metamorphosis,
leading to the assembly of nanopores at the cell membrane and causing
cell death. In this study we attached photoswitchable azobenzene pendants
to various locations near the sphingomyelin binding pocket of FraC
with the aim of remote controlling the nanopore assembly using light.
We found several constructs in which the affinity of the toxin for
biological membranes could be activated or deactivated by irradiation,
thus enabling reversible photocontrol of pore formation. Notably,
one construct was completely inactive in the thermally adapted state;
it however induced full lysis of cultured cancer cells upon light
irradiation. Selective irradiation also allowed isolation of individual
nanopores in artificial lipid membranes. Photocontrolled FraC might
find applications in photopharmacology for cancer therapeutics and
has potential to be used for the fabrication of nanopore arrays in
nanopore sensing devices, where the reconstitution, with high spatiotemporal
precision, of single nanopores must be controlled.
Collapse
Affiliation(s)
| | | | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology , University of Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | | | | |
Collapse
|
39
|
Palladium-catalyzed direct ortho C X bond construction via C H activation of azobenzenes: Synthesis of (E)-1,2-b(2,6-dibromo(chloro)-phenyl)diazene. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Sailer A, Ermer F, Kraus Y, Lutter FH, Donau C, Bremerich M, Ahlfeld J, Thorn‐Seshold O. Hemithioindigos for Cellular Photopharmacology: Desymmetrised Molecular Switch Scaffolds Enabling Design Control over the Isomer‐Dependency of Potent Antimitotic Bioactivity. Chembiochem 2019; 20:1305-1314. [DOI: 10.1002/cbic.201800752] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Alexander Sailer
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Franziska Ermer
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Yvonne Kraus
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Ferdinand H. Lutter
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Carsten Donau
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Maximilian Bremerich
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Julia Ahlfeld
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| | - Oliver Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University Munich Butenandtstrasse 5–13 Munich 81377 Germany
| |
Collapse
|
41
|
Saha M, Bandyopadhyay S. Reversible photoresponsive activity of a carbonic anhydrase mimic. Chem Commun (Camb) 2019; 55:3294-3297. [PMID: 30810568 DOI: 10.1039/c9cc00018f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbonic anhydrase (CA) enzyme reversibly transforms carbon dioxide and water to a carbonate ion and a proton. Photoresponsive enzyme mimics, where the CA-activity can be turned on and off reversibly with light, have not been reported so far. We have designed an active site mimic that offers reversible control of the catalytic activity using light. Moreover, in the presence of a cationic polymer, we have demonstrated that the CA-activity was further enhanced by stabilizing the transition state with the cis-form of the enzyme mimic which can catalyze the hydration of gaseous CO2.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| | | |
Collapse
|
42
|
Agnetta L, Bermudez M, Riefolo F, Matera C, Claro E, Messerer R, Littmann T, Wolber G, Holzgrabe U, Decker M. Fluorination of Photoswitchable Muscarinic Agonists Tunes Receptor Pharmacology and Photochromic Properties. J Med Chem 2019; 62:3009-3020. [DOI: 10.1021/acs.jmedchem.8b01822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Carrer Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Enrique Claro
- Institut de Neurociències (INc) and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Regina Messerer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, University of Regensburg, Universitätstraße 31, 93053 Regensburg, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
43
|
Carmi I, De Battista M, Maddalena L, Carroll EC, Kienzler MA, Berlin S. Holographic two-photon activation for synthetic optogenetics. Nat Protoc 2019; 14:864-900. [PMID: 30804570 DOI: 10.1038/s41596-018-0118-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is ~3 weeks.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marco De Battista
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Laura Maddalena
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Elizabeth C Carroll
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | | | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
44
|
Simeth NA, Bellisario A, Crespi S, Fagnoni M, König B. Substituent Effects on 3-Arylazoindole Photoswitches. J Org Chem 2019; 84:6565-6575. [DOI: 10.1021/acs.joc.8b02973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nadja A. Simeth
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Alfredo Bellisario
- Department of Physics, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Stefano Crespi
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
45
|
Beauté L, McClenaghan N, Lecommandoux S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv Drug Deliv Rev 2019; 138:148-166. [PMID: 30553952 DOI: 10.1016/j.addr.2018.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
The use of nanotechnology to improve treatment efficacy and reduce side effects is central to nanomedicine. In this context, stimuli-responsive drug delivery systems (DDS) such as chemical/physical gels or nanoparticles such as polymersomes, micelles or nanogels are particularly promising and are the focus of this review. Several stimuli have been considered but light as an exogenous trigger presents many advantages that are pertinent for clinical applications such as high spatial and temporal control and low cost. Underlying mechanisms required for the release of therapeutic agents in vitro and in vivo range from the molecular scale, namely photoisomerization, hydrophobicity photoswitching, photocleavage or heat generation via nanoheaters, through to the macromolecular scale. As well as these approaches, DDS destabilization, DDS permeation pore unblocking and formation are discussed.
Collapse
Affiliation(s)
- Louis Beauté
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255, 351 Cours de la Libération, Talence 33405, France; Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, Bordeaux INP, UMR CNRS 5629, 16 Avenue Pey-Berland, Pessac 33607, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255, 351 Cours de la Libération, Talence 33405, France.
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, Bordeaux INP, UMR CNRS 5629, 16 Avenue Pey-Berland, Pessac 33607, France.
| |
Collapse
|
46
|
Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev 2018; 47:7339-7368. [PMID: 30168543 DOI: 10.1039/c8cs00470f] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of renewable energy technologies has been a significant area of research amongst scientists with the aim of attaining a sustainable world society. Solar thermal fuels that can capture, convert, store, and release solar energy in the form of heat through reversible photoisomerization of molecular photoswitches such as azobenzene derivatives are currently in the limelight of research. Herein, we provide a state-of-the-art account on the recent advancements in solar thermal fuels based on azobenzene photoswitches. We begin with an overview on the importance of azobenzene-based solar thermal fuels and their fundamentals. Then, we highlight the recent advances in diverse azobenzene materials for solar thermal fuels such as pure azobenzene derivatives, nanocarbon-templated azobenzene, and polymer-templated azobenzene. The basic design concepts of these advanced solar energy storage materials are discussed, and their promising applications are highlighted. We then introduce the recent endeavors in the molecular design of azobenzene derivatives toward efficient solar thermal fuels, and conclude with new perspectives on the future scope, opportunities and challenges. It is expected that continuous pioneering research involving scientists and engineers from diverse technological backgrounds could trigger the rapid advancement of this important interdisciplinary field, which embraces chemistry, physics, engineering, nanoscience, nanotechnology, materials science, polymer science, etc.
Collapse
Affiliation(s)
- Liqi Dong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | |
Collapse
|
47
|
Liu L, Li N, Chen M, Yang H, Tang Q, Gong C. Visible-Light-Responsive Surface Molecularly Imprinted Polymer for Acyclovir through Chicken Skin Tissue. ACS APPLIED BIO MATERIALS 2018; 1:845-852. [DOI: 10.1021/acsabm.8b00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lantao Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nan Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Meijun Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hailin Yang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qian Tang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chengbin Gong
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
48
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
49
|
Lutz T, Wein T, Höfner G, Pabel J, Eder M, Dine J, Wanner KT. Development of New Photoswitchable Azobenzene Based γ-Aminobutyric Acid (GABA) Uptake Inhibitors with Distinctly Enhanced Potency upon Photoactivation. J Med Chem 2018; 61:6211-6235. [DOI: 10.1021/acs.jmedchem.8b00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Toni Lutz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Julien Dine
- Scientific Core Unit Electrophysiology, Department of Stress Neurobiology and Neurogenetics, Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
50
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|